Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 130: 106236, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371817

RESUMO

Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor and a therapeutic target for metabolic disorders. Numerous CB1 antagonists have been developed, but their functional selectivities and bias towards G protein or ß-arrestin signaling have not been systemically characterized. In this study, we analyzed the binding affinities and downstream signaling of two series of pyrazole derivatives bearing 1-aminopiperidine (Series I) or 4-aminothiomorpholine 1,1-dioxide (Series II) moieties, as well as the well-known CB1 antagonists rimonabant and taranabant. Analyses of the results for the Series I and II derivatives showed that minor structure modifications to their functional groups and especially the incorporation of 1-aminopiperidine or 4-aminothiomorpholine 1,1-dioxide motifs can profoundly affect their bias toward G protein or ß-arrestin signaling, and that their binding affinity and functional activity can be disassociated. Docking and molecular dynamics simulations revealed that the binding modes of Series I and II antagonists differed primarily in that Series I antagonists formed an additional hydrogen bond with the receptor, whereas those in Series II formed a water bridge.


Assuntos
Antagonistas de Receptores de Canabinoides , Proteínas de Ligação ao GTP , Antagonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/metabolismo , Rimonabanto , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores de Canabinoides/metabolismo
2.
J Med Chem ; 65(3): 2374-2387, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35084860

RESUMO

In the present report, we describe the synthesis and structure-activity relationships of novel "four-arm" dihydropyrazoline compounds designed as peripherally restricted antagonists of cannabinoid-1 receptor (CB1R). A series of racemic 3,4-diarylpyrazolines were synthesized and evaluated initially in CB1 receptor binding assays. The novel compounds, designed to limit brain penetrance and decreased lipophilicity, showed high affinity for CB1R and potent in vitro CB1R antagonist activities. Promising compounds with potent CB1R activity were evaluated in tissue distribution studies. Compounds 6a, 6f, and 7c showed limited brain penetrance attesting to its peripheral restriction. The 4S-enantiomer of these compounds further showed a stereoselective affinity for the CB1 receptor and behaved as inverse agonists. In vivo studies on food intake and body weight reduction in diet-induced obese (DIO) mice showed that these compounds could serve as potential leads for the development of selective CB1R antagonists with improved potency and peripheral restriction.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Obesidade/tratamento farmacológico , Pirazóis/uso terapêutico , Receptor CB1 de Canabinoide/metabolismo , Animais , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/metabolismo , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/metabolismo , Dieta Hiperlipídica , Agonismo Inverso de Drogas , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
3.
Pharmacol Res Perspect ; 8(5): e00663, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32965798

RESUMO

The antiallodynic effect of PhAR-DBH-Me was evaluated on two models of neuropathic pain, and the potential roles of CB1, CB2, and TRPV1 receptors as molecular targets of PhAR-DBH-Me were studied. Female Wistar rats were submitted to L5/L6 spinal nerve ligation (SNL) or repeated doses of cisplatin (0.1 mg/kg, i.p.) to induce experimental neuropathy. Then, tactile allodynia was determined, and animals were treated with logarithmic doses of PhAR-DBH-Me (3.2-100 mg/kg, i.p.). To evaluate the mechanism of action of PhAR-DBH-Me, in silico studies using crystallized structures of CB1, CB2, and TRPV1 receptors were performed. To corroborate the computational insights, animals were intraperitoneally administrated with antagonists for CB1 (AM-251, 3 mg/kg), CB2 (AM-630, 1 mg/kg), and TRPV1 receptors (capsazepine, 3 mg/kg), 15 min before to PhAR-DBH-Me (100 mg/kg) administration. Vagal stimulation evoked on striated muscle contraction in esophagus, was used to elicited pharmacological response of PhAR-DBH-ME on nervous tissue. Systemic administration of PhAR-DBH-Me reduced the SNL- and cisplatin-induced allodynia. Docking studies suggested that PhAR-DBH-Me acts as an agonist for CB1, CB2, and TRPV1 receptors, with similar affinity to the endogenous ligand anandamide. Moreover antiallodynic effect of PhAR-DBH-Me was partially prevented by administration of AM-251 and AM-630, and completely prevented by capsazepine. Finally, PhAR-DBH-Me decreased the vagally evoked electrical response in esophagus rat. Taken together, results indicate that PhAR-DBH-Me induces an antiallodynic effect through partial activation of CB1 and CB2 receptors, as well as desensitization of TRPV1 receptors. Data also shed light on the novel vanilloid nature of the synthetic compound PhAR-DBH-Me.


Assuntos
Compostos Azabicíclicos/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Hiperalgesia/induzido quimicamente , Ácidos Oleicos/farmacologia , Canais de Cátion TRPV/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Ácidos Araquidônicos/metabolismo , Compostos Azabicíclicos/administração & dosagem , Antagonistas de Receptores de Canabinoides/metabolismo , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Endocanabinoides/metabolismo , Feminino , Hiperalgesia/tratamento farmacológico , Injeções Intraperitoneais , Ligadura/métodos , Modelos Animais , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Ácidos Oleicos/administração & dosagem , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Wistar , Nervos Espinhais/efeitos dos fármacos , Nervos Espinhais/cirurgia , Canais de Cátion TRPV/antagonistas & inibidores , Estimulação do Nervo Vago/métodos
4.
Nat Chem Biol ; 16(6): 667-675, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393901

RESUMO

N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inibidores Enzimáticos/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosfatidiletanolaminas/metabolismo , Fosfolipase D/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Medo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Receptores de Canabinoides/metabolismo , Transdução de Sinais
5.
Artigo em Inglês | MEDLINE | ID: mdl-31442553

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease and its characteristic is the progressive degeneration of dopaminergic neurons within the substantia nigra (SN) of the midbrain. There is hardly any clinically proven efficient therapeutics for its cure in several recent preclinical advances proposed to treat PD. Recent studies have found that the endocannabinoid signaling system in particular the comprised two receptors, CB1 and CB2 receptors, has a significant regulatory function in basal ganglia and is involved in the pathogenesis of PD. Therefore, adding new insights into the biochemical interactions between cannabinoids and other signaling pathways may help develop new pharmacological strategies. Factors of the endocannabinoid system (ECS) are abundantly expressed in the neural circuits of basal ganglia, where they interact interactively with glutamatergic, γ-aminobutyric acid-ergic (GABAergic), and dopaminergic signaling systems. Although preclinical studies on PD are promising, the use of cannabinoids at the clinical level has not been thoroughly studied. In this review, we evaluated the available evidence and reviewed the involvement of ECS in etiologies, symptoms and treatments related to PD. Since CB1 and CB2 receptors are the two main receptors of endocannabinoids, we primarily put the focus on the therapeutic role of CB1 and CB2 receptors in PD. We will try to determine future research clues that will help understand the potential therapeutic benefits of the ECS in the treatment of PD, aiming to open up new strategies and ideas for the treatment of PD.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Moduladores de Receptores de Canabinoides/metabolismo , Moduladores de Receptores de Canabinoides/uso terapêutico , Canabinoides/metabolismo , Canabinoides/uso terapêutico , Capsaicina/análogos & derivados , Capsaicina/metabolismo , Capsaicina/uso terapêutico , Endocanabinoides/metabolismo , Endocanabinoides/uso terapêutico , Humanos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores
6.
Mol Pharmacol ; 96(5): 619-628, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31515283

RESUMO

Cannabinoid receptor 1 (CB1) is a potential therapeutic target for the treatment of pain, obesity and obesity-related metabolic disorders, and addiction. The crystal structure of human CB1 has been determined in complex with the stabilizing antagonist AM6538. In the present study, we characterize AM6538 as a tight-binding/irreversible antagonist of CB1, as well as two derivatives of AM6538 (AM4112 and AM6542) as slowly dissociating CB1 antagonists across binding simulations and cellular signaling assays. The long-lasting nature of AM6538 was explored in vivo wherein AM6538 continues to block CP55,940-mediated behaviors in mice up to 5 days after a single injection. In contrast, the effects of SR141716A abate in mice 2 days after injection. These studies demonstrate the functional outcome of CB1 antagonist modification and open the path for development of long-lasting CB1 antagonists.


Assuntos
Antagonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Nitratos/metabolismo , Nitratos/farmacologia , Piperidinas/metabolismo , Piperidinas/farmacologia , Pirazóis/metabolismo , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptor CB1 de Canabinoide/química
7.
J Med Chem ; 62(13): 6330-6345, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185168

RESUMO

Peripherally restricted CB1 receptor antagonists may be useful in treating metabolic syndrome, diabetes, liver diseases, and gastrointestinal disorders. Clinical development of the centrally acting CB1 inverse agonist otenabant (1) was halted due to its potential of producing adverse effects. SAR studies of 1 are reported herein with the objective of producing peripherally restricted analogues. Crystal structures of hCB1 and docking studies with 1 indicate that the piperidine group could be functionalized at the 4-position to access a binding pocket that can accommodate both polar and nonpolar groups. The piperidine is studied as a linker, functionalized with alkyl, heteroalkyl, aryl, and heteroaryl groups using a urea connector. Orally bioavailable and peripherally selective compounds have been produced that are potent inverse agonists of hCB1 with exceptional selectivity for hCB1 over hCB2. Compound 38 blocked alcohol-induced liver steatosis in mice and has good ADME properties for further development.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Piperidinas/farmacologia , Purinas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Animais , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Agonismo Inverso de Drogas , Fígado Gorduroso/patologia , Fígado Gorduroso/prevenção & controle , Feminino , Humanos , Fígado/patologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/metabolismo , Purinas/síntese química , Purinas/metabolismo , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
8.
Drug Alcohol Depend ; 194: 20-27, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391834

RESUMO

BACKGROUND: The recent NIH mandate to consider sex as a biological variable in preclinical research has focused attention on delineation of sex differences in behavior. To investigate mechanisms underlying sex differences in Δ9-tetrahydrocannabinol (THC) effects, we examined the effects of sex and gonadal hormones on CB1 receptors in cerebellum, hippocampus, prefrontal cortex, and striatum. METHODS: Adult Sprague-Dawley rats underwent gonadectomy (GDX) or sham-GDX. Half of the GDX females and males received estradiol or testosterone replacement (GDX+H), respectively. All rats were injected with vehicle or 30 mg/kg THC twice daily for 1 week before brain collection. CP55,940-stimulated [35S]GTPγS and [3H]SR141716A saturation binding assays were performed. RESULTS: With exception of enhanced receptor activation in the hippocampi of female rats compared to males, vehicle-treated rats exhibited minimal sex differences in CB1 receptor densities or G-protein coupling. Repeated treatment with THC resulted in pronounced CB1 receptor desensitization and downregulation in both sexes in all brain regions with a greater magnitude of change in females. CONCLUSIONS: These results suggest that sex differences in the density and G-protein coupling of brain CB1 receptors may play a limited role in sex differences in acute THC effects not mediated by the hippocampus. In contrast, sex differences after repeated THC were common, with females (intact, GDX, and GDX+H) showing greater downregulation or desensitization in all four brain regions compared to the respective male groups. This result is consistent with a finding that women tend to progress to tolerance and dependence quicker than men after initiation of cannabis use.


Assuntos
Encéfalo/metabolismo , Dronabinol/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Caracteres Sexuais , Animais , Encéfalo/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Dronabinol/farmacologia , Tolerância a Medicamentos/fisiologia , Estradiol/metabolismo , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Rimonabanto/metabolismo , Rimonabanto/farmacologia , Testosterona/metabolismo
9.
Molecules ; 23(9)2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200181

RESUMO

Two 3D quantitative structure⁻activity relationships (3D-QSAR) models for predicting Cannabinoid receptor 1 and 2 (CB1 and CB2) ligands have been produced by way of creating a practical tool for the drug-design and optimization of CB1 and CB2 ligands. A set of 312 molecules have been used to build the model for the CB1 receptor, and a set of 187 molecules for the CB2 receptor. All of the molecules were recovered from the literature among those possessing measured Ki values, and Forge was used as software. The present model shows high and robust predictive potential, confirmed by the quality of the statistical analysis, and an adequate descriptive capability. A visual understanding of the hydrophobic, electrostatic, and shaping features highlighting the principal interactions for the CB1 and CB2 ligands was achieved with the construction of 3D maps. The predictive capabilities of the model were then used for a scaffold-hopping study of two selected compounds, with the generation of a library of new compounds with high affinity for the two receptors. Herein, we report two new 3D-QSAR models that comprehend a large number of chemically different CB1 and CB2 ligands and well account for the individual ligand affinities. These features will facilitate the recognition of new potent and selective molecules for CB1 and CB2 receptors.


Assuntos
Agonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/química , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Desenho de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Software , Eletricidade Estática
10.
JACC Cardiovasc Imaging ; 11(2 Pt 2): 320-332, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29413441

RESUMO

OBJECTIVES: The aim of this study was to evaluate the feasibility of targeted imaging of myocardial cannabinoid type 1 receptor (CB1-R) and its potential up-regulation in obese mice with translation to humans using [11C]-OMAR and positron emission tomography (PET)/computed tomography (CT). BACKGROUND: Activation of myocardial CB1-R by endocannabinoids has been implicated in cardiac dysfunction in diabetic mice. Obesity may lead to an up-regulation of myocardial CB1-R, potentially providing a mechanistic link between obesity and the initiation and/or progression of cardiomyopathy. METHODS: Binding specificity of [11C]-OMAR to CB1-R was investigated by blocking studies with rimonabant in mice. The heart was harvested from each mouse, and its radioactivity was determined by γ-counter. Furthermore, [11C]-OMAR dynamic micro-PET/CT was carried out in obese and normal-weight mice. Ex vivo validation was performed by droplet digital polymerase chain reaction (absolute quantification) and RNAscope Technology (an in situ ribonucleic acid analysis platform). Subsequently, myocardial CB1-R expression was probed noninvasively with intravenous injection of CB1-R ligand [11C]-OMAR and PET/CT in humans with advanced obesity and normal-weight human control subjects, respectively. RESULTS: Rimonabant significantly blocked OMAR uptake in the heart muscle compared with vehicle, signifying specific binding of OMAR to the CB1-R in the myocardium. The myocardial OMAR retention quantified by micro-PET/CT in mice was significantly higher in obese compared with normal-weight mice. Absolute quantification of CB1-R gene expression with droplet digital polymerase chain reaction and in situ hybridization confirmed CB1-R up-regulation in all major myocardial cell types (e.g., cardiomyocytes, endothelium, vascular smooth muscle cells, and fibroblasts) of obese mice. Obese mice also had elevated myocardial levels of endocannabinoids anandamide and 2-arachidonoylglycerol compared with lean mice. Translation to humans revealed higher myocardial OMAR retention in advanced obesity compared with normal-weight subjects. CONCLUSIONS: Noninvasive imaging of cardiac CB1-R expression in obesity is feasible applying [11C]-OMAR and PET/CT. These results may provide a rationale for further clinical testing of CB1-R-targeted molecular imaging in cardiometabolic diseases.


Assuntos
Coração/diagnóstico por imagem , Imagem Molecular/métodos , Obesidade/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Receptor CB1 de Canabinoide/metabolismo , Adulto , Idoso , Animais , Fármacos Antiobesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Ácidos Araquidônicos/metabolismo , Ligação Competitiva , Antagonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Estudos de Viabilidade , Feminino , Glicerídeos/metabolismo , Humanos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miocárdio/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Valor Preditivo dos Testes , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto/metabolismo , Rimonabanto/farmacologia , Pesquisa Translacional Biomédica , Adulto Jovem
11.
Biochem Pharmacol ; 151: 166-179, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29102677

RESUMO

While equilibrium binding affinities and in vitro functional antagonism of CB1 receptor antagonists have been studied in detail, little is known on the kinetics of their receptor interaction. In this study, we therefore conducted kinetic assays for nine 1-(4,5-diarylthiophene-2-carbonyl)-4-phenylpiperidine-4-carboxamide derivatives and included the CB1 antagonist rimonabant as a comparison. For this we newly developed a dual-point competition association assay with [3H]CP55940 as the radioligand. This assay yielded Kinetic Rate Index (KRI) values from which structure-kinetics relationships (SKR) of hCB1 receptor antagonists could be established. The fast dissociating antagonist 6 had a similar receptor residence time (RT) as rimonabant, i.e. 19 and 14 min, respectively, while the slowest dissociating antagonist (9) had a very long RT of 2222 min, i.e. pseudo-irreversible dissociation kinetics. In functional assays, 9 displayed insurmountable antagonism, while the effects of the shortest RT antagonist 6 and rimonabant were surmountable. Taken together, this study shows that hCB1 receptor antagonists can have very divergent RTs, which are not correlated to their equilibrium affinities. Furthermore, their RTs appear to define their mode of functional antagonism, i.e. surmountable vs. insurmountable. Finally, based on the recently resolved hCB1 receptor crystal structure, we propose that the differences in RT can be explained by a different binding mode of antagonist 9 from short RT antagonists that is able to displace unfavorable water molecules. Taken together, these findings are of importance for future design and evaluation of potent and safe hCB1 receptor antagonists.


Assuntos
Antagonistas de Receptores de Canabinoides , Receptor CB1 de Canabinoide/metabolismo , Animais , Ligação Competitiva , Células CHO , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/metabolismo , Cricetulus , Cicloexanóis/metabolismo , Cinética , Ligantes , Ligação Proteica , Ensaio Radioligante , Relação Estrutura-Atividade
12.
IUBMB Life ; 69(11): 834-840, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28976704

RESUMO

The endocannabinoid system is a unique neuromodulatory system that affects a wide range of biological processes and maintains the homeostasis in all mammal body systems. In recent years, several pharmacological tools to target endocannabinoid neurotransmission have been developed, including direct and indirect cannabinoid agonists and cannabinoid antagonists. Due to their hydrophobic nature, cannabinoid agonists and antagonists need to bind specific transporters to allow their distribution in body fluids. Human serum albumin (HSA), the most abundant plasma protein, is a key determinant of drug pharmacokinetics. As HSA binds both the endocannabinoid anandamide and the active ingredient of Cannabis sativa, Δ-9-tetrahydrocannabinol, we hypothesize that HSA can be the most important carrier of cannabinoid drugs. In silico docking observations strongly indicate that HSA avidly binds the indirect cannabinoid agonists URB597, AM5206, JZL184, JZL195, and AM404, the direct cannabinoid agonists WIN55,212-2 and CP55,940, and the prototypical cannabinoid antagonist/inverse agonist SR141716. Values of the free energy for cannabinoid drugs binding to HSA range between -5.4 kcal mol-1 and -10.9 kcal mol-1 . Accounting for the HSA concentration in vivo (∼ 7.5 × 10-4 M), values of the free energy here determined suggest that the formation of the HSA:cannabinoid drug complexes may occur in vivo. Therefore, HSA appears to be an important determinant for cannabinoid efficacy and may guide the choice of the drug dose regimen to optimize drug efficacy and to avoid drug-related toxicity. © 2017 IUBMB Life, 69(11):834-840, 2017.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Proteínas de Transporte/metabolismo , Endocanabinoides/metabolismo , Albumina Sérica Humana/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Agonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/química , Proteínas de Transporte/química , Endocanabinoides/química , Humanos , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Albumina Sérica Humana/química , Especificidade por Substrato , Transmissão Sináptica/fisiologia , Termodinâmica
13.
Brain Res ; 1672: 1-9, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28743448

RESUMO

During typical late-postnatal CNS development, net reductions in dendritic spine densities are associated with activity-dependent learning. Prior results showed agonist exposure in young animals increased spine densities in a subset of song regions while adult exposures did not, suggesting endocannabinoid signaling regulates dendritic spine dynamics important to vocal development. Here we addressed this question using the CB1 receptor-selective antagonist SR141716A (SR) to disrupt endocannabinoid signaling both during and after vocal learning. We hypothesized antagonist exposure during vocal development, but not adulthood, would alter spine densities. Following 25days of exposure and a 25day maturation period, 3D reconstructions of Golgi-Cox stained neurons were used to measure spine densities. We found antagonist treatments during both age periods increased densities within Area X (basal ganglia) and following adult treatments within HVC (premotor cortical-like). Results suggest both inappropriate cannabinoid receptor stimulation and inhibition are capable of similar disregulatory effects during establishment of circuits important to vocal learning, with antagonism extending these effects through adulthood. Given clinical evidence of depressant effects of SR, we tested the ability of the antidepressant monoamine oxidase inhibitor (MAOI) phenelzine to mitigate SR-induced spine density increases. This was confirmed implicating interaction between monoamine and endocannabinoid systems. Finally, we evaluated acute effects of these drugs to alter ability of novel song exposure to increase spine densities in auditory NCM and other regions, finding when combined, SR and phenelzine increased densities within Area X. These results contribute to understanding relevance of dendritic spine dynamics in neuronal development, drug abuse, and depression.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Vocalização Animal/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Antagonistas de Receptores de Canabinoides/metabolismo , Canabinoides/farmacologia , Endocanabinoides/farmacologia , Tentilhões/metabolismo , Tentilhões/fisiologia , Aprendizagem/fisiologia , Masculino , Inibidores da Monoaminoxidase/farmacologia , Neurogênese/efeitos dos fármacos , Vocalização Animal/fisiologia
15.
Cold Spring Harb Protoc ; 2017(6): pdb.prot095836, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572192

RESUMO

This protocol describes how to obtain monosynaptic cholinergic responses in neurons of the thalamic reticular nucleus (TRN) by making use of extracellular stimulation techniques. These methods are easy to implement and allow for the study of various forms of cholinergic synaptic plasticity and modulation. For many synapses throughout the mammalian brain, short-term plasticity is mediated by endocannabinoids released from postsynaptic neurons that activate presynaptic type I cannabinoid receptors (CB1Rs), resulting in the inhibition of presynaptic Ca2+ channels and a reduction of release probability. Neurons in the TRN are known to liberate endocannabinoids that can control transmitter release at GABAergic terminals. However, expression of CB1Rs on cholinergic terminals contacting the TRN has not been demonstrated. Here we outline strategies aimed to record stable postsynaptic responses and to quantify changes in cholinergic synaptic strength, using presynaptic modulation of acetylcholine (ACh) release by a CB1R agonist as an illustrative example.


Assuntos
Antagonistas de Receptores de Canabinoides/metabolismo , Neurônios Colinérgicos/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Transmissão Sináptica , Núcleos Talâmicos/fisiologia , Animais , Mamíferos
16.
J Pharmacol Exp Ther ; 362(2): 278-286, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28533288

RESUMO

Synthetic cannabinoids have been prohibited due to abuse liability and toxicity. Four such synthetic cannabinoids, AM-2201 ([1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-ylmethanone), CP-47,497 (2-[(1R,3S)-3-hydroxycyclohexyl]-5-(2-methyloctan-2-yl)phenol), JWH-122 [(4-methylnaphthalen-1-yl)-(1-pentylindol-3-yl)methanone], and JWH-250 [2-(2-methoxyphenyl)-1-(1-pentylindol-3-yl)ethanone], were tested for their capacity to produce CB1 receptor-mediated discriminative stimulus effects in two groups of rhesus monkeys. One group (n = 4) discriminated Δ9-tetrahydrocannabinol (∆9-THC; 0.1 mg/kg i.v.), and a second group (n = 4) discriminated the cannabinoid antagonist rimonabant (1 mg/kg i.v.) while receiving 1 mg/kg/12 hours of ∆9-THC. AM-2201, JWH-122, CP-47,497, JWH-250, and ∆9-THC increased ∆9-THC lever responding. Duration of action was 1-2 hours for AM-2201, JWH-122, and JWH-250 and 4-5 hours for CP-47,497 and ∆9-THC. Rimonabant (1 mg/kg) surmountably antagonized the discriminative stimulus effects of all cannabinoid agonists; the magnitude of rightward shift was 10.6-fold for AM-2201, 10.7-fold for JWH-122, 11.0-fold for CP-47,497, and 15.7-fold for JWH-250. The respective pKB values were not significantly different: 6.61, 6.65, 6.66, and 6.83. In ∆9-THC-treated monkeys discriminating rimonabant, AM-2201 (0.1 and 0.32 mg/kg), JWH-122 (0.32 and 1 mg/kg), JWH-250 (1 and 3.2 mg/kg), and CP-47,497 (0.32, 1, and 3.2 mg/kg) produced not only rate-decreasing effects that were reversed by rimonabant, but also dose-dependent, rightward shifts in the rimonabant discrimination dose-effect function. These results show striking similarity in the CB1 receptor mechanism mediating the subjective effects of AM-2201, JWH-122, JWH-250, and CP-47,497. For products containing AM-2201 and JWH-122, a short duration of action could lead to more frequent use; moreover, inattention to differences in potency among synthetic cannabinoids could underlie unexpected toxicity. Rapid reversal of effects by intravenous rimonabant has potential value in emergency situations.


Assuntos
Antagonistas de Receptores de Canabinoides/metabolismo , Canabinoides/metabolismo , Cicloexanóis/metabolismo , Indóis/metabolismo , Naftalenos/metabolismo , Piperidinas/metabolismo , Pirazóis/metabolismo , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Cicloexanóis/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Feminino , Indóis/farmacologia , Macaca mulatta , Masculino , Naftalenos/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto
17.
J Pharmacol Exp Ther ; 362(1): 210-218, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28442584

RESUMO

Synthetic cannabinoids (SCs) represent an emerging class of abused drugs associated with psychiatric complications and other substantial health risks. These ligands are largely sold over the internet for human consumption, presumably because of their high cannabinoid 1 receptor (CB1R) affinity and their potency in eliciting pharmacological effects similar to Δ9-tetrahydrocannabinol (THC), as well as circumventing laws illegalizing this plant. Factors potentially contributing to the increased prevalence of SC abuse and related hospitalizations, such as increased CB1R efficacy and non-CB1R targets, highlight the need for quantitative pharmacological analyses to determine receptor mediation of the pharmacological effects of cannabinoids. Accordingly, the present study used pA2 and pKB analyses for quantitative determination of CB1R mediation in which we utilized the CB1R-selective inverse agonist/antagonist rimonabant to elicit rightward shifts in the dose-response curves of five SCs (i.e., A-834,735D; WIN55,212-2; CP55,950; JWH-073; and CP47,497) and THC in producing common cannabimimetic effects (i.e., catalepsy, antinociception, and hypothermia). The results revealed overall similarity of pA2 and pKB values for these compounds and suggest that CB1Rs, and not other pharmacological targets, largely mediated the central pharmacological effects of SCs. More generally, affinity estimation offers a powerful pharmacological approach to assess potential receptor heterogeneity subserving in vivo pharmacological effects of SCs.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Canabinoides/metabolismo , Dronabinol/metabolismo , Piperidinas/metabolismo , Pirazóis/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Agonistas de Receptores de Canabinoides/administração & dosagem , Antagonistas de Receptores de Canabinoides/administração & dosagem , Canabinoides/administração & dosagem , Relação Dose-Resposta a Droga , Dronabinol/administração & dosagem , Combinação de Medicamentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Piperidinas/administração & dosagem , Pirazóis/administração & dosagem , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto
18.
PLoS One ; 11(12): e0167965, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27941994

RESUMO

The G-protein coupled receptor 55 (GPR55) is activated by cannabinoids and non-cannabinoid molecules and has been speculated to play a modulatory role in a large variety of physiological and pathological processes, including in metabolically perturbed states. We therefore generated male mice deficient in the gene coding for the cannabinoid/lysophosphatidylinositol (LPI) receptor Gpr55 and characterized them under normal dietary conditions as well as during high energy dense diet feeding followed by challenge with the CB1 receptor antagonist/GPR55 agonist rimonabant. Gpr55 deficient male mice (Gpr55 KO) were phenotypically indistinguishable from their wild type (WT) siblings for the most part. However, Gpr55 KO animals displayed an intriguing nocturnal pattern of motor activity and energy expenditure (EE). During the initial 6 hours of the night, motor activity was significantly elevated without any significant effect observed in EE. Interestingly, during the last 6 hours of the night motor activity was similar but EE was significantly decreased in the Gpr55 KO mice. No significant difference in motor activity was detected during daytime, but EE was lower in the Gpr55 KO compared to WT mice. The aforementioned patterns were not associated with alterations in energy intake, daytime core body temperature, body weight (BW) or composition, although a non-significant tendency to increased adiposity was seen in Gpr55 KO compared to WT mice. Detailed analyses of daytime activity in the Open Field paradigm unveiled lower horizontal activity and rearing time for the Gpr55 KO mice. Moreover, the Gpr55 KO mice displayed significantly faster reaction time in the tail flick test, indicative of thermal hyperalgesia. The BW-decreasing effect of rimonabant in mice on long-term cafeteria diet did not differ between Gpr55 KO and WT mice. In conclusion, Gpr55 deficiency is associated with subtle effects on diurnal/nocturnal EE and motor activity behaviours but does not appear per se critically required for overall metabolism or behaviours.


Assuntos
Metabolismo Energético , Dor/metabolismo , Receptores de Canabinoides/metabolismo , Animais , Comportamento Animal , Temperatura Corporal , Calorimetria , Antagonistas de Receptores de Canabinoides/metabolismo , Dieta Hiperlipídica , Metabolismo Energético/genética , Deleção de Genes , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Dor/genética , Piperidinas/metabolismo , Pirazóis/metabolismo , Receptores de Canabinoides/deficiência , Receptores de Canabinoides/genética , Rimonabanto , Sensação Térmica/genética
19.
PLoS One ; 11(12): e0167240, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936172

RESUMO

Tamoxifen (Tam) is a selective estrogen receptor (ER) modulator (SERM) that is an essential drug to treat ER-positive breast cancer. Aside from known actions at ERs, recent studies have suggested that some SERMs like Tam also exhibit novel activity at cannabinoid subtype 1 and 2 receptors (CB1R and CB2Rs). Interestingly, cis- (E-Tam) and trans- (Z-Tam) isomers of Tam exhibit over a 100-fold difference in affinity for ERs. Therefore, the current study assessed individual isomers of Tam and subsequent cytochrome P450 metabolic products, 4-hydroxytamoxifen (4OHT) and 4-hydroxy-N-desmethyl tamoxifen (End) for affinity and activity at CBRs. Results showed that Z-4OHT, but not Z-Tam or Z-End, exhibits higher affinity for both CB1 and CB2Rs relative to the E-isomer. Furthermore, Z- and E-isomers of Tam and 4OHT show slightly higher affinity for CB2Rs, while both End isomers are relatively CB1R-selective. When functional activity was assessed by G-protein activation and regulation of the downstream effector adenylyl cyclase, all isomers examined act as full CB1 and CB2R inverse agonists. Interestingly, Z-Tam appears to be more efficacious than the full inverse agonist AM630 at CB2Rs, while both Z-Tam and Z-End exhibit characteristics of insurmountable antagonism at CB1 and CB2Rs, respectively. Collectively, these results suggest that the SERMs Tam, 4OHT and End elicit ER-independent actions via CBRs in an isomer-specific manner. As such, this novel structural scaffold might be used to develop therapeutically useful drugs for treatment of a variety of diseases mediated via CBRs.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Tamoxifeno/metabolismo , Adenilil Ciclases/metabolismo , Animais , Ligação Competitiva , Neoplasias da Mama/metabolismo , Células CHO , Agonistas de Receptores de Canabinoides/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Colforsina/metabolismo , Colforsina/farmacologia , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Cicloexanóis/metabolismo , Cicloexanóis/farmacologia , Feminino , Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Indóis/metabolismo , Indóis/farmacologia , Isomerismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Moduladores Seletivos de Receptor Estrogênico/química , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/análogos & derivados , Tamoxifeno/química , Tamoxifeno/farmacologia
20.
J Pharm Sci ; 105(11): 3314-3323, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27637320

RESUMO

AZD1175 and AZD2207 are 2 highly lipophilic compounds with a significant risk of not achieving therapeutic plasma concentrations due to solubility-limited absorption. The compounds have the same molecular weight and minimal structural differences. The aim of the present work was to investigate whether salts could be applied to improve the intestinal absorption, and the subsequent in vivo exposure. Drug solubilities, dissolution rates, and degree of supersaturation and precipitation were determined in biorelevant media. Dog studies were performed, in the absence and presence of a precipitation inhibitor (hydroxypropyl methylcellulose). Finally, a human phase I study was performed. For AZD1175, there was a good agreement between dissolution rates, in vivo exposure in dog, and the obtained exposure in human with the selected hemi-1,5-naphthalenedisulfonate of the compound. For AZD2207, the picture was more complex. The same counter ion was selected for the study in man. In addition, the chloride salt of AZD2207 showed promising data in the presence of a precipitation inhibitor in vitro and in dog that, however, could not be repeated in man. The differences in observations between the 2 compounds could be attributed to the difference in solubility and to the degree of supersaturation in the gastric environment rather than in the intestine.


Assuntos
Biofarmácia/métodos , Antagonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/metabolismo , Sais/química , Sais/metabolismo , Administração Oral , Animais , Antagonistas de Receptores de Canabinoides/administração & dosagem , Estudos Cross-Over , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Masculino , Sais/administração & dosagem , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...