Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.439
Filtrar
1.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731442

RESUMO

Two series, "a" and "b", each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1-3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a-9a and 1b-9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the "b" series, particularly for compound 8b.


Assuntos
Anticonvulsivantes , Pentilenotetrazol , Receptores de GABA-A , Convulsões , Anticonvulsivantes/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Animais , Camundongos , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Receptores de GABA-A/metabolismo , Quinazolinonas/farmacologia , Quinazolinonas/química , Quinazolinonas/síntese química , Simulação de Acoplamento Molecular , Masculino , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Simulação por Computador , Modelos Animais de Doenças , Estrutura Molecular , Sítio Alostérico
2.
Chem Biodivers ; 21(5): e202400056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472742

RESUMO

N-Arylenaminones are highly versatile compounds which can be synthesized in relatively simple ways. In this work we explored the synthesis of the four monosubstituted N-(4-R-phenyl)enaminones 3 a (R=NO2), 3 b (R=F), 3 c (R=H), and 3 d (R=OMe) with the goal of determining the influence of the substituents' electronic effects on tautomer stability and biological activity. These compounds were analyzed by means of Density Functional Theory calculations (DFT), to evaluate the relative stability of the possible tautomers. We found that the enaminone structure is the most stable with respect to the ketoimine and iminoenol forms. In addition, all four compounds display anticonvulsant activity, with 3 d being the one that mostly increased latency and mostly decreased the number of convulsions with respect to the control group. The suggested mechanism of action involves blockage of the voltage-dependent Na+ channels, considering that these molecules meet the structural characteristics needed to block the receptor, as is the case of the positive control molecules phenytoin (PHT) and valproic acid (VPA).


Assuntos
Anticonvulsivantes , Teoria da Densidade Funcional , Anticonvulsivantes/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Animais , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade , Camundongos , Estrutura Molecular
3.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164136

RESUMO

Trying to meet the multitarget-directed ligands strategy, a series of previously described aryl-substituted phenylalanine derivatives, reported as competitive antagonists of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, were screened in vitro for their free-radical scavenging and antioxidant capacity in two different assays: ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity fluorescent (ORAC-FL) assays. The most active antioxidants 1 and 8 were further examined to evaluate their neuroprotective properties in vitro. In this study, compound 1 showed a significant neuroprotective effect against the neurotoxin 6-hydroxydopamine in neuroblastoma SH-SY5Y and IMR-32 cell lines. Both compounds also showed prevention from high levels of reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, the desired monoamine oxidase B (MAO-B) inhibition effect (IC50 = 278 ± 29 nM) for 1 was determined. No toxic effects up to 100 µM of 1 and 8 against neuroblastoma cells were observed. Furthermore, in vivo studies showed that compound 1 demonstrated significant anticonvulsant potential in 6-Hz test, but in neuropathic pain models its antiallodynic and antihyperalgesic properties were not observed. Concluding, the compound 1 seems to be of higher importance as a new phenylalanine-based lead candidate due to its confirmed promise in in vitro and in vivo anticonvulsant activity.


Assuntos
Anticonvulsivantes , Inibidores da Monoaminoxidase , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores , Fenilalanina , Receptores de AMPA/antagonistas & inibidores , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Fenilalanina/análogos & derivados , Fenilalanina/síntese química , Fenilalanina/química , Fenilalanina/farmacologia , Receptores de AMPA/metabolismo
4.
ChemMedChem ; 17(2): e202100547, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34632703

RESUMO

The discovery of novel analgesic agents with high potency, low toxicity and low addictive properties remain a priority. This study aims to identify the analgesic potential of quinoline derived α-trifluoromethylated alcohols (QTA) and their mechanism of action. We synthesized and characterized several compounds of QTAs and screened them for antiepileptic and analgesic activity using zebrafish larvae in high thorough-put behavior analyses system. Toxicity and behavioral screening of 9 compounds (C1-C9) identified four candidates (C2, C3, C7 and C9) with antiepileptic properties that induces specific and reversible reduction in photomotor activity. Importantly, compounds C2 and C3 relieved the thermal pain response in zebrafish larvae indicating analgesic property. Further, using novel in vivo CoroNa green assay, we show that compounds C2 and C3 block sodium channels and reduce inflammatory sodium signals released by peripheral nerve and tissue damage. Thus, we have identified novel QTA compounds with antiepileptic and analgesic properties which could alleviate neuropathic pain.


Assuntos
Analgésicos/farmacologia , Anticonvulsivantes/farmacologia , Metanol/análogos & derivados , Quinolinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Analgésicos/síntese química , Analgésicos/química , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Metanol/síntese química , Metanol/química , Metanol/farmacologia , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/química , Relação Estrutura-Atividade , Peixe-Zebra
5.
Bioorg Chem ; 119: 105565, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929519

RESUMO

A series of 7-alkoxy - [1,2,4] triazolo [1, 5-a] pyrimidine derivatives were designed and synthesized. Maximal electroshock (MES) and pentylenetetrazole (PTZ) tests were utilized to access their anticonvulsant activity. Most of the series of compounds exhibited significant anti-seizure effects. Further studies demonstrated that the anticonvulsant activity of these compounds mainly depended on their allosteric potentiation of GABAA receptors. Among them, compound 10c was picked for the mechanism study due to its potent activity. The compound is more sensitive to subunit configurations of synaptic α1ß2γ2 and extrasynaptic α4ß3δ GABAA receptors, but there were no effects on NMDA receptors and Nav1.2 sodium channels. Meanwhile, 10c acted on the sites of GABAA receptors distinct from commonly used anticonvulsants benzodiazepines and barbiturates. Furthermore, studies from native neurons demonstrated that compound 10c also potentiated the activity of native GABAA receptors and reduced action potential firings in cultured cortical neurons. Such structural compounds may lay a foundation for further designing novel antiepileptic molecules.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Pirimidinas/farmacologia , Receptores de GABA-A/metabolismo , Convulsões/tratamento farmacológico , Triazóis/farmacologia , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Células Cultivadas , Relação Dose-Resposta a Droga , Descoberta de Drogas , Eletrochoque , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pentilenotetrazol , Pirimidinas/síntese química , Pirimidinas/química , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
6.
Bioorg Chem ; 119: 105548, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959174

RESUMO

Epilepsy is a disease that affects millions of people around the globe and has a multifactorial cause. Inflammation is a process that can be involved in the development of seizures. Thus, the present study proposed the design and synthesis of new candidates for antiepileptic drugs that would also control the inflammatory process. Nine new derivatives of the substituted thiazophthalimide hybrid core were obtained with satisfactory purity ≥99% and yields between 27% and 87%. All compounds showed cell viability values greater than 90% in the culture of PBMC cells from healthy volunteers and, therefore, were not considered cytotoxic. These compounds modulated proinflammatory cytokines IFN-y and IL-17A and can mitigate inflammation. Acute toxicity studies of compound 7i in an animal model indicated that the compound has low toxicity and an LD50 greater than 2 g/kg in healthy adult rats. The same compound did not show positive results for anticonvulsant activity through the PTZ test. However, 7i demonstrates the interaction with the target GABA-A receptor in silico, indicating a possible activity as an agonist of that receptor. Thus, further studies are needed to investigate the anticonvulsant activity, in particular, using models in which the inflammatory process triggers epileptic seizures.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Ftalimidas/uso terapêutico , Convulsões/tratamento farmacológico , Tiazóis/uso terapêutico , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Células Cultivadas , Relação Dose-Resposta a Droga , Epilepsia/patologia , Humanos , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Ftalimidas/síntese química , Ftalimidas/química , Ratos , Ratos Wistar , Convulsões/patologia , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
7.
Bioorg Chem ; 116: 105300, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34525393

RESUMO

Based on the biological importance of the thiazole nucleus, we decided to prepare and evaluate the biological activity of some new isatin derivatives containing thiazole moiety. The 5-(piperidin-1-ylsulfonyl)indoline-2,3-dione (1) was prepared and used as a starting material in the synthesis of many isatin derivatives for anticonvulsant evaluation. All the newly synthesized thiazlidino/thiosemicarbazide-indolin-2-one derivatives screened in vivo for their anticonvulsant activity against pentylenetetrazole-induced convulsions in mice. The results were compared with phenobarbitone sodium as a standard anticonvulsant drug. Most of the tested compounds exhibited anticonvulsant activity with relative potency ranging from 0.02 to 0.2 in comparison to standard drug phenobarbitone. The most active compounds 3, 6a, 6c and 8, were exposed to further investigations in rats to evaluate the effect of most active derivatives on the haematological, liver, kidney functions as well as histopathological studies of the liver and kidney tissues. Finally, the most potent compounds 3, 6a, 6c and 8 observed good toxic properties for both liver and kidney function with mild variability changes on RBCs, WBCs, Platelets, Hb, AST, ALT, and creatinine level, as well as kidney and liver tissue and these good results obtained rather than used low dose from phenobarbitone.


Assuntos
Anticonvulsivantes/farmacologia , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Injeções Intraperitoneais , Masculino , Camundongos , Estrutura Molecular , Oxindóis/química , Oxindóis/farmacologia , Pentilenotetrazol/administração & dosagem , Piperidinas/química , Piperidinas/farmacologia , Convulsões/induzido quimicamente , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia
8.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205930

RESUMO

BACKGROUND: Neurotic disturbances, anxiety, neurosis-like disorders, and stress situations are widespread. Benzodiazepine tranquillizers have been found to be among the most effective antianxiety drugs. The pharmacological action of benzodiazepines is due to their interaction with the supra-molecular membrane GABA-a-benzodiazepine receptor complex, linked to the Cl-ionophore. Benzodiazepines enhance GABA-ergic transmission and this has led to a study of the role of GABA in anxiety. The search for anxiolytics and anticonvulsive agents has involved glutamate-ergic, 5HT-ergic substances and neuropeptides. However, each of these well-known anxiolytics, anticonvulsants and cognition enhancers (nootropics) has repeatedly been reported to have many adverse side effects, therefore there is an urgent need to search for new drugs able to restore damaged cognitive functions without causing significant adverse reactions. OBJECTIVE: Considering the relevance of epilepsy diffusion in the world, we have addressed our attention to the discovery of new drugs in this field Thus our aim is the synthesis and study of new compounds with antiepileptic (anticonvulsant) and not only, activity. METHODS: For the synthesis of compounds classical organic methods were used and developed. For the evaluation of biological activity some anticonvulsant and psychotropic methods were used. RESULTS: As a result of multistep reactions 26 new, five-membered heterocyclic systems were obtained. PASS prediction of anticonvulsant activity was performed for the whole set of the designed molecules and probability to be active Pa values were ranging from 0.275 to 0.43. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures, anti-thiosemicarbazides effect as well as some psychotropic effect. The biological assays evidenced that some of the studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of compounds is low and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity it was found that the selected compounds have an activating behavior and anxiolytic effects on the models of "open field" and "elevated plus maze" (EPM). The data obtained indicate the anxiolytic (anti-anxiety) activity of the derivatives of pyrimidines, especially pronounced in compounds 6n, 6b, and 7c. The studied compounds increase the latent time of first immobilization on the model of "forced swimming" (FST) and exhibit some antidepressant effect similarly to diazepam. Docking studies revealed that compound 6k bound tightly in the active site of GABAA receptor with a value of the scoring function that estimates free energy of binding (ΔG) at -7.95 kcal/mol, while compound 6n showed the best docking score and seems to be dual inhibitor of SERT transporter as well as 5-HT1A receptor. CONCLUSIONS: Тhe selected compounds have an anticonvulsant, activating behavior and anxiolytic effects, at the same time exhibit some antidepressant effect.


Assuntos
Azepinas/administração & dosagem , Azepinas/síntese química , Pirimidinas/administração & dosagem , Pirimidinas/síntese química , Convulsões/tratamento farmacológico , Animais , Ansiolíticos/administração & dosagem , Ansiolíticos/síntese química , Ansiolíticos/química , Ansiolíticos/farmacologia , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Azepinas/química , Azepinas/farmacologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Pentilenotetrazol/efeitos adversos , Pirimidinas/química , Pirimidinas/farmacologia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ratos , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
9.
Bioorg Chem ; 115: 105179, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34332232

RESUMO

In the present study, we compared the antiepileptic effects of α-asarone derivatives to explore their structure-activity relationships using the PTZ-induced seizure model. Our research revealed that electron-donating methoxy groups in the 3,4,5-position on phenyl ring increased antiepileptic potency but the placement of other groups at different positions decreased activity. Besides, in allyl moiety, the optimal activity was reached with either an allyl or a 1-butenyl group in conjugation with the benzene ring. The compounds 5 and 19 exerted better neuroprotective effects against epilepsy in vitro (cell) and in vivo (mouse) models. This study provides valuable data for further exploration and application of these compounds as potential anti-seizure medicines.


Assuntos
Derivados de Alilbenzenos/química , Derivados de Alilbenzenos/uso terapêutico , Anisóis/química , Anisóis/uso terapêutico , Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Derivados de Alilbenzenos/síntese química , Animais , Anisóis/síntese química , Anticonvulsivantes/síntese química , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Relação Estrutura-Atividade
10.
Neurochem Res ; 46(11): 3025-3034, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34309774

RESUMO

Epilepsy affects around 50 million people worldwide, and an important number of patients (30%) fail to respond to any available antiepileptic drug. Previous studies have shown that luteolin presents a promising potential as an anticonvulsant. On the other hand, different studies showed that luteolin does not promote anticonvulsant effects. Therefore, there is a lack of consensus about the use of luteolin for seizure control. Luteolin low bioavailability could be a limiting factor to obtain better results. Attractively, micronization technology has been applied to improve flavonoids bioavailability. Thus, the present study aimed to investigate the effects of luteolin on its raw form and micronized luteolin in a PTZ-induced seizure model in adult zebrafish (Danio rerio). Our results demonstrate that luteolin and micronized luteolin did not block PTZ-induced seizures in adult zebrafish. Also, luteolin and micronized luteolin did not provoke behavioral changes. Finally, our results show that 24 h after seizure occurrence, no changes were detected for p70S6Kb, interleukin 1ß, and caspase-3 transcript levels. Altogether, we failed to observe an anticonvulsant potential of luteolin in adult zebrafish, even in its micronized form. However, we recommend new studies to investigate luteolin benefits in epilepsy.


Assuntos
Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/síntese química , Luteolina/administração & dosagem , Luteolina/síntese química , Convulsões/tratamento farmacológico , Fatores Etários , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Tamanho da Partícula , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Peixe-Zebra
11.
Bioorg Chem ; 112: 104943, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964578

RESUMO

In this study, a series of new isatin aroylhydrazones (5a-e and 6a-e) was synthesized and evaluated for their anticonvulsant activities. The (Z)-configuration of compounds was confirmed by 1H NMR. In vivo studies using maximal electroshock (MES) and pentylenetetrazole (PTZ) models of epilepsy in mice revealed that while most of compounds had no effect on chemically-induced seizures at the higher dose of 100 mg/kg but showed significant protection against electrically-induced seizures at the lower dose of 5 mg/kg. Certainly, N-methyl analogs 6a and 6e were found to be the most effective compounds, displaying 100% protection at the dose of 5 mg/kg. Protein binding and lipophilicity(logP) of the selected compounds (6a and 6e) were also determined experimentally. In silico evaluations of title compounds showed acceptable ADME parameters, and drug-likeness properties. Distance mapping and docking of the selected compounds with different targets proposed the possible action of them on VGSCs and GABAA receptors. The cytotoxicity evaluation of 6a and 6e against SH-SY5Y and Hep-G2 cell lines indicated safety profile of compounds on the neuronal and hepatic cells.


Assuntos
Anticonvulsivantes/farmacologia , Antineoplásicos/farmacologia , Epilepsia/tratamento farmacológico , Hidrazonas/farmacologia , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Eletrochoque , Epilepsia/induzido quimicamente , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pentilenotetrazol , Relação Estrutura-Atividade
12.
Eur J Med Chem ; 221: 113512, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015586

RESUMO

γ-Aminobutyric acid (GABA) neurotransmission has a significant impact on the proper functioning of the central nervous system. Numerous studies have indicated that inhibitors of the GABA transporters mGAT1-4 offer a promising strategy for the treatment of several neurological disorders, including epilepsy, neuropathic pain, and depression. Following our previous results, herein, we report the synthesis, biological evaluation, and structure-activity relationship studies supported by molecular docking and molecular dynamics of a new series of N-benzyl-4-hydroxybutanamide derivatives regarding their inhibitory potency toward mGAT1-4. This study allowed us to identify compound 23a (N-benzyl-4-hydroxybutanamide bearing a dibenzocycloheptatriene moiety), a nonselective GAT inhibitor with a slight preference toward mGAT4 (pIC50 = 5.02 ± 0.11), and compound 24e (4-hydroxy-N-[(4-methylphenyl)-methyl]butanamide bearing a dibenzocycloheptadiene moiety) with relatively high inhibitory activity toward mGAT2 (pIC50 = 5.34 ± 0.09). In a set of in vivo experiments, compound 24e successively showed predominant anticonvulsant activity and antinociception in the formalin model of tonic pain. In contrast, compound 23a showed significant antidepressant-like properties in mice. These results were consistent with the available literature data, which indicates that, apart from seizure control, GABAergic neurotransmission is also involved in the pathophysiology of several psychiatric diseases, however alternative mechanisms underlying this action cannot be excluded. Finally, it is worth noting that the selected compounds showed unimpaired locomotor skills that have been indicated to give reliable results in behavioral assays.


Assuntos
Amidas/farmacologia , Analgésicos/farmacologia , Anticonvulsivantes/farmacologia , Antidepressivos/farmacologia , Desenvolvimento de Medicamentos , Inibidores da Captação de GABA/farmacologia , Amidas/síntese química , Amidas/química , Analgésicos/síntese química , Analgésicos/química , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Antidepressivos/síntese química , Antidepressivos/química , Relação Dose-Resposta a Droga , Inibidores da Captação de GABA/síntese química , Inibidores da Captação de GABA/química , Humanos , Estrutura Molecular , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Relação Estrutura-Atividade
13.
Chem Pharm Bull (Tokyo) ; 69(4): 407-410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790085

RESUMO

Hydantoins, including the antiepileptic drug phenytoin, contain an amide nitrogen and an imide nitrogen, both of which can be alkylated. However, due to the higher acidity of its proton, N3 can be more easily alkylated than N1 under basic conditions. In this study, we explored methods for direct N1-selective methylation of phenytoin and found that conditions using potassium bases [potassium tert-butoxide (tBuOK) and potassium hexamethyldisilazide (KHMDS)] in tetrahydrofuran (THF) gave N1-monomethylated phenytoin in good yield. The applicable scope of this reaction system was found to include various hydantoins and alkyl halides. To explore the function of methylated hydantoins, the effects of a series of methylated phenytoins on P-glycoprotein were examined, but none of methylated products showed inhibitory activity toward rhodamine 123 efflux by P-glycoprotein.


Assuntos
Anticonvulsivantes/química , Hidantoínas/química , Fenitoína/química , Potássio/química , Anticonvulsivantes/síntese química , Azidas/química , Butanóis/química , Hidantoínas/síntese química , Metilação , Fenitoína/síntese química
14.
Molecules ; 26(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809109

RESUMO

The new series of 3-(2-chlorophenyl)- and 3-(3-chlorophenyl)-pyrrolidine-2,5-dione-acetamide derivatives as potential anticonvulsant and analgesic agents was synthesized. The compounds obtained were evaluated in the following acute models of epilepsy: maximal electroshock (MES), psychomotor (6 Hz, 32 mA), and subcutaneous pentylenetetrazole (scPTZ) seizure tests. The most active substance-3-(2-chlorophenyl)-1-{2-[4-(4-fluorophenyl)piperazin-1-yl]-2-oxoethyl}-pyrrolidine-2,5-dione (6) showed more beneficial ED50 and protective index values than the reference drug-valproic acid (68.30 mg/kg vs. 252.74 mg/kg in the MES test and 28.20 mg/kg vs. 130.64 mg/kg in the 6 Hz (32 mA) test, respectively). Since anticonvulsant drugs are often effective in neuropathic pain management, the antinociceptive activity for two the promising compounds-namely, 6 and 19-was also investigated in the formalin model of tonic pain. Additionally, for the aforementioned compounds, the affinity for the voltage-gated sodium and calcium channels, as well as GABAA and TRPV1 receptors, was determined. As a result, the most probable molecular mechanism of action for the most active compound 6 relies on interaction with neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Compounds 6 and 19 were also tested for their neurotoxic and hepatotoxic properties and showed no significant cytotoxic effect.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Analgésicos/química , Animais , Anticonvulsivantes/química , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Estrutura Molecular , Neuralgia/tratamento farmacológico , Pirrolidinas/química , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade
15.
Bioorg Chem ; 109: 104751, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33647745

RESUMO

In the current studies we carried out an optimized multistep asymmetric synthesis of R-enantiomers (eutomers) for a previously identified series of racemic hybrid anticonvulsants. The spatial structure of selected enantiomers was solved by the use of crystallographic methods. The compound (R)-16 was identified as a lead, which revealed broad-spectrum protective activity in a range of epilepsy models with the following ED50 values: the maximal electroshock (MES) test (36.0 mg/kg), the 6 Hz (32 mA) seizure model (39.2 mg/kg), and the pentylenetetrazole-induced seizure model (scPTZ) (54.8 mg/kg). Furthermore, (R)-16 displayed a low potency for the induction of motor impairment in the rotarod test (TD50 = 468.5 mg/kg), resulting in potentially very beneficial therapeutic window. Finally, (R)-16 showed satisfying ADME-Tox properties in the in vitro assays. Therefore, the data obtained in the current studies justify the further preclinical development of (R)-16 as candidate for potentially broad-spectrum and safe anticonvulsant.


Assuntos
Anticonvulsivantes/farmacologia , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Eletrochoque , Humanos , Masculino , Camundongos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Canais de Sódio Disparados por Voltagem/metabolismo
16.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525453

RESUMO

Epilepsy is one of the most common neurological disorders, and it is characterized by spontaneous seizures. In a previous study, we identified 4-(2-chloro-4-fluorobenzyl)-3-(2-thienyl)-1,2,4-oxadiazol-5(4H)-one (GM-90432) as a novel anti-epileptic agent in chemically- or genetically-induced epileptic zebrafish and mouse models. In this study, we investigated the anti-epileptic effects of GM-90432 through neurochemical profiling-based approach to understand the neuroprotective mechanism in a pentylenetetrazole (PTZ)-induced epileptic seizure zebrafish model. GM-90432 effectively improved PTZ-induced epileptic behaviors via upregulation of 5-hydroxytryptamine, 17-ß-estradiol, dihydrotestosterone, progesterone, 5α -dihydroprogesterone, and allopregnanolone levels, and downregulation of normetanephrine, gamma-aminobutyric acid, and cortisol levels in brain tissue. GM-90432 also had a protective effect against PTZ-induced oxidative stress and zebrafish death, suggesting that it exhibits biphasic neuroprotective effects via scavenging of reactive oxygen species and anti-epileptic activities in a zebrafish model. In conclusion, our results suggest that neurochemical profiling study could be used to better understand of anti-epileptic mechanism of GM-90432, potentially leading to new drug discovery and development of anti-seizure agents.


Assuntos
Anticonvulsivantes/farmacologia , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxidiazóis/farmacologia , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Antioxidantes/síntese química , Encéfalo/metabolismo , Química Encefálica , Di-Hidrotestosterona/metabolismo , Modelos Animais de Doenças , Estradiol/metabolismo , Hidrocortisona/metabolismo , Masculino , Fármacos Neuroprotetores/síntese química , Normetanefrina/metabolismo , Oxidiazóis/síntese química , Estresse Oxidativo , Pentilenotetrazol/administração & dosagem , Pregnanolona/metabolismo , Progesterona/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/fisiopatologia , Serotonina/metabolismo , Peixe-Zebra , Ácido gama-Aminobutírico/metabolismo
17.
Eur J Med Chem ; 214: 113222, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33545637

RESUMO

A new series of pyrazolo[3,4-d]pyrimidine/triazine hybrids 6a-r was designed as antitumor and anticonvulsant agents. All the prepared compounds were evaluated against colon (HCT-116), breast (MCF-7) and normal human fibroblast (WI38) cell lines. The most potent derivatives against HCT-116 and MCF-7 cells were 6o and 6q, with IC50 = 4.80 and 6.50 nM, respectively, when compared to lapatinib, the reference drug (IC50 = 12.00 and 21.00 nM, on HCT-116 and MCF-7, sequentially). All other derivatives exhibited good to moderate cytotoxic activity. Four compounds 6f, 6j, 6o and 6q were evaluated for their EGFR T790M/HER2 inhibitory activity. They revealed 81.81-65.70% and 86.66-54.49% inhibitory activity against EGFR T790M and HER2 in a sequent. The most potent derivatives 6o and 6q were further estimated for cell cycle analysis showing pre G1 apoptotic activity and cell growth arrest at G2/M phase. Apoptotic marker proteins expression levels (caspase-3/7/9, Bax and Bcl-2) were measured for 6o and 6q. They showed pro-apoptotic effect by increasing caspase-3/7/9 protein levels and Bax/Bcl-2 ratio. Moreover, anticonvulsant activity for the prepared compounds 6a-r were evaluated in vivo using lithium-pilocarpine mice model of Status Epilepticus. EEG changes where recorded and MDA, GSH, GABA and glutamate were measured in brain tissue of different groups. All tested compounds revealed variable anti-epileptic effects, the most potent compounds were 6b and 6m. Also 6d, 6e, 6h, 6i, 6k, 6l and 6n compounds exhibited good anti-seizure activity, while compound 6j showed the lower activity. The rest of compounds displayed a neutral activity.


Assuntos
Anticonvulsivantes/farmacologia , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Estado Epiléptico/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Carbonato de Lítio , Masculino , Camundongos , Estrutura Molecular , Pilocarpina , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Receptor ErbB-2/metabolismo , Estado Epiléptico/induzido quimicamente , Relação Estrutura-Atividade
18.
Arch Pharm (Weinheim) ; 354(5): e2000449, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33559320

RESUMO

The lack of effective therapies for epileptic patients and the potentially harmful consequences of untreated seizure incidents have made epileptic disorders in humans a major health concern. Therefore, new and more potent anticonvulsant drugs are continually sought after, to combat epilepsy. On the basis of the pharmacophoric structural specifications of effective α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists with an efficient anticonvulsant activity, the present work reports the design and synthesis of two novel sets of quinoxaline derivatives. The anticonvulsant activity of the synthesized compounds was evaluated in vivo according to the pentylenetetrazol-induced seizure protocol, and the results were compared with those of perampanel as a reference drug. Among the synthesized compounds, 24, 28, 32, and 33 showed promising activities with ED50 values of 37.50, 23.02, 29.16, and 23.86 mg/kg, respectively. Docking studies of these compounds suggested that AMPA binding could be the mechanism of action of these derivatives. Overall, the pharmacophore-based structural optimization, in vivo and in silico docking, and druglikeness studies indicated that the designed compounds could serve as promising candidates for the development of effective anticonvulsant agents with good pharmacokinetic profiles.


Assuntos
Anticonvulsivantes/farmacologia , Quinoxalinas/farmacologia , Convulsões/tratamento farmacológico , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/antagonistas & inibidores , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pentilenotetrazol , Quinoxalinas/síntese química , Quinoxalinas/química , Convulsões/induzido quimicamente , Relação Estrutura-Atividade , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/administração & dosagem
19.
Drug Res (Stuttg) ; 71(4): 199-203, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33434934

RESUMO

Reaction of piperazine with chloroacetylchloride in dry acetone yield compound 1: , which on reaction with hydrazine hydrate yielded compound 2: , which was further reacted with various substituted phenylisothiocyanates in absolute alcohol to afford compounds 3-8: i. e. 2-(carbazolylacetyl)-N-(substitutedphenyl)-hydrazinepiperazinothioamides. Compounds 3-8: on reaction with aqueous NaOH, ethanolic NaOH and conc. H2SO4 afford triazoles 9-14: , oxadiazoles 15-20: and thiadiazoles 21-26: respectively. Twenty four newly synthesized compounds were evaluated for their anticonvulsant activity and acute toxicity. The structures of these compounds were established on the basis of analytical and spectral data.


Assuntos
Anticonvulsivantes/administração & dosagem , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/toxicidade , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Oxidiazóis/administração & dosagem , Oxidiazóis/síntese química , Oxidiazóis/toxicidade , Piperazina/administração & dosagem , Piperazina/síntese química , Piperazina/toxicidade , Ratos , Convulsões/diagnóstico , Convulsões/etiologia , Relação Estrutura-Atividade , Tiadiazóis/administração & dosagem , Tiadiazóis/síntese química , Tiadiazóis/toxicidade , Testes de Toxicidade Aguda , Triazóis/administração & dosagem , Triazóis/síntese química , Triazóis/toxicidade
20.
Arch Pharm (Weinheim) ; 354(1): e2000225, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32939789

RESUMO

A focused library of new 3-(3-methyl-2,5-dioxo-3-phenylpyrrolidin-1-yl)propanamides and their nonimide analogs were synthesized and tested for anticonvulsant activity. These compounds were obtained through the coupling reaction of the starting carboxylic acids with appropriate amines. The initial anticonvulsant screening was performed in mice (intraperitoneal administration) using the maximal electroshock seizure (MES) and the subcutaneous pentylenetetrazole (scPTZ) seizure models. The most promising compound 6 showed more potent protection in the MES and scPTZ tests than valproic acid, which is still recognized as one of the most relevant first-line anticonvulsants. The structure-activity relationship analysis revealed that the presence of the pyrrolidine-2,5-dione ring is important but not indispensable to retain anticonvulsant activity. Additionally, compound 6 showed potent antinociceptive properties in the oxaliplatin-induced neuropathic pain model in mice. The most plausible mechanism of action for compound 6 may result from its influence on the neuronal sodium channel (Site 2) and the high-voltage-activated L-type calcium channel.


Assuntos
Amidas/farmacologia , Analgésicos/farmacologia , Anticonvulsivantes/farmacologia , Amidas/síntese química , Amidas/química , Analgésicos/síntese química , Analgésicos/química , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Modelos Animais de Doenças , Eletrochoque , Masculino , Camundongos , Dor/tratamento farmacológico , Pentilenotetrazol , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...