Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 122(1): 45-57, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29897395

RESUMO

Backgrounds and Aims: Because stomata in bryophytes occur on sporangia, they are subject to different developmental and evolutionary constraints from those on leaves of tracheophytes. No conclusive experimental evidence exists on the responses of hornwort stomata to exogenous stimulation. Methods: Responses of hornwort stomata to abscisic acid (ABA), desiccation, darkness and plasmolysis were compared with those in tracheophyte leaves. Potassium ion concentrations in the guard cells and adjacent cells were analysed by X-ray microanalysis, and the ontogeny of the sporophytic intercellular spaces was compared with those of tracheophytes by cryo-scanning electron microscopy. Key Results: The apertures in hornwort stomata open early in development and thereafter remain open. In hornworts, the experimental treatments, based on measurements of >9000 stomata, produced only a slight reduction in aperture dimensions after desiccation and plasmolysis, and no changes following ABA treatments and darkness. In tracheophytes, all these treatments resulted in complete stomatal closure. Potassium concentrations are similar in hornwort guard cells and epidermal cells under all treatments at all times. The small changes in hornwort stomatal dimensions in response to desiccation and plasmolysis are probably mechanical and/or stress responses of all the epidermal and spongy chlorophyllose cells, affecting the guard cells. In contrast to their nascent gas-filled counterparts across tracheophytes, sporophytic intercellular spaces in hornworts are initially liquid filled. Conclusions: Our experiments demonstrate a lack of physiological regulation of opening and closing of stomata in hornworts compared with tracheophytes, and support accumulating developmental and structural evidence that stomata in hornworts are primarily involved in sporophyte desiccation and spore discharge rather than the regulation of photosynthesis-related gaseous exchange. Our results run counter to the notion of the early acquisition of active control of stomatal movements in bryophytes as proposed from previous experiments on mosses.


Assuntos
Ácido Abscísico/farmacologia , Anthocerotophyta/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Traqueófitas/fisiologia , Anthocerotophyta/efeitos dos fármacos , Anthocerotophyta/efeitos da radiação , Anthocerotophyta/ultraestrutura , Escuridão , Dessecação , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/efeitos da radiação , Estômatos de Plantas/ultraestrutura , Traqueófitas/efeitos dos fármacos , Traqueófitas/efeitos da radiação , Traqueófitas/ultraestrutura
2.
Ecotoxicol Environ Saf ; 122: 313-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26300117

RESUMO

A hydroponic study was conducted to investigate the lead bioaccumulation and tolerance characteristics of Ceratophyllum demersum L. exposed to various lead concentrations (5-80 µM) for 7, 14 or 21 days. Lead accumulation increased with increasing concentrations of metal in the solution, to a maximum accumulation of 4016.4 mg kg(-1) dw. Unexpectedly, the release of accumulated lead from the plants into solution was observed for all experimental groups except those exposed to 5 µM. Both the biomass and protein content of the plants responded significantly to lead stress. Malondialdehyde (MDA) levels increased substantially at lead concentrations below 20 µM, further indicating that this metal is toxic to the plants. To reveal the mechanism underlying the defense against lead stress, plants were also assayed for the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), as well as other relevant enzymes such as phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). The activities of both SOD and CAT increased at lower lead concentrations and with shorter exposure times, followed by a decline, but the activities of POD and its isoenzymes continued to increase under all conditions. Moreover, increases in the activities of PAL and PPO were observed only for the 14-day treatment, and these two enzymes were not sensitive to lead concentration. These results suggest that C. demersum exhibits strong tolerance within a specific concentration range of lead in solution; according to regression analysis, 40 µM is suggested to be this plant's tolerance threshold for lead in water. Furthermore, the malfunction of this tolerance mechanism might accelerate the metal-release process. These attributes are likely to be beneficial for utilizing C. demersum in phytoremediation applications.


Assuntos
Anthocerotophyta/crescimento & desenvolvimento , Antioxidantes/metabolismo , Chumbo/análise , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/análise , Anthocerotophyta/efeitos dos fármacos , Anthocerotophyta/enzimologia , Biodegradação Ambiental , Biomassa , Catalase/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Malondialdeído/metabolismo , Modelos Teóricos , Peroxidases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Soluções , Superóxido Dismutase/metabolismo
3.
J Environ Sci (China) ; 21(3): 307-12, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19634441

RESUMO

The physiological effects of 4 herbicides (butachlor, quinclorac, bensulfuron-methyl and atrazine) on 3 submerged macrophytes (Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii) were tested in laboratory. The variables of the relative growth rate and the photosynthetic pigment content showed that all of the tested herbicides affected the growth of the plants obviously, even at the lowest concentration (0.0001 mg/L). Except for the C. demersum treated with quinclorac at 0.005 and 0.01 mg/L, the relative growth rates of the plants were inhibited significantly (p < 0.01). Statistical analysis of chlorophyll a (Chl-a) contents was carried out with both the t-test and one-way ANOVA to determine the difference between the treatment and control. The results showed that Chl-a contents of the plants in all treatment groups were affected by herbicides significantly, except for the C. demersum treated with bensulfuron-methyl at 0.0005 mg/L. The decrease in Chl-a content was positively correlated to the dosage of the herbicides in most treatment groups. It was suggested that herbicides in water bodies might potentially affect the growth of aquatic macrophytes. Since the Chl-a content of submerged macrophytes responded to the stress of herbicides sensitively and directly, it could be used as a biomaker in environmental monitoring or in the ecological risk assessment of herbicide contamination.


Assuntos
Alismatales/efeitos dos fármacos , Anthocerotophyta/efeitos dos fármacos , Herbicidas , Hydrocharitaceae/efeitos dos fármacos , Acetanilidas/química , Acetanilidas/toxicidade , Atrazina/química , Atrazina/toxicidade , Clorofila/química , Clorofila A , Herbicidas/química , Herbicidas/toxicidade , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...