Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
1.
Neuropsychopharmacology ; 47(13): 2319-2329, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100653

RESUMO

SEP-383856 (SEP-856) is a novel antipsychotic under clinical development. It displays a unique pattern of receptor interaction, with only weak (partial agonist) activity at dopamine D2 receptors, yet more potent agonist activity at the trace amine associated receptor (TAAR1) and 5-hydroxytryptamine 1 A receptor (5-HT1A). Nonetheless, these observations await independent confirmation and more detailed characterization of the in vitro and in vivo actions of SEP-856 at TAAR1 and 5-HT1A receptors would be instructive. Herein, we employed luminescence complementation technology in heterologous live cell systems, confocal microscopy, voltage clamp electrophysiology, behavioral readouts and TAAR1 knockout (KO) mice to study SEP-856 in further detail. We provide evidence for the ability of SEP-856 to activate TAAR1 at the surface plasma membrane, and show that this interaction results in Gαs recruitment (pEC50: 6.08 ± 0.22 EMAX: 96.41% ± 15.26) and by extension, to G-protein inwardly rectifying potassium (GIRK) channel activation. Using TAAR1-KO mice, we find TAAR1 to be indispensable for SEP-856 control of body temperature, baseline locomotion reduction and for "antipsychotic-like" efficacy as characterized by a reversal of dizocilipine (MK-801) mediated disruption of pre-pulse inhibition. Conversely, the inhibition by SEP-856 of MK-801 induced locomotion was unaffected in TAAR1 KO mice. SEP-856 behaved as a low-potency, partial agonist at the 5-HT1A receptor, while it partially inhibited recruitment of D2 receptor-coupled Gα and GIRK by DA and acted as a weak partial agonist with low potency at the same receptor when applied alone. Our findings corroborate and extend previous observations on the molecular substrates engaged by this unique, dual TAAR1/5-HT1A receptor agonist and potential antipsychotic that could prove to have major advantages in the treatment of schizophrenia and other psychotic disorders.


Assuntos
Antipsicóticos , Antagonistas do Receptor 5-HT1 de Serotonina , Animais , Camundongos , Antipsicóticos/farmacologia , Maleato de Dizocilpina , Camundongos Knockout , Receptor 5-HT1A de Serotonina , Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
2.
Biochem Biophys Res Commun ; 620: 143-149, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35785570

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) and its receptors play important roles in the development and progression of malignant tumors. The effect of the 5-HT receptor 1D (HTR1D), a member of the serotonin receptor family, on gastric cancer (GC) is not clear. Analysis of clinical data has shown that high expression of HTR1D was associated with poor prognosis in patients with GC and was an independent risk factor for reduced overall survival (OS) and disease-free survival (DFS). The present study assessed the effects of HTR1D knockdown and the HTR1D inhibitor GR127935 on the biological behavior of GC cells, which both impaired the proliferation and migration of GC cells. RNA sequencing showed that GR127935 inhibited tumor progression by limiting DNA replication and the cell cycle, inducing ferroptosis, and affecting tumor metabolism. Taken together, these findings showed that HTR1D has a potent oncogenic effect on GC and may provide a novel therapeutic target.


Assuntos
Receptor 5-HT1D de Serotonina/metabolismo , Serotonina , Neoplasias Gástricas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Receptor 5-HT1D de Serotonina/genética , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina , Neoplasias Gástricas/patologia
3.
Neurourol Urodyn ; 41(7): 1528-1538, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870169

RESUMO

OBJECTIVE: To examine the effects of the selective 5-HT1A receptor agonist, NLX-112, on urethral function in streptozotocin-induced diabetic rats. MATERIALS AND METHODS: Female Sprague-Dawley rats (n = 32) were divided into two groups: rats with type 1 diabetes mellitus (T1DM) and age-matched normal control rats (NC). T1DM was induced by intraperitoneal injection of streptozotocin (65 mg/kg). Isovolumetric cystometry and urethral perfusion pressure (UPP) were evaluated 10 weeks postinjection in rats (n = 9 per group). The selective 5-HT1A receptor antagonist, WAY-100635 maleate salt, was administered after NLX-112 hydrochloride dose-response curve was generated (intravenously). The remaining rats were used for immunofluorescence and Western blot assays. RESULTS: Compared to controls, type 1 diabetic rats (T1D rats) had lower maximal intravesical pressure (IP max) and UPP changes. In T1D rats, NLX-112 hydrochloride (0.003-1.0 mg/kg) induced dose-dependent decreases in UPP nadir, IP max, high-frequency oscillations (HFOs) rate; and increases in UPP change and HFOs amplitude. WAY-100635 maleate salt (0.3 mg/kg) partially or completely reversed the NLX-112-induced changes. Immunofluorescence revealed that 5-HT1A receptors were found in the L6-S1 spinal cord dorsolateral nucleus, but the expression was significantly higher in the T1D rats. Additionally, Western blot showed there were significantly more 5-HT1A receptors in the ventral L6-S1 spinal cord of T1D rats. CONCLUSIONS: Urethral dysfunction in T1D rats was improved by NLX-112. 5-HT1A receptors were upregulated in the dorsolateral nucleus of L6-S1 spinal cord in T1D rats. These findings suggest that NLX-112 may constitute a novel therapeutic strategy to treat diabetic urethral dysfunction.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Piperidinas , Piridinas , Antagonistas do Receptor 5-HT1 de Serotonina , Uretra , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/complicações , Feminino , Maleatos , Piperidinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina , Serotonina , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Estreptozocina , Uretra/fisiopatologia
4.
Pharmacol Biochem Behav ; 215: 173363, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35227734

RESUMO

Serotonin(5-HT)ergic projections run from the raphe nuclei to dopamin(DA)ergic cells in substantia nigra/ventral tegmental area (SN/VTA) and to the terminal fields of DA neurons in nucleus accumbens, caudateputamen and neocortex. In the present studies, we assessed the effect of the 5-HT1A receptor (R) antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarbox-amide maleate (WAY-100635) on motor and exploratory behaviors and on D2/3R binding in the rat brain with in vivo imaging methods. D2/3R binding was determined in the same animals after systemic application of WAY-100635 (0.4 mg/kg) and 0.9% saline (SAL), respectively, with [123I]IBZM as SPECT ligand. Anatomical information for the delineation of the target regions was obtained with dedicated small animal MRI. Immediately after treatment with WAY-100635 or SAL, motor/exploratory behaviors were assessed for 30 min in two different batches of animals in an open field. WAY-100635 reduced D2/3R binding in caudateputamen, thalamus, frontal cortex, parietal cortex and ventral hippocampus relative to SAL. Network analysis of regional binding data after WAY-100635 yielded positive connections between (1) caudateputamen and substantia nigra/ventral tegmental area, (2) caudateputamen and ventral hippocampus, (3) substantia nigra/ventral tegmental area and parietal cortex, (4) thalamus and dorsal hippocampus and (5) frontal cortex and parietal cortex, which were not present after SAL. Moreover, WAY-100635 decreased parameters of motor activity (overall activity, ambulation duration and frequency) but increased the duration of grooming behavior relative to SAL. The effect on exploration was time-dependent with an early increase and a subsequent decrease of behavioral parameters (rearing duration and frequency, frequency of head-shoulder motility). For WAY-100635, findings imply a region-specificity as well as a time-dependency of DAergic action.


Assuntos
Dopamina , Comportamento Exploratório , Piperazinas , Antagonistas do Receptor 5-HT1 de Serotonina , Animais , Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Piperazinas/farmacologia , Piridinas , Ratos , Receptor 5-HT1A de Serotonina , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
5.
Respir Physiol Neurobiol ; 296: 103810, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728431

RESUMO

Systemic 8-OH-DPAT (a 5-HT1A receptor agonist) challenge evokes hyperventilation independent of peripheral 5-HT1A receptors. Though the pre-Botzinger Complex (PBC) is critical in generating respiratory rhythm and activation of local 5-HT1A receptors induces tachypnea via disinhibition of local GABAA neurons, its role in the respiratory response to systemic 8-OH-DPAT challenge is still unclear. In anesthetized rats, 8-OH-DPAT (100 µg/kg, iv) was injected twice to confirm the reproducibility of the evoked responses. The same challenges were performed after bilateral microinjections of (S)-WAY-100135 (a 5-HT1A receptor antagonist) or gabazine (a GABAA receptor antagonist) into the PBC. Our results showed that: 1) 8-OH-DPAT caused reproducible hyperventilation associated with hypotension and bradycardia; 2) microinjections of (S)-WAY-100135 into the PBC attenuated the hyperventilation by ˜60 % without effect on the evoked hypotension and bradycardia; and 3) the same hyperventilatory attenuation was also observed after microinjections of gabazine into the PBC. Our data suggest that PBC 5-HT1A receptors play a key role in the respiratory response to systemic 8-OH-DPAT challenge likely via disinhibiting local GABAergic neurons.


Assuntos
8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Antagonistas GABAérgicos/farmacologia , Hiperventilação/induzido quimicamente , Hiperventilação/tratamento farmacológico , Bulbo/metabolismo , Receptor 5-HT1A de Serotonina/fisiologia , Centro Respiratório/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/administração & dosagem , Animais , Modelos Animais de Doenças , Masculino , Bulbo/efeitos dos fármacos , Piperazinas/farmacologia , Piridazinas/farmacologia , Ratos , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Centro Respiratório/efeitos dos fármacos
6.
J Neurochem ; 160(4): 469-481, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34928513

RESUMO

Alcohol exposure alters the signaling of the serotoninergic system, which is involved in alcohol consumption, reward, and dependence. In particular, dysregulation of serotonin receptor type 1A (5-HT1AR) is associated with alcohol intake and withdrawal-induced anxiety-like behavior in rodents. However, how ethanol regulates 5-HT1AR activity and cell surface availability remains elusive. Using neuroblastoma 2a cells stably expressing human 5-HT1ARs tagged with hemagglutinin at the N-terminus, we found that prolonged ethanol exposure (18 h) reduced the basal surface levels of 5-HT1ARs in a concentration-dependent manner. This reduction is attributed to both enhanced receptor internalization and attenuated receptor recycling. Moreover, constitutive 5-HT1AR internalization in ethanol naïve cells was blocked by concanavalin A (ConA) but not nystatin, suggesting clathrin-dependent 5-HT1AR internalization. In contrast, constitutive 5-HT1AR internalization in ethanol-treated cells was blocked by nystatin but not by ConA, indicating that constitutive 5-HT1AR internalization switched from a clathrin- to a caveolin-dependent pathway. Dynasore, an inhibitor of dynamin, blocked 5-HT1AR internalization in both vehicle- and ethanol-treated cells. Furthermore, ethanol exposure enhanced the activity of dynamin I via dephosphorylation and reduced myosin Va levels, which may contribute to increased internalization and reduced recycling of 5-HT1ARs, respectively. Our findings suggest that prolonged ethanol exposure not only alters the endocytic trafficking of 5-HT1ARs but also the mechanism by which constitutive 5-HT1AR internalization occurs.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Linhagem Celular , Clatrina/metabolismo , Concanavalina A/farmacologia , Relação Dose-Resposta a Droga , Dinaminas/metabolismo , Endocitose , Humanos , Hidrazonas/farmacologia , Nistatina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Proteínas rab de Ligação ao GTP/metabolismo
7.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948423

RESUMO

Depression associated with poor general medical condition, such as post-stroke (PSD) or post-myocardial infarction (PMID) depression, is characterized by resistance to classical antidepressants. Special treatment strategies should thus be developed for these conditions. Our study aims to investigate the mechanism of action of 2-morpholino-5-phenyl-6H-1,3,4-thiadiazine, hydrobromide (L-17), a recently designed thiadiazine derivative with putative neuro- and cardioprotective and antidepressant-like effects, using combined in silico (for prediction of the molecular binding mechanisms), ex vivo (for assessment of the neural excitability using c-Fos immunocytochemistry), and in vivo (for direct examination of the neuronal excitability) methodological approaches. We found that the predicted binding affinities of L-17 to serotonin (5-HT) transporter (SERT) and 5-HT3 and 5-HT1A receptors are compatible with selective 5-HT serotonin reuptake inhibitors (SSRIs) and antagonists of 5-HT3 and 5-HT1A receptors, respectively. L-17 robustly increased c-Fos immunoreactivity in the amygdala and decreased it in the hippocampus. L-17 dose-dependently inhibited 5-HT neurons of the dorsal raphe nucleus; this inhibition was partially reversed by the 5-HT1A antagonist WAY100135. We suggest that L-17 is a potent 5-HT reuptake inhibitor and partial antagonist of 5-HT3 and 5-HT1A receptors; the effects of L-17 on amygdaloid and hippocampal excitability might be mediated via 5-HT, and putatively mediate the antidepressant-like effects of this drug. Since L-17 also possesses neuro- and cardioprotective properties, it can be beneficial in PSD and PMID. Combined in silico predictions with ex vivo neurochemical and in vivo electrophysiological assessments might be a useful strategy for early assessment of the efficacy and neural mechanism of action of novel CNS drugs.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Hidrazinas/farmacologia , Infarto do Miocárdio/complicações , Acidente Vascular Cerebral/complicações , Animais , Antidepressivos/uso terapêutico , Simulação por Computador , Depressão/etiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hidrazinas/uso terapêutico , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Antagonistas do Receptor 5-HT1 de Serotonina , Antagonistas do Receptor 5-HT3 de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
8.
Future Med Chem ; 13(18): 1497-1514, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34253032

RESUMO

Aims: 5-HT1A receptor antagonists constitute a potential group of drugs in the treatment of CNS diseases. The aim of this study was to search for new procognitive and antidepressant drugs among amide derivatives of aminoalkanoic acids with 5-HT1A receptor antagonistic properties. Materials & methods: Thirty-three amides were designed and evaluated in silico for their drug-likeness. The synthesized compounds were tested in vitro for their 5-HT1A receptor affinity and functional profile. Moreover, their selectivity over 5-HT7, 5-HT2A and D2 receptors and ability to inhibit phosphodiesterases were evaluated. Results: A selected 5-HT1A receptor antagonist 20 (Ki = 35 nM, Kb = 4.9 nM) showed procognitive and antidepressant activity in vivo. Conclusion: Novel 5-HT1A receptor antagonists were discovered and shown as potential psychotropic drugs.


Assuntos
Amidas/síntese química , Antidepressivos/síntese química , Receptor 5-HT1A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/síntese química , Amidas/farmacologia , Animais , Antidepressivos/farmacologia , Comportamento Animal , Desenho de Fármacos , Humanos , Masculino , Modelos Moleculares , Diester Fosfórico Hidrolases/metabolismo , Ligação Proteica , Ratos Wistar , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Especificidade da Espécie , Relação Estrutura-Atividade
9.
Brain Res Bull ; 174: 323-338, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34192579

RESUMO

The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a cerebral division that is putatively implicated in the chronic pain and depression. We investigated the activity of PrL cortex neurons in Wistar rats that underwent chronic constriction injury (CCI) of sciatic nerve and were further subjected to the forced swimming (FS) test and mechanical allodynia (by von Frey test). The effect of blockade of synapses with cobalt chloride (CoCl2), and the treatment of the PrL cortex with cannabidiol (CBD), the CB1 receptor antagonist AM251 and the 5-HT1A receptor antagonist WAY-100635 were also investigated. Our results showed that CoCl2 decreased the time spent immobile during the FS test but did not alter mechanical allodynia. CBD (at 15, 30 and 60 nmol) in the PrL cortex also decreased the frequency and duration of immobility; however, only the dose of 30 nmol of CBD attenuated mechanical allodynia in rats with chronic NP. AM251 and WAY-100635 in the PrL cortex attenuated the antidepressive and analgesic effect caused by CBD but did not alter the immobility and the mechanical allodynia when administered alone. These data show that the PrL cortex is part of the neural substrate underlying the comorbidity between NP and depression. Also, the previous blockade of CB1 cannabinoid receptors and 5-HT1A serotonergic receptors in the PrL cortex attenuated the antidepressive and analgesics effect of the CBD. They also suggest that CBD could be a potential medicine for the treatment of depressive and pain symptoms in patients with chronic NP/depression comorbidity.


Assuntos
Canabidiol/farmacologia , Depressão/tratamento farmacológico , Neuralgia/tratamento farmacológico , Córtex Pré-Frontal/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Animais , Canabidiol/administração & dosagem , Doença Crônica , Cobalto , Depressão/complicações , Sistema Límbico , Microinjeções , Neuralgia/complicações , Piperazinas/uso terapêutico , Piperidinas/farmacologia , Pirazóis/farmacologia , Piridinas/uso terapêutico , Ratos , Ratos Wistar , Ciática/tratamento farmacológico , Ciática/patologia , Antagonistas do Receptor 5-HT1 de Serotonina/uso terapêutico , Natação/psicologia , Sinapses/efeitos dos fármacos
10.
Behav Pharmacol ; 32(6): 472-478, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34101632

RESUMO

Dezocine is an opioid with low efficacy at µ-opioid and κ-opioid receptors. It also inhibits the reuptake of norepinephrine and serotonin. Dezocine is an effective analgesic against various clinical painful conditions and is widely used in many Asian countries. Given the unique pharmacology of dezocine, the drug may also have antidepressant-like properties. However, no published preclinical study has explored this possibility. This study examined the potential antidepressant-like activity of dezocine in mice. Male ICR mice were used in the forced swimming test, the tail suspension test, the warm water tail withdrawal test and locomotor activity test to test the effects of dezocine (0.3-3.0 mg/kg). The 5-HT1A receptor antagonist WAY-100635 (1 mg/kg), the µ-opioid receptor antagonist ß-funaltrexamine (2 mg/kg) and the κ-opioid receptor agonist U50488 (1 mg/kg) were also studied in combination with dezocine. Dezocine produced a dose-dependent decrease in the immobility time in the forced swimming test and tail suspension test at doses that did not alter the motoric activity as determined in the locomotion test. WAY-100635 and U50488 but not ß-funaltrexamine pretreatment significantly blocked the effects of dezocine. Dezocine dose-dependently increased the latency in the tail withdrawal test which was blocked by WAY-100635 and ß-funaltrexamine. Combined, these results suggest that dezocine may have antidepressant-like effects. Considering the well-documented analgesic property of dezocine, it may be useful to treat pain and depression comorbidity.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Comportamento Animal/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Receptores Opioides kappa , Receptores Opioides mu , Tetra-Hidronaftalenos/farmacologia , Analgésicos/farmacologia , Animais , Antidepressivos/farmacologia , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Quimioterapia Combinada/métodos , Camundongos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Resultado do Tratamento
11.
J Parkinsons Dis ; 11(3): 1257-1269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33998548

RESUMO

BACKGROUND: The gold-standard treatment for Parkinson's disease is L-DOPA, which in the long term often leads to levodopa-induced dyskinesia. Serotonergic neurons are partially responsible for this, by converting L-DOPA into dopamine leading to its uncontrolled release as a "false neurotransmitter". The stimulation of 5-HT1A receptors can reduce involuntary movements but this mechanism is poorly understood. OBJECTIVE: This study aimed to investigate the functionality of 5-HT1A receptors using positron emission tomography in hemiparkinsonian rats with or without dyskinesia induced by 3-weeks daily treatment with L-DOPA. Imaging sessions were performed "off" L-DOPA. METHODS: Each rat underwent a positron emission tomography scan with [18F]F13640, a 5-HT1AR agonist which labels receptors in a high affinity state for agonists, or with [18F]MPPF, a 5-HT1AR antagonist which labels all the receptors. RESULTS: There were decreases of [18F]MPPF binding in hemiparkinsonian rats in cortical areas. In dyskinetic animals, changes were slighter but also found in other regions. In hemiparkinsonian rats, [18F]F13640 uptake was decreased bilaterally in the globus pallidus and thalamus. On the non-lesioned side, binding was increased in the insula, the hippocampus and the amygdala. In dyskinetic animals, [18F]F13640 binding was strongly increased in cortical and limbic areas, especially in the non-lesioned side. CONCLUSION: These data suggest that agonist and antagonist 5-HT1A receptor-binding sites are differently modified in Parkinson's disease and levodopa-induced dyskinesia. In particular, these observations suggest a substantial involvement of the functional state of 5-HT1AR in levodopa-induced dyskinesia and emphasize the need to characterize this state using agonist radiotracers in physiological and pathological conditions.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina , Antagonistas do Receptor 5-HT1 de Serotonina , Animais , Antiparkinsonianos/toxicidade , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/metabolismo
12.
Neuropsychopharmacol Rep ; 41(1): 91-101, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547882

RESUMO

AIMS: 5-Methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) is a synthetic orally active hallucinogenic tryptamine analogue. The present study examined whether the effects of 5-MeO-DIPT involve the serotonin transporter (SERT) and serotonin 5-hydroxytryptamine-1A (5-HT1A ) receptor in the striatum and prefrontal cortex (PFC). METHODS: We investigated the effects of 5-MeO-DIPT on extracellular 5-HT (5-HTex ) and dopamine (DAex ) levels in the striatum and PFC in wildtype and SERT knockout (KO) mice using in vivo microdialysis, and for comparison the effects of the 5-HT1A receptor antagonist WAY100635 and the 5-HT1A receptor agonist 8-OH-DPAT on 5-HTex . RESULTS: 5-MeO-DIPT decreased 5-HTex levels in the striatum, but not PFC. In SERT-KO mice, 5-MeO-DIPT did not affect 5-HTex levels in the striatum or PFC. In the presence of WAY100635, 5-MeO-DIPT substantially increased 5-HTex levels, suggesting that 5-MeO-DIPT acts on SERT and these effects are masked by its 5-HT1A actions in the absence of WAY100635. 8-OH-DPAT decreased 5-HTex levels in the striatum and PFC in wildtype mice. WAY100635 antagonized the 8-OH-DPAT-induced decrease in 5-HTex levels. In SERT-KO mice, 8-OH-DPAT did not decrease 5-HTex levels in the striatum and PFC. 5-MeO-DIPT dose-dependently increased DAex levels in the PFC, but not striatum, in wildtype and SERT-KO mice. The increase in DAex levels that was induced by 5-MeO-DIPT was not antagonized by WAY100635. CONCLUSION: 5-MeO-DIPT influences both 5-HTex and DAex levels in the striatum and PFC. 5-MeO-DIPT dually acts on SERT and 5-HT1A receptors so that elevations in 5-HTex levels produced by reuptake inhibition are limited by actions of the drug on 5-HT1A receptors.


Assuntos
5-Metoxitriptamina/análogos & derivados , Corpo Estriado/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , 5-Metoxitriptamina/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Corpo Estriado/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Microdiálise , Piperazinas/farmacologia , Córtex Pré-Frontal/metabolismo , Piridinas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
13.
Behav Brain Res ; 404: 113161, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33571570

RESUMO

Serotonin (5-HT) neurotransmission has been associated with reward-related behaviour. Moreover, the serotonergic system modulates the basolateral amygdala (BLA), a structure involved in reward encoding, and reward prediction error. However, the role played by 5-HT on BLA during a reward-driven task has not been fully elucidated. In this paper, we investigated whether serotonergic modulation of the BLA is involved in reward-driven learning. To this end, we trained Long Evans rats in an operant conditioning task, and examined the effects of fluoxetine treatment (a selective serotonin reuptake inhibitor, 10 mg/kg) in combination with BLA lesions with NMDA (20 mg/mL) on extinction learning. We also investigated whether intra-BLA injection of the serotonergic 5-HT1A receptor agonist 8-OH DPAT, or antagonist WAY-100635, alters extinction performance. We found that fluoxetine treatment strongly accelerated extinction learning, while BLA lesions partially reverted this effect and slightly impaired consolidation of extinction. Stimulation and inhibition of 5-HT1A receptors in BLA induced opposite effects to those of fluoxetine, impairing or accelerating extinction performance, respectively. Our findings suggest that 5-HT modulates reward-driven learning, and 5-HT1A receptors located in the BLA are relevant for extinction.


Assuntos
Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Serotonina/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/fisiologia , Disponibilidade Biológica , Condicionamento Operante/fisiologia , Extinção Psicológica/fisiologia , Fluoxetina/farmacologia , Masculino , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Long-Evans , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/fisiologia , Recompensa , Serotonina/farmacocinética , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
14.
Behav Brain Res ; 404: 113159, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33571572

RESUMO

Antidepressant drugs are first-line treatment for panic disorder. Facilitation of 5-HT1A receptor-mediated neurotransmission in the dorsal periaqueductal gray (dPAG), a key panic-associated area, has been implicated in the panicolytic effect of the selective serotonin reuptake inhibitor fluoxetine. However, it is still unknown whether this mechanism accounts for the antipanic effect of other classes of antidepressants drugs (ADs) and whether the 5-HT interaction with 5-HT2C receptors in this midbrain area (which increases anxiety) is implicated in the anxiogenic effect caused by short-term treatment with ADs. The results showed that previous injection of the 5-HT1A receptor antagonist WAY-100635 in the dPAG blocked the panicolytic-like effect caused by chronic systemic administration of the tricyclic AD imipramine in male Wistar rats tested in the elevated T-maze. Neither chronic treatment with imipramine nor fluoxetine changed the expression of 5-HT1A receptors in the dPAG. Treatment with these ADs also failed to significantly change ERK1/2 (extracellular-signal regulated kinase) phosphorylation level in this midbrain area. Blockade of 5-HT2C receptors in the dPAG with the 5-HT2C receptor antagonist SB-242084 did not change the anxiogenic effect caused by a single acute injection of fluoxetine or imipramine in the Vogel conflict test. These results reinforce the view that the facilitation of 5-HT1A receptor-mediated neurotransmission in the dPAG is a common mechanism involved in the panicolytic effect caused by chronic administration of ADs. On the other hand, the anxiogenic effect observed after short-term treatment with these drugs does not depend on 5-HT2C receptors located in the dPAG.


Assuntos
Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Pânico/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/fisiologia , Receptor 5-HT2C de Serotonina/fisiologia , Aminopiridinas/farmacologia , Animais , Western Blotting , Teste de Labirinto em Cruz Elevado , Fluoxetina/farmacologia , Imipramina/farmacologia , Indóis/farmacologia , Masculino , Teste de Campo Aberto/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
15.
Neurosci Lett ; 743: 135555, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352288

RESUMO

Stress enhances cocaine craving. We recently reported that acute restraint stress increases cocaine conditioned place preference (CPP) in mice; however, the underlying mechanisms remain unclear. This study aimed to examine the role of serotonergic transmission in the medial prefrontal cortex (mPFC) in cocaine CPP enhancement by acute restraint stress, which increases extracellular serotonin (5-HT) levels in the mPFC. Intra-mPFC infusion of the selective serotonin reuptake inhibitor (S)-citalopram prior to the test session significantly increased the cocaine CPP score under non-stressed conditions. This is indicative of the substantial role of increased mPFC 5-HT levels in cocaine CPP enhancement. Moreover, intra-mPFC and systemic administration of the 5-HT1A receptor antagonist WAY100635 immediately before restraint stress exposure significantly attenuated stress-induced cocaine CPP enhancement. Our findings suggest that enhanced serotonergic transmission via 5-HT1A receptors in the mPFC is involved in acute stress-induced augmentation of rewarding memory of cocaine; moreover, the 5-HT1A receptor could be a therapeutic target for stress-induced cocaine craving.


Assuntos
Cocaína/administração & dosagem , Memória/fisiologia , Córtex Pré-Frontal/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Recompensa , Estresse Psicológico/metabolismo , Animais , Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/metabolismo , Comportamento Aditivo/psicologia , Inibidores da Captação de Dopamina/administração & dosagem , Infusões Intraventriculares , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Piridinas/administração & dosagem , Restrição Física/efeitos adversos , Restrição Física/psicologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Estresse Psicológico/psicologia
16.
Behav Brain Res ; 401: 113082, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33358917

RESUMO

NLX-101 (also known as F15599) exhibits nanomolar affinity, exceptional selectivity and biased agonist activation of serotonin 5-HT1A receptors. Given systemically, it displays antidepressant-like activity in the rat forced swim test (FST), and preferentially activates 5-HT1A post-synaptic heteroreceptors in the prefrontal cortex (PFC), a brain region involved in the control of mood. Here, we assessed the ability of NLX-101 to produce antidepressant-like activity in the FST following in-situ PFC unilateral microinjection. (+)8-OH-DPAT and F13714, two 5-HT1A receptor agonists that do not display cortical biased agonism, were tested as comparators. NLX-101 decreased time spent in immobility in a bi-modal manner, with a first MED of 0.25 µg (immobility reduced from 160 to 80 s) but immobility returned to control levels at the next dose (1 µg). At higher doses, immobility decreased monotonically, with a second MED of 16 µg and a maximal effect (36 s) at 32 µg. (+)8-OH-DPAT and F13714 also diminished immobility but, unlike NLX-101, they did so in a unimodal manner, with MEDs of 1 and 4 µg, and maximal responses of 31 and 4 s, for (+)8-OH-DPAT and F13714, respectively. The effects of (+)8-OH-DPAT (16 µg) and of both active doses of NLX-101 (0.25 and 16 µg) were prevented by the 5-HT1A receptor antagonist WAY-100,635 (0.63 mg/kg s.c.). In conclusion, activation of 5-HT1A receptors in the PFC by NLX-101 produces robust antidepressant-like effects in the rat FST, with a distinctive bimodal dose-response pattern. These data suggest that NLX-101 may target specific 5-HT1A receptor subpopulations in PFC, likely located on GABAergic and/or glutamatergic neurons.


Assuntos
Locomoção/efeitos dos fármacos , Piperidinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Pirimidinas/farmacologia , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Piperidinas/administração & dosagem , Pirimidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
17.
J Sex Med ; 18(1): 63-71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223426

RESUMO

BACKGROUND: Premature ejaculation (PE) is a common male neurobiological sexual disorder, related to a disturbance in central serotonin (5-hydroxytryptamine or 5-HT) neurotransmission. AIM: To assess the efficacy of a single oral dose of 5HT1A receptor antagonist GSK958108 on ejaculation latency time (ELT) in male subjects suffering from PE. METHODS: A total of 35 male subjects were enrolled in a Phase 1 double-blind, placebo-controlled, parallel group masturbation-model study. All subjects completed the study. No subject was withdrawn from the study. There were no major protocol deviations reported during the study. OUTCOMES: The primary outcome of the study was to evaluate the effect of a single oral dose of 5HT1A receptor antagonist GSK958108 on ELT as measured in the masturbation model; additionally, we investigated drug's safety and tolerability. RESULTS: In the 3 mg GSK958108 treatment group, the ELT was estimated to be 16% longer (1.542 vs 1.328, 95% CI: -16% to +61%) than if the subjects had taken placebo. In the 7 mg GSK958108 treatment group, the ELT was estimated to be 77% longer (2.346 vs 1.328, 95% CI: +28% to +144%) than in the placebo group. The systemic exposure to GSK958108 increased with dosage between 3 mg and 7 mg. A significant trend toward an increase of ELT was observed with increasing plasma concentrations of GSK958108. A total of 4 patients all treated with 7 mg dose experienced minor drug related adverse events (5 adverse events in 4 patients): somnolence (n = 3), headache (n = 1), tinnitus (n = 1). CLINICAL IMPLICATIONS: In the current double-blind, placebo-controlled parallel group study the 5HT1A receptor antagonist GSK958108 was tested in 3 mg and 7 mg doses for PE treatment in humans. It was shown that GSK958108 significantly delayed ejaculation showing a new and safe alternative in PE treatment. STRENGTHS & LIMITATIONS: The present study showed innovative results suggesting an important role of 5HT1A receptor antagonist in the PE treatment. However, the use of masturbation model and the small population are the main limitations of this investigation. CONCLUSION: 5HT1A receptor antagonist GSK958108 3 mg per day and 7 mg per day was found to be well-tolerated, safe and effective for the treatment of PE subjects and demonstrated a strong association between 5HT1A receptors and ejaculation control in humans (NCT00861484). Migliorini F, Tafuri A, Bettica P, et al. A Double-Blind, Placebo-Controlled Parallel Group Study to Evaluate the Effect of a Single Oral Dose of 5-HT1A Antagonist GSK958108 on Ejaculation Latency Time in Male Patients Suffering From Premature Ejaculation. J Sex Med 2021;18:63-71.


Assuntos
Ejaculação Precoce , Antagonistas do Receptor 5-HT1 de Serotonina , Método Duplo-Cego , Ejaculação , Humanos , Masculino , Ejaculação Precoce/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina , Resultado do Tratamento
18.
Bioorg Chem ; 106: 104487, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33339667

RESUMO

Contrast enhancement in MRI using magnetization or saturation transfer techniques promises better sensitivity, and faster acquisition compared to T1 or T2 contrast. This work reports the synthesis and evaluation of 5-HT1A targeted PARACEST MRI contrast agent using 1,4,7,10-tetraazacycloDOdecane-4,7,10-triacetAMide (DO3AM) as the bifunctional chelator, and 5-HT1A-antagonist methoxyphenyl piperazine (MPP) as a targeting unit. The multi-step synthesis led to the MPP conjugated DO3AM with 60% yield. CEST-related physicochemical parameters were evaluated after loading DO3AM-MPP with paramagnetic MRI active lanthanides: Gadolinium (Gd-DO3AM-MPP) and Europium (Eu-DO3AM-MPP). Luminescence lifetime measurements with Eu-DO3AM-MPP and computational DFT studies using Gd-DO3AM-MPP revealed the coordination of one water molecule (q = 1.43) with metal-water distance (rM-H2O) of 2.7 Å and water residence time (τm) of 0.23 ms. The dissociation constant of Kd 62 ± 0.02 pM as evaluated from fluorescence quenching of 5-HT1A (protein) and docking score of -4.81 in theoretical evaluation reflect the binding potential of the complex Gd-DO3AM-MPP with the receptor 5-HT1A. Insights of the docked pose reflect the importance of NH2 (amide) and aromatic ring in Gd-DO3AM-MPP while interacting with Ser 374 and Phe 370 in the antagonist binding pocket of 5-HT1A. Gd-DO3AM-MPP shows longitudinal relaxivity 5.85 mM-1s-1 with a water residence lifetime of 0.93 ms in hippocampal homogenate containing 5-HT1A. The potentiometric titration of DO3AM-MPP showed strong selectivity for Gd3+ over physiological metal ions such as Zn2+ and Cu2+. The in vitro and in vivo studies confirmed the minimal cytotoxicity and presential binding of Gd-DO3AM-MPP with 5-HT1A receptor in the hippocampus region of the mice. Summarizing, the complex Gd-DO3AM-MPP can have a potential for CEST imaging of 5-HT1A receptors.


Assuntos
Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética , Propiofenonas/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/síntese química , Meios de Contraste/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Propiofenonas/química , Antagonistas do Receptor 5-HT1 de Serotonina/síntese química , Antagonistas do Receptor 5-HT1 de Serotonina/química , Relação Estrutura-Atividade
19.
Eur Neuropsychopharmacol ; 39: 56-69, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32873441

RESUMO

Through pharmacological manipulation of the serotonergic (5-Hydroxytryptamin, 5-HT) system, combined with behavioral analysis, we tested the hypothesis that fear responses to predictable and unpredictable threat are regulated through stimulation of 5-HT receptors (5-HT-R) in the anterodorsal section of the bed nucleus of the stria terminalis (adBNST). Local adBNST application of 5-HT1A-R antagonist WAY100635 and 5-HT1B-R antagonist NAS-181 before fear retrieval enhanced freezing, 24 h after predictable fear conditioning. In contrast, increased fear responses to unpredictable threat were blocked by 5-HT1A-R agonist Buspirone (given before conditioning or retrieval) and 5-HT1B-R agonist CP-94253 (applied before training). Prolonged fear responses were also blocked by local application of the 5-HT2A-R antagonist R-96544 before fear retrieval, and conversely, local application of the 5-HT2A-R agonist NBOH-2C-CN hydrochloride before fear retrieval enhanced freezing 24 h after predictable conditioning, indicating augmented fear responses. Activation of inhibitory 5-HT1A- or 5-HT1B-Rs and the blockade of the excitatory 5-HT2A-R before unpredictable fear conditioning significantly reduced freezing during retrieval. The results from this study suggest that modulation of inhibitory 5-HT1A/1B-R and/or excitatory 5-HT2A-R activity in the adBNST may represent potential targets for the development of new treatment strategies in anxiety disorders. In addition, this study supports the validity and reliability of the mouse model of modulated fear to predictable and unpredictable threats to study mechanisms of fear and anxiety in combination with pharmacological manipulations.


Assuntos
Medo/fisiologia , Medo/psicologia , Receptores de Serotonina/metabolismo , Núcleos Septais/metabolismo , Animais , Medo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleos Septais/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Antagonistas do Receptor 5-HT1 de Serotonina/administração & dosagem , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Antagonistas do Receptor 5-HT2 de Serotonina/administração & dosagem
20.
Med Sci Monit ; 26: e924658, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738135

RESUMO

BACKGROUND Anxiety is one of the common comorbidities of Tourette syndrome (TS). The serotonin (5-HT) system is involved in both TS and anxiety. Jian-pi-zhi-dong decoction (JPZDD) is widely used. However, the mechanism remains unknown. In this study, a rat model of TS and comorbid anxiety was used to evaluate the effect of JPZDD on 5-HT and its receptor. MATERIAL AND METHODS 48 rats were divided into 4 groups randomly (n=12). The model was established by empty water bottle stimulation plus iminodipropionitrile injection for 3 weeks. Then the control and model groups were gavaged with saline, while the treatment groups were gavaged with fluoxetine hydrochloride (Flx) or JPZDD. Body weights were measured, and behavioral tests were evaluated with stereotypy and elevated plus maze. The morphologic characters were observed by hematoxylin and eosin staining. The content of 5-HT was detected by enzyme-linked immunosorbent assay and high-performance liquid chromatography. The expression of 5-HT2C receptor was detected by western blot and quantitative polymerase chain reaction. RESULTS The stereotypy score was lower and the time spent in the open arm was longer in the JPZDD group compared with the model group. After the treatment of Flx or JPZDD, the structure of neurons became gradually normal and the cells were arranged neatly. The contents of 5-HT in the treatment groups were higher compared with the model group in the striatum. The expression of 5-HT2C mRNA in the striatum of JPZDD and Flx groups decreased compared with the model group, and the JPZDD group was lower than the Flx group. CONCLUSIONS JPZDD alleviated both tic and anxiety symptoms and the mechanism may be via reducing the expression of 5-HT2C mRNA in the striatum, increasing the concentration of 5-HT, and enhancing the activity of the 5-HT system, which in turn exerts neuro-inhibition.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Ansiedade/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Receptor 5-HT2C de Serotonina/genética , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Síndrome de Tourette/tratamento farmacológico , Animais , Ansiedade/induzido quimicamente , Ansiedade/genética , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Fluoxetina/farmacologia , Expressão Gênica , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Nitrilas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2C de Serotonina/metabolismo , Serotonina/metabolismo , Síndrome de Tourette/induzido quimicamente , Síndrome de Tourette/genética , Síndrome de Tourette/fisiopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...