Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 594
Filtrar
1.
Nat Commun ; 15(1): 457, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212296

RESUMO

The antiarrhythmic drug ajmaline is a monoterpenoid indole alkaloid (MIA) isolated from the Ayurvedic plant Rauvolfia serpentina (Indian Snakeroot). Research into the biosynthesis of ajmaline and another renowned MIA chemotherapeutic drug vinblastine has yielded pivotal advancements in the fields of plant specialized metabolism and engineering over recent decades. While the majority of vinblastine biosynthesis has been recently elucidated, the quest for comprehending ajmaline biosynthesis remains incomplete, marked by the absence of two critical enzymes. Here, we show the discovery and characterization of these two elusive reductases, alongside the identification of two physiologically relevant esterases that complete the biosynthesis of ajmaline. We show that ajmaline biosynthesis proceeds with vomilenine 1,2(R)-reduction followed by its 19,20(S)-reduction. This process is further modulated by two root-expressing esterases that deacetylate 17-O-acetylnorajmaline. Expanding upon the successful completion of the ajmaline biosynthetic pathway, we engineer the de novo biosynthesis of ajmaline in Baker's yeast.


Assuntos
Ajmalina , Alcaloides , Antiarrítmicos/metabolismo , Vimblastina , Esterases
2.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919695

RESUMO

Connexins are crucial cardiac proteins that form hemichannels and gap junctions. Gap junctions are responsible for the propagation of electrical and chemical signals between myocardial cells and cells of the specialized conduction system in order to synchronize the cardiac cycle and steer cardiac pump function. Gap junctions are normally open, while hemichannels are closed, but pathological circumstances may close gap junctions and open hemichannels, thereby perturbing cardiac function and homeostasis. Current evidence demonstrates an emerging role of hemichannels in myocardial ischemia and arrhythmia, and tools are now available to selectively inhibit hemichannels without inhibiting gap junctions as well as to stimulate hemichannel incorporation into gap junctions. We review available experimental evidence for hemichannel contributions to cellular pro-arrhythmic events in ventricular and atrial cardiomyocytes, and link these to insights at the level of molecular control of connexin-43-based hemichannel opening. We conclude that a double-edged approach of both preventing hemichannel opening and preserving gap junctional function will be key for further research and development of new connexin-based experimental approaches for treating heart disease.


Assuntos
Cardiopatias , Isquemia Miocárdica , Humanos , Conexinas/genética , Conexinas/metabolismo , Antiarrítmicos/metabolismo , Junções Comunicantes/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Cardiopatias/metabolismo
3.
Circ Res ; 132(4): 400-414, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36715019

RESUMO

BACKGROUND: Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS: To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS: CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.


Assuntos
Miócitos Cardíacos , Diester Fosfórico Hidrolases , Camundongos , Animais , Humanos , Diester Fosfórico Hidrolases/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Catecolaminas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Antiarrítmicos/metabolismo , GMP Cíclico/metabolismo , Peptídeo Natriurético Tipo C/farmacologia
4.
Cell Tissue Res ; 391(2): 375-391, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36422735

RESUMO

Bepridil is a commonly used medication for arrhythmia and heart failure. It primarily exerts hemodynamic effects by inhibiting Na+/K+ movement and regulating the Na+/Ca2+ exchange. In comparison to other Ca2+ inhibitors, bepridil has a long half-life and a complex pharmacology. Additionally, it is widely used in antiviral research and the treatment of various diseases. However, the toxicity of this compound and its other possible effects on embryonic development are unknown. In this study, we investigated the toxicity of bepridil on rat myocardial H9c2 cells. After treatment with bepridil, the cells became overloaded with Ca2+ and entered a state of cytoplasmic vacuolization and nuclear abnormality. Bepridil treatment resulted in several morphological abnormalities in zebrafish embryo models, including pericardium enlargement, yolk sac swelling, and growth stunting. The hemodynamic effects on fetal development resulted in abnormal cardiovascular circulation and myocardial weakness. After inhibiting the Ca2+ transmembrane, the liver of zebrafish larvae also displayed an ectopic and deficient spatial location. Additionally, the results of the RNA-seq analysis revealed the detailed gene expression profiles and metabolic responses to bepridil treatment in zebrafish embryonic development. Taken together, our study provides an important evaluation of antiarrhythmic agents for clinical use in prenatal heart patients.


Assuntos
Bepridil , Peixe-Zebra , Animais , Ratos , Bepridil/metabolismo , Bepridil/farmacologia , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
5.
Front Biosci (Schol Ed) ; 14(4): 31, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36575841

RESUMO

Atrial fibrillation (AF) is a condition in which the electrical signals in the upper heart chambers (atria) are rapid and disorganized, producing an irregular and chaotical heartbeat. The sinus rhythm should be between 60 to 100 bpm at rest, while the heart rhythm in AF patients may be over 140 bpm. Either structural and electro-mechanical remodeling of the atrial tissue underlies the perpetuation and evolution of AF from the paroxysmal to persistent form. Unravelling the different pathological pathways involved in AF that lead to arrhythmogenesis and atrial remodeling is needed to discovery new and effective therapeutic approaches. A variety of drugs are available to convert and maintain the AF patient in a normal sinus rhythm; however, these strategies have limited chances of success or fail with the progression of AF to more persistent/permanent forms. Consequently, it is necessary to find new therapeutic targets for the relief of persistent or chronic AF forms, as well as the development of new and more effective pharmacological tools. The atrial specific two-pore domain K+ channels (K2P) constitute the background K+ current on atrial cardiomyocytes and modulate cell excitability emerging as novel targets in this disease and avoiding ventricle side effects. Moreover, several antiarrhythmic drugs used in AF treatment exert their mechanism of action in part by modulation of K2P channels. Thus far, TWIK-1, TREK-1, TASK-1, TASK-2 and TASK-3 channel have been identified as responsible for background currents IK2P current in atrial cells; however, it is not excluded that other K2PX subunits or subfamilies have physiological roles in atria. To date, a great diversity openers, activators and blockers of K2P channel have been identified, particularly those targeting TASK and TREK channels. Several studies have demonstrated that the expression of TWIK-1, TREK-1, TASK-1, TASK-2 and TASK-3 are dysregulated in AF and their pharmacology rescue could suppose a novel therapy in AF. The main objective is to examine the regulation of K2P channels and the current K2P channels pharmacological modulators for AF treatment.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/tratamento farmacológico , Átrios do Coração/metabolismo , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Antiarrítmicos/metabolismo , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
6.
Cells ; 11(6)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35326497

RESUMO

Ischemic heart disease (IHD) is one of the leading causes of mortality worldwide. Preserving functionality and preventing arrhythmias of the heart are key principles in the management of patients with IHD. Levosimendan, a unique calcium (Ca2+) enhancer with inotropic activity, has been introduced into clinical usage for heart failure treatment. Human-induced pluripotent cell-derived cardiomyocytes (hiPSC-CMs) offer an opportunity to better understand the pathophysiological mechanisms of the disease as well as to serve as a platform for drug screening. Here, we developed an in vitro IHD model using hiPSC-CMs in hypoxic conditions and defined the effects of the subsequent hypoxic stress on CMs functionality. Furthermore, the effect of levosimendan on hiPSC-CMs functionality was evaluated during and after hypoxic stress. The morphology, contractile, Ca2+-handling, and gene expression properties of hiPSC-CMs were investigated in response to hypoxia. Hypoxia resulted in significant cardiac arrhythmia and decreased Ca2+ transient amplitude. In addition, disorganization of sarcomere structure was observed after hypoxia induction. Interestingly, levosimendan presented significant antiarrhythmic properties, as the arrhythmia was abolished or markedly reduced with levosimendan treatment either during or after the hypoxic stress. Moreover, levosimendan presented significant protection from the sarcomere alterations induced by hypoxia. In conclusion, this chip model appears to be a suitable preclinical representation of IHD. With this hypoxia platform, detailed knowledge of the disease pathophysiology can be obtained. The antiarrhythmic effect of levosimendan was clearly observed, suggesting a possible new clinical use for the drug.


Assuntos
Células-Tronco Pluripotentes Induzidas , Isquemia Miocárdica , Antiarrítmicos/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Células Cultivadas , Humanos , Hipóxia/metabolismo , Isquemia/metabolismo , Dispositivos Lab-On-A-Chip , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Simendana/metabolismo , Simendana/farmacologia
7.
Nat Biomed Eng ; 6(4): 389-402, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34992271

RESUMO

The lack of a scalable and robust source of well-differentiated human atrial myocytes constrains the development of in vitro models of atrial fibrillation (AF). Here we show that fully functional atrial myocytes can be generated and expanded one-quadrillion-fold via a conditional cell-immortalization method relying on lentiviral vectors and the doxycycline-controlled expression of a recombinant viral oncogene in human foetal atrial myocytes, and that the immortalized cells can be used to generate in vitro models of AF. The method generated 15 monoclonal cell lines with molecular, cellular and electrophysiological properties resembling those of primary atrial myocytes. Multicellular in vitro models of AF generated using the immortalized atrial myocytes displayed fibrillatory activity (with activation frequencies of 6-8 Hz, consistent with the clinical manifestation of AF), which could be terminated by the administration of clinically approved antiarrhythmic drugs. The conditional cell-immortalization method could be used to generate functional cell lines from other human parenchymal cells, for the development of in vitro models of human disease.


Assuntos
Fibrilação Atrial , Antiarrítmicos/metabolismo , Antiarrítmicos/uso terapêutico , Átrios do Coração , Humanos , Miócitos Cardíacos/metabolismo
8.
Cells ; 10(8)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34440870

RESUMO

Cardiac ryanodine receptor (RyR2) mutations are implicated in the potentially fatal catecholaminergic polymorphic ventricular tachycardia (CPVT) and in atrial fibrillation. CPVT has been successfully treated with flecainide monotherapy, with occasional notable exceptions. Reported actions of flecainide on cardiac sodium currents from mice carrying the pro-arrhythmic homozygotic RyR2-P2328S mutation prompted our explorations of the effects of flecainide on their RyR2 channels. Lipid bilayer electrophysiology techniques demonstrated a novel, paradoxical increase in RyR2 activity. Preceding flecainide exposure, channels were mildly activated by 1 mM luminal Ca2+ and 1 µM cytoplasmic Ca2+, with open probabilities (Po) of 0.03 ± 0.01 (wild type, WT) or 0.096 ± 0.024 (P2328S). Open probability (Po) increased within 0.5 to 3 min of exposure to 0.5 to 5.0 µM cytoplasmic flecainide, then declined with higher concentrations of flecainide. There were no such increases in a subset of high Po channels with Po ≥ 0.08, although Po then declined with ≥5 µM (WT) or ≥50 µM flecainide (P2328S). On average, channels with Po < 0.08 were significantly activated by 0.5 to 10 µM of flecainide (WT) or 0.5 to 50 µM of flecainide (P2328S). These results suggest that flecainide can bind to separate activation and inhibition sites on RyR2, with activation dominating in lower activity channels and inhibition dominating in more active channels.


Assuntos
Arritmias Cardíacas/metabolismo , Flecainida/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacologia , Arritmias Cardíacas/genética , Cálcio/metabolismo , Flecainida/metabolismo , Ativação do Canal Iônico/fisiologia , Bicamadas Lipídicas/metabolismo , Potenciais da Membrana , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
9.
J Mol Cell Cardiol ; 158: 163-177, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062207

RESUMO

Drug isomers may differ in their proarrhythmia risk. An interesting example is the drug sotalol, an antiarrhythmic drug comprising d- and l- enantiomers that both block the hERG cardiac potassium channel and confer differing degrees of proarrhythmic risk. We developed a multi-scale in silico pipeline focusing on hERG channel - drug interactions and used it to probe and predict the mechanisms of pro-arrhythmia risks of the two enantiomers of sotalol. Molecular dynamics (MD) simulations predicted comparable hERG channel binding affinities for d- and l-sotalol, which were validated with electrophysiology experiments. MD derived thermodynamic and kinetic parameters were used to build multi-scale functional computational models of cardiac electrophysiology at the cell and tissue scales. Functional models were used to predict inactivated state binding affinities to recapitulate electrocardiogram (ECG) QT interval prolongation observed in clinical data. Our study demonstrates how modeling and simulation can be applied to predict drug effects from the atom to the rhythm for dl-sotalol and also increased proarrhythmia proclivity of d- vs. l-sotalol when accounting for stereospecific beta-adrenergic receptor blocking.


Assuntos
Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Antiarrítmicos/química , Antiarrítmicos/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Síndrome do QT Longo/metabolismo , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sotalol/química , Sotalol/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Antiarrítmicos/farmacologia , Microscopia Crioeletrônica/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/química , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ligação Proteica/efeitos dos fármacos , Sotalol/farmacologia , Estereoisomerismo
10.
J Mol Cell Cardiol ; 158: 26-37, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34004185

RESUMO

It is imperative to develop better approaches to predict how antiarrhythmic drugs with multiple interactions and targets may alter the overall electrical and/or mechanical function of the heart. Safety Pharmacology studies have provided new insights into the multi-target effects of many different classes of drugs and have been aided by the addition of robust new in vitro and in silico technology. The primary focus of Safety Pharmacology studies has been to determine the risk profile of drugs and drug candidates by assessing their effects on repolarization of the cardiac action potential. However, for decades experimental and clinical studies have described substantial and potentially detrimental effects of Na+ channel blockers in addition to their well-known conduction slowing effects. One such side effect, associated with administration of some Na+ channel blocking drugs is negative inotropy. This reduces the pumping function of the heart, thereby resulting in hypotension. Flecainide is a well-known example of a Na+ channel blocking drug, that exhibits strong rate-dependent block of INa and may cause negative cardiac inotropy. While the phenomenon of Na+ channel suppression and resulting negative inotropy is well described, the mechanism(s) underlying this effect are not. Here, we set out to use a modeling and simulation approach to reveal plausible mechanisms that could explain the negative inotropic effect of flecainide. We utilized the Grandi-Bers model [1] of the cardiac ventricular myocyte because of its robust descriptions of ion homeostasis in order to characterize and resolve the relative effects of QRS widening, flecainide off-target effects and changes in intracellular Ca2+ and Na+ homeostasis. The results of our investigations and predictions reconcile multiple data sets and illustrate how multiple mechanisms may play a contributing role in the flecainide induced negative cardiac inotropic effect.


Assuntos
Antiarrítmicos/efeitos adversos , Simulação por Computador , Flecainida/efeitos adversos , Contração Miocárdica/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/efeitos adversos , Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/metabolismo , Canais de Cálcio/metabolismo , Flecainida/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Sódio/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo
11.
Prog Biophys Mol Biol ; 159: 126-135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32553901

RESUMO

TWIK-related K+ channel (TREK-1) two-pore-domain potassium (K2P) channels mediate background potassium currents and regulate cellular excitability in many different types of cells. Their functional activity is controlled by a broad variety of different physiological stimuli, such as temperature, extracellular or intracellular pH, lipids and mechanical stress. By linking cellular excitability to mechanical stress, TREK-1 currents might be important to mediate parts of the mechanoelectrical feedback described in the heart. Furthermore, TREK-1 currents might contribute to the dysregulation of excitability in the heart in pathophysiological situations, such as those caused by abnormal stretch or ischaemia-associated cell swelling, thereby contributing to arrhythmogenesis. In this review, we focus on the functional role of TREK-1 in the heart and its putative contribution to cardiac mechanoelectrical coupling. Its cardiac expression among different species is discussed, alongside with functional evidence for TREK-1 currents in cardiomyocytes. In addition, evidence for the involvement of TREK-1 currents in different cardiac arrhythmias, such as atrial fibrillation or ventricular tachycardia, is summarized. Furthermore, the role of TREK-1 and its interaction partners in the regulation of the cardiac heart rate is reviewed. Finally, we focus on the significance of TREK-1 in the development of cardiac hypertrophy, cardiac fibrosis and heart failure.


Assuntos
Antiarrítmicos/metabolismo , Sistema Cardiovascular/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potássio/metabolismo , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/metabolismo , Fenômenos Biomecânicos/fisiologia , Cardiomegalia/metabolismo , Desenvolvimento de Medicamentos , Insuficiência Cardíaca/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Xenopus laevis
12.
Drug Des Devel Ther ; 14: 1739-1747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32440099

RESUMO

BACKGROUND: Lidocaine has cardiovascular and neurologic toxicity, which is dose-dependent. Due to CYP3A4-involved metabolism, lidocaine may be prone to drug-drug interactions. MATERIALS AND METHODS: Given statins have the possibility of combination with lidocaine in the clinic, we established in vitro models to assess the effect of statins on the metabolism of lidocaine. Further pharmacokinetic alterations of lidocaine and its main metabolite, monoethylglycinexylidide in rats influenced by simvastatin, were investigated. RESULTS: In vitro study revealed that simvastatin, among the statins, had the most significant inhibitory effect on lidocaine metabolism with IC50 of 39.31 µM, 50 µM and 15.77 µM for RLM, HLM and CYP3A4.1, respectively. Consistent with in vitro results, lidocaine concomitantly used with simvastatin in rats was associated with 1.2-fold AUC(0-t), 1.2-fold AUC(0-∞), and 20%-decreased clearance for lidocaine, and 1.4-fold Cmax for MEGX compared with lidocaine alone. CONCLUSION: Collectively, these results implied that simvastatin could evidently inhibit the metabolism of lidocaine both in vivo and in vitro. Accordingly, more attention and necessary therapeutic drug monitoring should be paid to patients with the concomitant coadministration of lidocaine and simvastatin so as to avoid unexpected toxicity.


Assuntos
Lidocaína/metabolismo , Sinvastatina/farmacologia , Animais , Antiarrítmicos/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cinética , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
13.
Circ Res ; 126(8): 947-964, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32091972

RESUMO

RATIONALE: Drug-induced proarrhythmia is so tightly associated with prolongation of the QT interval that QT prolongation is an accepted surrogate marker for arrhythmia. But QT interval is too sensitive a marker and not selective, resulting in many useful drugs eliminated in drug discovery. OBJECTIVE: To predict the impact of a drug from the drug chemistry on the cardiac rhythm. METHODS AND RESULTS: In a new linkage, we connected atomistic scale information to protein, cell, and tissue scales by predicting drug-binding affinities and rates from simulation of ion channel and drug structure interactions and then used these values to model drug effects on the hERG channel. Model components were integrated into predictive models at the cell and tissue scales to expose fundamental arrhythmia vulnerability mechanisms and complex interactions underlying emergent behaviors. Human clinical data were used for model framework validation and showed excellent agreement, demonstrating feasibility of a new approach for cardiotoxicity prediction. CONCLUSIONS: We present a multiscale model framework to predict electrotoxicity in the heart from the atom to the rhythm. Novel mechanistic insights emerged at all scales of the system, from the specific nature of proarrhythmic drug interaction with the hERG channel, to the fundamental cellular and tissue-level arrhythmia mechanisms. Applications of machine learning indicate necessary and sufficient parameters that predict arrhythmia vulnerability. We expect that the model framework may be expanded to make an impact in drug discovery, drug safety screening for a variety of compounds and targets, and in a variety of regulatory processes.


Assuntos
Antiarrítmicos/química , Arritmias Cardíacas/tratamento farmacológico , Cardiotoxinas/química , Simulação por Computador , Descoberta de Drogas/métodos , Canal de Potássio ERG1/química , Antiarrítmicos/metabolismo , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/metabolismo , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Cardiotoxinas/efeitos adversos , Cardiotoxinas/metabolismo , Descoberta de Drogas/tendências , Canal de Potássio ERG1/metabolismo , Feminino , Humanos , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/metabolismo , Aprendizado de Máquina , Masculino , Moxifloxacina/química , Moxifloxacina/metabolismo , Moxifloxacina/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Fenetilaminas/química , Fenetilaminas/metabolismo , Fenetilaminas/uso terapêutico , Estrutura Secundária de Proteína , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/uso terapêutico , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/metabolismo , Inibidores da Topoisomerase II/uso terapêutico
14.
Life Sci ; 244: 117333, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31962132

RESUMO

AIMS: Detect the antiarrhythmic effect of crotonoside (Cro). MAIN METHODS: We used whole-cell patch-clamp techniques to detect the effects of Cro on action potentials (APs) and transmembrane ion currents in isolated rabbit left ventricular myocytes. We also verified the effect of Cro on ventricular arrhythmias caused by aconitine in vivo. KEY FINDINGS: Cro reduced the maximum depolarization velocity (Vmax) of APs and shortened the action potential duration (APD) in a concentration-dependent manner, but it had no significant effect on the resting membrane potential (RMP) or action potential amplitude (APA). It also inhibited the peak sodium current (INa) and L-type calcium current (ICaL) in a concentration-dependent manner with half-maximal inhibitory concentrations (IC50) of 192 µmol/L and 159 µmol/L, respectively. However, Cro had no significant effects on the inward rectifier potassium current (IK1) or rapidly activating delayed rectifier potassium current (IKr). Sea anemone toxin II (ATX II) increased the late sodium current (INaL), but Cro abolished this effect. Moreover, Cro significantly abolished ATX II-induced early afterdepolarizations (EADs) and high extracellular Ca2+ concentration (3.6 mmol/L)-induced delayed afterdepolarizations (DADs). We also verified that Cro effectively delayed the onset time and reduced the incidence of ventricular arrhythmias caused by aconitine in vivo. SIGNIFICANCE: These results revealed that Cro effectively inhibits INa, INaL, and ICaL in ventricular myocytes. Cro has antiarrhythmic potential and thus deserves further study.


Assuntos
Guanina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacologia , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , China , Feminino , Guanina/metabolismo , Ventrículos do Coração/metabolismo , Técnicas de Patch-Clamp/métodos , Coelhos , Sódio/metabolismo , Canais de Sódio/efeitos dos fármacos
15.
Biotechnol Lett ; 42(1): 135-142, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31734772

RESUMO

OBJECTIVES: To characterize a glycosyltransferase (UGT74AN3) from Catharanthus roseus and investigate its specificity toward cardiotonic steroids and phenolic compounds. RESULTS: UGT74AN3, a novel permissive GT from C. roseus, displayed average high conversion rate (> 90%) toward eight structurally different cardiotonic steroids. Among them, resibufogenin, digitoxigenin, and uzarigenin gave 100% yield. Based on LC-MS, 1H-NMR and 13C-NMR analysis, structure elucidation of eight glycosides was consistent with 3-O-ß-D-glucosides. We further confirmed UGT74AN3 was permissive enough to glycosylate curcumin, resveratrol, and phloretin. The cDNA sequence of UGT74AN3 contained an ORF of 1,425 nucleotides encoding 474 amino acids. UGT74AN3 performed the maximum catalytic activity at 40 °C, pH 8.0, and was divalent cation-independent. Km values of UGT74AN3 toward resibufogenin, digitoxigenin, and uzarigenin were 7.0 µM, 12.3 µM, and 17.4 µM, respectively. CONCLUSIONS: UGT74AN3, a glycosyltransferase from a noncardenolide-producing plant, displayed catalytic efficiency toward cardiotonic steroids and phenolic compounds, which would make it feasible for glycosylation of bioactive molecules.


Assuntos
Antiarrítmicos/metabolismo , Glicosídeos Cardíacos/metabolismo , Catharanthus/enzimologia , Glicosiltransferases/metabolismo , Fenóis/metabolismo , Biotransformação , Catharanthus/genética , Cromatografia Líquida , Clonagem Molecular , Inibidores Enzimáticos , Estabilidade Enzimática , Glicosilação , Glicosiltransferases/genética , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Especificidade por Substrato , Temperatura
16.
Can J Physiol Pharmacol ; 98(3): 177-181, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31614093

RESUMO

Dronedarone biodistribution in hyperlipidemia and dronedarone metabolism in hyperlipidemia or obesity were assessed. Male Sprague-Dawley rats were given either normal standard chow with water or various high-fat or high-carbohydrate diets for 14 weeks. There was also a nonobese hyperlipidemic group given poloxamer 407 intraperitoneally. Liver and intestinal microsomes were prepared and the metabolic conversion of dronedarone to desbutyldronedarone was followed. A biodistribution study of dronedarone given orally was conducted in hyperlipidemic and control normolipidemic rats. The metabolism of dronedarone to desbutyldronedarone in control rats was consistent with substrate inhibition. However in the treatment groups, the formation of desbutyldronedarone did not follow substrate inhibition; hyperlipidemia and high-calorie diets created remarkable changes in dronedarone metabolic profiles and reduction in formation velocities. Tissue concentrations of dronedarone were much higher than in plasma. Furthermore, in hyperlipidemia, plasma and lung dronedarone concentrations were significantly higher compared to normolipidemia.


Assuntos
Antiarrítmicos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dronedarona/metabolismo , Hiperlipidemias/metabolismo , Obesidade/complicações , Animais , Antiarrítmicos/administração & dosagem , Dronedarona/administração & dosagem , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Hiperlipidemias/patologia , Masculino , Obesidade/patologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
17.
J Pharmacol Sci ; 141(4): 153-159, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31757741

RESUMO

Experimental evidence regarding the risk of proarrhythmic potential of acehytisine is limited. We assessed its electropharmacological effect together with proarrhythmic potential at intravenous doses of 4 and 10 mg/kg (n = 6) using isoflurane-anesthetized guinea pigs in comparison with that of bepridil at 1 and 3 mg/kg, intravenously (n = 6). Acehytisine at therapeutic dose (4 mg/kg) decreased the heart rate, prolonged P wave duration, QRS width, QT interval, QTc, MAP90(sinus), MAP90(CL300) and MAP90(CL250). At supratherapeutic dose (10 mg/kg), it prolonged the PR interval besides enhancing the changes induced by the therapeutic dose. Quantitative assessment showed that peak changes in P wave duration by acehytisine at 10 mg/kg were 1.7 times longer than bepridil, and in MAP90(sinus), MAP90(CL300) and MAP90(CL250) by acehytisine were 1.9, 1.5 and 1.5 times shorter than bepridil, respectively. Importantly, qualitative assessment indicated that bepridil increased beat-to-beat variability and J-Tpeakc in a dose-related manner, confirming a higher proarrhythmic risk, whereas such dose-related responses were not observed in acehytisine, suggesting a lower proarrhythmic risk. These results suggest that acehytisine exhibits favorable pharmacological characters, i.e. potent atrial inhibition and lower proarrhythmic toxicity compared with bepridil, being a promising candidate for the treatment of paroxysmal supraventricular tachycardia.


Assuntos
Antiarrítmicos/metabolismo , Átrios do Coração/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Bloqueadores dos Canais de Sódio/metabolismo , Animais , Antiarrítmicos/farmacologia , Bepridil/metabolismo , Bepridil/farmacologia , Eletrocardiografia/métodos , Cobaias , Frequência Cardíaca/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Isoflurano/farmacologia , Masculino , Bloqueadores dos Canais de Sódio/farmacologia
18.
Xenobiotica ; 49(11): 1323-1331, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30596462

RESUMO

1. Propafenone, an antiarrhythmic drug, is a typical human cytochrome P450 (P450) 2D6 substrate used in preclinical studies. Here, propafenone oxidation by mammalian liver microsomes was investigated in vitro. 2. Liver microsomes from humans and marmosets preferentially mediated propafenone 5-hydroxylation, minipig, rat and mouse livers primarily mediated 4'-hydroxylation, but cynomolgus monkey and dog liver microsomes differently mediated N-despropylation. 3. Quinine, ketoconazole or anti-P450 2D antibodies suppressed propafenone 4'/5-hydroxylation in human and rat liver microsomes. Pretreatments with ß-naphthoflavone or dexamethasone increased N-despropylation in rat livers. 4. Recombinant rat P450 2D2 efficiently catalysed propafenone 4'-hydroxylation in a substrate inhibition manner, comparable to rat liver microsomes, while human P450 2D6 displayed propafenone 5-hydroxylation. Human and rat P450 1A, 2C and 3A enzymes mediated propafenone N-despropylation with high capacities. 5. Carbon-4' of propafenone docked favourably into the active site of P450 2D2 based on an in silico model; in contrast, carbon-5 of propafenone docked into human P450 2D6. 6. These results suggest that the major roles of individual P450 2D enzymes in regioselective hydroxylations of propafenone differ between human and rat livers, while the minor roles of P450 1A, 2C and 3A enzymes for propafenone N-despropylation are similar in livers of both species.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Microssomos Hepáticos/metabolismo , Propafenona/farmacocinética , Adulto , Idoso , Animais , Antiarrítmicos/química , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacocinética , Hidrocarboneto de Aril Hidroxilases/química , Callithrix , Citocromo P-450 CYP2D6/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Cães , Feminino , Humanos , Hidroxilação , Macaca fascicularis , Masculino , Camundongos Endogâmicos , Microssomos Hepáticos/efeitos dos fármacos , Pessoa de Meia-Idade , Propafenona/química , Propafenona/metabolismo , Ratos Sprague-Dawley , Especificidade da Espécie , Suínos , Porco Miniatura
19.
Mol Cell Biochem ; 454(1-2): 191-202, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30446908

RESUMO

We aimed to explore whether specific high-sucrose intake in older female rats affects myocardial electrical coupling protein, connexin-43 (Cx43), protein kinase C (PKC) signaling, miR-1 and miR-30a expression, and susceptibility of the heart to malignant arrhythmias. Possible benefit of the supplementation with melatonin (40 µg/ml/day) and omega-3 polyunsaturated fatty acids (Omacor, 25 g/kg of rat chow) was examined as well. Results have shown that 8 weeks lasting intake of 30% sucrose solution increased serum cholesterol, triglycerides, body weight, heart weight, and retroperitoneal adipose tissues. It was accompanied by downregulation of cardiac Cx43 and PKCε signaling along with an upregulation of myocardial PKCδ and miR-30a rendering the heart prone to ventricular arrhythmias. There was a clear benefit of melatonin or omega-3 PUFA supplementation due to their antiarrhythmic effects associated with the attenuation of myocardial Cx43, PKC, and miR-30a abnormalities as well as adiposity. The potential impact of these findings may be considerable, and suggests that high-sucrose intake impairs myocardial signaling mediated by Cx43 and PKC contributing to increased susceptibility of the older obese female rat hearts to malignant arrhythmias.


Assuntos
Conexina 43/metabolismo , Sacarose Alimentar/efeitos adversos , Ácidos Graxos Ômega-3/farmacologia , Coração/efeitos dos fármacos , Melatonina/farmacologia , Obesidade/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacologia , Arritmias Cardíacas/etiologia , Ácidos Graxos Ômega-3/metabolismo , Feminino , Melatonina/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Obesidade/induzido quimicamente , Obesidade/complicações , Obesidade/metabolismo , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Ratos , Ratos Wistar
20.
Theranostics ; 8(17): 4750-4764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279735

RESUMO

Cardiac arrhythmias are among the most challenging human disorders to diagnose and treat due to their complex underlying pathophysiology. Suitable experimental animal models are needed to study the mechanisms causative for cardiac arrhythmogenesis. To enable in vivo analysis of cardiac cellular electrophysiology with a high spatial and temporal resolution, we generated and carefully validated two zebrafish models, one expressing an optogenetic voltage indicator (chimeric VSFP-butterfly CY) and the other a genetically encoded calcium indicator (GCaMP6f) in the heart. Methods: High-speed epifluorescence microscopy was used to image chimeric VSFP-butterfly CY and GCaMP6f in the embryonic zebrafish heart, providing information about the spatiotemporal patterning of electrical activation, action potential configuration and intracellular Ca2+ dynamics. Plotting VSFP or GCaMP6f signals on a line along the myocardial wall over time facilitated the visualization and analysis of electrical impulse propagation throughout the heart. Administration of drugs targeting the sympathetic nervous system or cardiac ion channels was used to validate sensitivity and kinetics of both zebrafish sensor lines. Using the same microscope setup, we imaged transparent juvenile casper fish expressing GCaMP6f, demonstrating the feasibility of imaging cardiac optogenetic sensors at later stages of development. Results: Isoproterenol slightly increased heart rate, diastolic Ca2+ levels and Ca2+ transient amplitudes, whereas propranolol caused a profound decrease in heart rate and Ca2+ transient parameters in VSFP-Butterfly and GCaMP6f embryonic fish. Ikr blocker E-4031 decreased heart rate and increased action potential duration in VSFP-Butterfly fish. ICa,L blocker nifedipine caused total blockade of Ca2+ transients in GCaMP6f fish and a reduced heart rate, altered ventricular action potential duration and disrupted atrial-ventricular electrical conduction in VSFP-Butterfly fish. Imaging of juvenile animals demonstrated the possibility of employing an older zebrafish model for in vivo cardiac electrophysiology studies. We observed differences in atrial and ventricular Ca2+ recovery dynamics between 3 dpf and 14 dpf casper fish, but not in Ca2+ upstroke dynamics. Conclusion: By introducing the optogenetic sensors chimeric VSFP-butterfly CY and GCaMP6f into the zebrafish we successfully generated an in vivo cellular electrophysiological readout tool for the zebrafish heart. Complementary use of both sensor lines demonstrated the ability to study heart rate, cardiac action potential configuration, spatiotemporal patterning of electrical activation and intracellular Ca2+ homeostasis in embryonic zebrafish. In addition, we demonstrated the first successful use of an optogenetic sensor to study cardiac function in older zebrafish. These models present a promising new research tool to study the underlying mechanisms of cardiac arrhythmogenesis.


Assuntos
Antiarrítmicos/metabolismo , Relógios Biológicos/efeitos dos fármacos , Técnicas Eletrofisiológicas Cardíacas/métodos , Fenômenos Eletrofisiológicos , Frequência Cardíaca/efeitos dos fármacos , Optogenética/métodos , Animais , Coração/embriologia , Humanos , Isoproterenol/metabolismo , Microscopia de Fluorescência , Piperidinas/metabolismo , Propranolol/metabolismo , Piridinas/metabolismo , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...