Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 989
Filtrar
1.
BMC Immunol ; 25(1): 29, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730320

RESUMO

BACKGROUND: Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS: To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS: In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.


Assuntos
Reações Cruzadas , Imunoterapia , Receptor de Morte Celular Programada 1 , Animais , Humanos , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Camundongos , Reações Cruzadas/imunologia , Imunoterapia/métodos , Concentração de Íons de Hidrogênio , Neoplasias/imunologia , Neoplasias/terapia , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Epitopos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Camundongos Endogâmicos C57BL , Feminino
2.
Luminescence ; 39(5): e4747, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716575

RESUMO

Atezolizumab (ATZ) is a human monoclonal antibody, which has been granted multiple approvals from the US Food and Drug Administration (FDA) for the immunotherapy of different types of cancer. This study describes the prototype of a time-resolved fluoroimmunoassay (TRFIA) for the quantitation of ATZ in plasma. The assay involved the non-competitive binding of ATZ to its specific antigen [programmed death-ligand 1 (PD-L1) protein]. The immune complex formed on the inner surface of the assay plate wells was quantified by anti-human secondary antibody labeled with a chelate of europium-ethylenediaminetetraacetic acid. The enhanced fluorescence signal was generated by an enhanced fluorescence solution composed of thenoyltrifluoroacetone, trioctylphosphine oxide, and Triton X-100. The conditions of the TRFIA were refined, and its optimum procedures were established. The assay was validated in accordance with the immunoassay validation guidelines, and all the validation parameters were acceptable. The working range of the assay was 20-1000 pg mL-1, and its limit of quantitation was 20 pg mL-1. The assay was applied to the quantitation of ATZ in plasma samples with satisfactory accuracy and precision. The proposed TRFIA has significant benefits over the existing methodologies for the quantitation of ATZ in clinical settings.


Assuntos
Anticorpos Monoclonais Humanizados , Fluorimunoensaio , Fluorimunoensaio/métodos , Humanos , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Fluorescência , Fatores de Tempo
3.
Protein Sci ; 33(6): e5008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723181

RESUMO

One of the most important attributes of anti-amyloid antibodies is their selective binding to oligomeric and amyloid aggregates. However, current methods of examining the binding specificities of anti-amyloid ß (Aß) antibodies have limited ability to differentiate between complexes that form between antibodies and monomeric or oligomeric Aß species during the dynamic Aß aggregation process. Here, we present a high-resolution native ion-mobility mass spectrometry (nIM-MS) method to investigate complexes formed between a variety of Aß oligomers and three Aß-specific IgGs, namely two antibodies with relatively high conformational specificity (aducanumab and A34) and one antibody with low conformational specificity (crenezumab). We found that crenezumab primarily binds Aß monomers, while aducanumab preferentially binds Aß monomers and dimers and A34 preferentially binds Aß dimers, trimers, and tetrameters. Through collision induced unfolding (CIU) analysis, our data indicate that antibody stability is increased upon Aß binding and, surprisingly, this stabilization involves the Fc region. Together, we conclude that nIM-MS and CIU enable the identification of Aß antibody binding stoichiometries and provide important details regarding antibody binding mechanisms.


Assuntos
Peptídeos beta-Amiloides , Anticorpos Monoclonais Humanizados , Espectrometria de Mobilidade Iônica , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/metabolismo , Espectrometria de Mobilidade Iônica/métodos , Humanos , Espectrometria de Massas/métodos , Ligação Proteica , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Multimerização Proteica
4.
Biochem Biophys Res Commun ; 714: 149969, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657446

RESUMO

CD40 is a member of the tumor necrosis factor receptor superfamily, and it is widely expressed on immune and non-immune cell types. The interaction between CD40 and the CD40 ligand (CD40L) plays an essential function in signaling, and the CD40/CD40L complex works as an immune checkpoint molecule. CD40 has become a therapeutic target, and a variety of agonistic/antagonistic anti-CD40 monoclonal antibodies (mAbs) have been developed. To better understand the mode of action of anti-CD40 mAbs, we determined the X-ray crystal structures of dacetuzumab (agonist) and bleselumab (antagonist) in complex with the extracellular domain of human CD40, respectively. The structure reveals that dacetuzumab binds to CD40 on the top of cysteine-rich domain 1 (CRD1), which is the domain most distant from the cell surface, and it does not compete with CD40L binding. The binding interface of bleselumab spread between CRD2 and CRD1, overlapping with the binding surface of the ligand. Our results offer important insights for future structural and functional studies of CD40 and provide clues to understanding the mechanism of biological response. These data can be applied to developing new strategies for designing antibodies with more therapeutic efficacy.


Assuntos
Anticorpos Monoclonais Humanizados , Antígenos CD40 , Humanos , Antígenos CD40/química , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Conformação Proteica , Sítios de Ligação , Ligante de CD40/química , Ligante de CD40/metabolismo , Ligante de CD40/imunologia
5.
Mol Immunol ; 170: 19-25, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598870

RESUMO

The assembly of tissue-damaging membrane attack complexes (MACs; C5b-9) is a major mechanism by which excessive complement activation causes diseases. We previously developed a mouse anti-human C6 monoclonal antibody (mAb) 1C9 that selectively inhibits the assembly of MACs in human and non-human primates. In this project, we found that 1C9 also cross-reacted with rat and guinea pig C6, and determined its binding domains on C6 using different truncated C6 proteins. We then humanized the anti-C6 mAb by molecular modeling and complementarity-determining region grafting. After screening a library of 276 humanized variants with different combinations of humanized light and heavy chains in biophysical assays, we identified clone 3713 with the best developability profile, and an increased affinity against C6 when compared with the parental 1C9 mAb. This humanized 3713 mAb inhibited human, monkey, and rat complement-mediated hemolysis in vitro, and more importantly, it significantly reduced complement-mediated hemolysis in vivo in rats. These results demonstrated the successful humanization of the anti-C6 mAb and suggested that the humanized 3713 mAb could be further developed as a new therapeutic that selectively targets MAC for certain complement-mediated pathological conditions.


Assuntos
Anticorpos Monoclonais , Complemento C6 , Hemólise , Animais , Humanos , Ratos , Cobaias , Camundongos , Hemólise/efeitos dos fármacos , Hemólise/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Complemento C6/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Ativação do Complemento/imunologia , Ativação do Complemento/efeitos dos fármacos , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Reações Cruzadas/imunologia
6.
Virology ; 595: 110067, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653156

RESUMO

Two SARS-CoV-2 XBB sub-variants, FL.1 and GE.1, have been increasing in prevalence worldwide, but limited information is available about their ability to evade the immune system. FL.1 and GE.1 are emerging Omicron XBB variants possessing additional mutations in the spike RBD raising concerns of increased neutralization escape. In this study, we assessed the neutralizing ability of eleven FDA-approved monoclonal antibody combinations against different Omicron variants, including BA.2.75, BA.2.76, BA.4/5, XBB.1.5, and CH.1.1. Among the eleven antibodies, Sotrovimab was the only antibody to show broad neutralization ability against XBB.1.5. However, Sotrovimab showed attenuated neutralization efficiency against recently emerging XBB sub-lineages EG.5, FL.1, and GE.1 compared to XBB.1.5. Additionally, XBB.1.5 seropositive convalescent sera displayed lower neutralization activity against EG.5, FL.1, and GE.1. Overall, our findings present enhanced immune evasion capacity of emerging XBB variants and emphasize the importance of continued monitoring of novel variants.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Testes de Neutralização , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Monoclonais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Mutação
7.
Structure ; 32(5): 550-561.e5, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460520

RESUMO

TIGIT is mainly expressed on T cells and is an inhibitory checkpoint receptor that binds to its ligand PVR in the tumor microenvironment. Anti-TIGIT monoclonal antibodies (mAbs) such as Ociperlimab and Tiragolumab block the TIGIT-PVR interaction and are in clinical development. However, the molecular blockade mechanism of these mAbs remains elusive. Here, we report the crystal structures of TIGIT in complex with Ociperlimab_Fab and Tiragolumab_Fab revealing that both mAbs bind TIGIT with a large steric clash with PVR. Furthermore, several critical epitopic residues are identified. Interestingly, the binding affinity of Ociperlimab toward TIGIT increases approximately 17-fold when lowering the pH from 7.4 to 6.0. Our structure shows a strong electrostatic interaction between ASP103HCDR3 and HIS76TIGIT explaining the pH-responsive mechanism of Ociperlimab. In contrast, Tiragolumab does not show an acidic pH-dependent binding enhancement. Our results provide valuable information that could help to improve the efficacy of therapeutic antibodies for cancer treatment.


Assuntos
Modelos Moleculares , Ligação Proteica , Receptores Imunológicos , Concentração de Íons de Hidrogênio , Humanos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/química , Cristalografia por Raios X , Anticorpos Monoclonais/química , Sítios de Ligação , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/imunologia
8.
Expert Opin Biol Ther ; 23(8): 705-715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892190

RESUMO

BACKGROUND: MW031 is a biosimilar candidate of denosumab (Prolia®). This study aimed to compare the pharmacokinetics, pharmacodynamics, safety and immunogenicity of MW031 to denosumab in healthy Chinese participants. RESEARCH DESIGN AND METHODS: In this single-center, randomized, double-blind, parallel-controlled, single-dose trial, participants were given 60 mg MW031 (N = 58) or denosumab (N = 61) by subcutaneous injection and observed for 140 days. The primary endpoint was the bioequivalence of PK parameters (Cmax, AUC0-∞), and secondary endpoints including PD parameter, safety, and immunogenicity. RESULTS: A comparison of main PK parameters showed that the geometric mean ratios (GMR) (90% confidence intervals [CIs]) of AUC0-∞ and Cmax for MW031 over denosumab were 105.48% (98.96%, 112.43%) and 98.58% (92.78%, 104.75%), respectively. The inter-CV values of AUC0-∞ and Cmax for MW031 ranged from 19.9% to 23.1%. PD parameter (sCTX) in the MW031 and denosumab groups were similar, and the positivity rates of immunogenicity were 0% in both groups. This study also showed similar safety profiles in both groups, and there were no drug-related, high-incidence and previously unreported adverse reactions. CONCLUSION: This trial confirmed similar pharmacokinetic profiles of MW031 and denosumab in healthy male participants, and pharmacodynamic profile, immunogenicity and safety were comparable for both drugs. TRIAL REGISTRATION: NCT04798313; CTR20201149.


Assuntos
Anticorpos Monoclonais Humanizados , Medicamentos Biossimilares , Denosumab , Humanos , Masculino , Área Sob a Curva , Medicamentos Biossimilares/efeitos adversos , Medicamentos Biossimilares/metabolismo , Medicamentos Biossimilares/farmacocinética , Denosumab/efeitos adversos , Denosumab/imunologia , Denosumab/farmacocinética , Método Duplo-Cego , População do Leste Asiático , Voluntários Saudáveis , Equivalência Terapêutica , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Ligante RANK/antagonistas & inibidores , Ligante RANK/imunologia , Injeções Subcutâneas
10.
Expert Opin Investig Drugs ; 32(2): 161-170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36755413

RESUMO

OBJECTIVES: This study aimed to investigate the safety, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of Gerilimzumab (GB224), a recombinant humanized IgG1λ monoclonal antibody against interleukin-6, in healthy Chinese adults. METHODS: Fifty-eight subjects were randomly assigned to receive a single subcutaneous dose of 2, 5, 10, 15, 20, 30 mg GB224 or placebo. Safety assessments were performed, and blood samples were collected for PK, PD, and immunogenicity analyses during a follow-up of 112 days. RESULTS: The most frequent adverse event was decreased fibrinogen (43.1%). GB224 was absorbed relatively fast with a median Tmax of 48 h (24-168 h) but eliminated slowly with a long mean half-life (839.38-981.63 h). Dose proportionality was shown to be in the dose range of 10-30 mg. A dose-dependent increase in serum interleukin-6 concentration from baseline was observed in the subjects receiving GB224. Only two subjects tested positive for antidrug antibodies after administration of GB224. CONCLUSION: GB224 had a well-tolerated safety profile, desirable PK, and a low immunogenicity following a single-dose subcutaneous administration in healthy Chinese subjects. These findings warrant further investigation.


Assuntos
Anticorpos Monoclonais Humanizados , Adulto , Humanos , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Área Sob a Curva , Relação Dose-Resposta a Droga , Método Duplo-Cego , População do Leste Asiático , Interleucina-6
11.
Front Immunol ; 13: 996662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211347

RESUMO

Objectives: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease, and type I interferon plays an important role in its pathogenesis. Anifrolumab is a new strategy for the treatment of systemic lupus erythematosus. It could antagonize the activity of all type 1 interferons by binding with type I interferon receptor subunit 1. The aim of our study was to evaluate the safety of anifrolumab in patients with moderate to severe SLE (excluding patients with active severe lupus nephritis or central nervous system lupus). Methods: Four databases (Embase, Cochrane, PubMed, Web of Science) were systematically searched from inception until December 2021 for randomized controlled trials (RCTs) evaluating the safety of anifrolumab versus placebo in SLE patients. Then, the incidence of adverse events in each study was aggregated using meta-analysis. Results: A total of 1160 SLE patients from four RCTs were included in the analysis. Serious adverse events were less common in the anifrolumab group than in the placebo group (RR: 0.76, 95% CI: 0.59-0.98, p<0.03). The most common adverse events included upper respiratory tract infection (RR: 1.48, 95% CI: 1.13-1.94, P=0.004), nasopharyngitis (RR: 1.66, 95% CI: 1.25-2.20, P=0.0004), bronchitis (RR: 1.96, 95% CI: 1.32-2.92, P=0.0009), and herpes zoster (RR: 3.40, 95% CI: 1.90-6.07, P<0.0001). Conclusion: Anifrolumab is considered a well-tolerated option for the treatment of SLE patients with good safety. Systematic Review Registration: https://inplasy.com, identifier 202230054.


Assuntos
Anticorpos Monoclonais Humanizados , Lúpus Eritematoso Sistêmico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Doença Crônica , Humanos , Interferon Tipo I/imunologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptor de Interferon alfa e beta/imunologia
12.
N Engl J Med ; 387(5): 408-420, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35921450

RESUMO

BACKGROUND: Aggregated α-synuclein plays an important role in Parkinson's disease pathogenesis. Cinpanemab, a human-derived monoclonal antibody that binds to α-synuclein, is being evaluated as a disease-modifying treatment for Parkinson's disease. METHODS: In a 52-week, multicenter, double-blind, phase 2 trial, we randomly assigned, in a 2:1:2:2 ratio, participants with early Parkinson's disease to receive intravenous infusions of placebo (control) or cinpanemab at a dose of 250 mg, 1250 mg, or 3500 mg every 4 weeks, followed by an active-treatment dose-blinded extension period for up to 112 weeks. The primary end points were the changes from baseline in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) total score (range, 0 to 236, with higher scores indicating worse performance) at weeks 52 and 72. Secondary end points included MDS-UPDRS subscale scores and striatal binding as assessed on dopamine transporter single-photon-emission computed tomography (DaT-SPECT). RESULTS: Of the 357 enrolled participants, 100 were assigned to the control group, 55 to the 250-mg cinpanemab group, 102 to the 1250-mg group, and 100 to the 3500-mg group. The trial was stopped after the week 72 interim analysis owing to lack of efficacy. The change to week 52 in the MDS-UPDRS score was 10.8 points in the control group, 10.5 points in the 250-mg group, 11.3 points in the 1250-mg group, and 10.9 points in the 3500-mg group (adjusted mean difference vs. control, -0.3 points [95% confidence interval {CI}, -4.9 to 4.3], P = 0.90; 0.5 points [95% CI, -3.3 to 4.3], P = 0.80; and 0.1 point [95% CI, -3.8 to 4.0], P = 0.97, respectively). The adjusted mean difference at 72 weeks between participants who received cinpanemab through 72 weeks and the pooled group of those who started cinpanemab at 52 weeks was -0.9 points (95% CI, -5.6 to 3.8) for the 250-mg dose, 0.6 points (95% CI, -3.3 to 4.4) for the 1250-mg dose, and -0.8 points (95% CI, -4.6 to 3.0) for the 3500-mg dose. Results for secondary end points were similar to those for the primary end points. DaT-SPECT imaging at week 52 showed no differences between the control group and any cinpanemab group. The most common adverse events with cinpanemab were headache, nasopharyngitis, and falls. CONCLUSIONS: In participants with early Parkinson's disease, the effects of cinpanemab on clinical measures of disease progression and changes in DaT-SPECT imaging did not differ from those of placebo over a 52-week period. (Funded by Biogen; SPARK ClinicalTrials.gov number, NCT03318523.).


Assuntos
Anticorpos Monoclonais Humanizados , Antiparkinsonianos , Doença de Parkinson , alfa-Sinucleína , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antiparkinsonianos/efeitos adversos , Método Duplo-Cego , Humanos , Doença de Parkinson/tratamento farmacológico , Resultado do Tratamento , alfa-Sinucleína/imunologia
13.
Nat Commun ; 13(1): 1638, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347138

RESUMO

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identify two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generate a bispecific antibody. Lead antibodies show strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solve several cryo-EM structures at ~3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and reveal distinct epitopes, binding patterns, and conformations. The lead clones also show potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generate and characterize a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
14.
Front Immunol ; 13: 831536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185923

RESUMO

Abrin, a type-II ribosome inactivating protein from the seed of Abrus precatorius, is classified as a Category B bioterrorism warfare agent. Due to its high toxicity, ingestion by animals or humans will lead to death from multiple organ failure. Currently, no effective agents have been reported to treat abrin poisoning. In this study, a novel anti-abrin neutralizing antibody (S008) was humanized using computer-aided design, which possessed lower immunogenicity. Similar to the parent antibody, a mouse anti-abrin monoclonal antibody, S008 possessed high affinity and showed a protective effect against abrin both in vitro and in vivo, and protected mice that S008 was administered 6 hours after abrin. S008 was found that it did not inhibit entry of abrin into cells, suggesting an intracellular blockade capacity against the toxin. In conclusion, this work demonstrates that S008 is a high affinity anti-abrin antibody with both a neutralizing and protective effect and may be an excellent candidate for clinical treatment of abrin poisoning.


Assuntos
Abrina/imunologia , Abrina/toxicidade , Anticorpos Monoclonais Humanizados/imunologia , Antitoxinas/imunologia , Intoxicação/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Antitoxinas/administração & dosagem , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Taxa de Sobrevida
15.
J Biol Chem ; 298(3): 101689, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35143837

RESUMO

Cocaine addiction remains a serious problem lacking an effective pharmacological treatment. Thus, we have developed a high-affinity anti-cocaine monoclonal antibody (mAb), h2E2, for the treatment of cocaine use disorders. We show that selective tryptophan (Trp) oxidation by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) resulted in a loss of high-affinity binding of cocaine to this mAb. The newly developed use of excess methionine (Met) to protect mAb met residues from AAPH oxidation did not substantially attenuate the effects of oxidation on cocaine binding but greatly decreased the modification of met residues in the mAb. Similar large decreases in ligand affinity (5000-10,000-fold) upon oxidation were observed using cocaine and two cocaine metabolites, cocaethylene and benzoylecgonine, which also bind with nanomolar affinity to this h2E2 mAb. The decrease in binding affinity was accompanied by a decrease of approximately 50% in Trp fluorescence, and increases in mAb 310 to 370 nm absorbance were consistent with the presence of oxidized forms of Trp. Finally, mass spectral analysis of peptides derived from control and AAPH-oxidized mAb indicated that excess free met did effectively protect mAb met residues from oxidation, and that AAPH-oxidized mAb heavy-chain Trp33 and light-chain Trp91 residues are important for cocaine binding, consistent with a recently derived h2E2 Fab fragment crystal structure containing bound benzoylecgonine. Thus, protection of the anti-cocaine h2E2 mAb from Trp oxidation prior to its clinical administration is critical for its proposed therapeutic use in the treatment of cocaine use disorders.


Assuntos
Anticorpos Monoclonais Humanizados , Cocaína , Triptofano , Anticorpos Monoclonais Humanizados/imunologia , Cocaína/imunologia , Cocaína/metabolismo , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Oxirredução , Triptofano/química
16.
Biochem Biophys Res Commun ; 599: 31-37, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35168061

RESUMO

Targeting of programmed cell death 1 (PD-1) with monoclonal antibodies to block the interaction with its ligand PD-L1 has been successful in immunotherapy of multiple types of cancer, and their mechanism involves the restoration of the T-cell immune response. April 2021, the US FDA approved dostarlimab, a therapeutic antibody against PD-1, for the treatment of endometrial cancer. Here, we report the crystal structure of the extracellular domain of PD-1 in complex with the dostarlimab Fab at the resolution of 1.53 Å. Although the interaction between PD-1 and dostarlimab involves mainly the residues within the heavy chain of dostarlimab, the steric occlusion of PD-L1 binding is primarily contributed by the light chain. Dostarlimab induces conformational rearrangements of the BC, C'D and FG loops of PD-1 to achieve a high affinity. Significantly, the residue R86 within the C'D loop of PD-1 plays a critical role for dostarlimab binding by occupying the concave surface on the heavy chain via multiple interactions. This high-resolution structure can provide helpful information for designing improved anti-PD-1 biologics or effective combination strategies for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/química , Inibidores de Checkpoint Imunológico/química , Fragmentos Fab das Imunoglobulinas/química , Receptor de Morte Celular Programada 1/química , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Cristalografia por Raios X , Epitopos/química , Epitopos/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Modelos Moleculares , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Conformação Proteica
18.
Mol Cell Biochem ; 477(3): 711-726, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35013850

RESUMO

The novel coronavirus pandemic has emerged as one of the significant medical-health challenges of the current century. The World Health Organization has named this new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first detection of SARS-CoV-2 in November 2019 in Wuhan, China, physicians, researchers, and others have made it their top priority to find drugs and cures that can effectively treat patients and reduce mortality rates. The symptoms of Coronavirus Disease 2019 (COVID-19) include fever, dry cough, body aches, and anosmia. Various therapeutic compounds have been investigated and applied to mitigate the symptoms in COVID-19 patients and cure the disease. Degenerative virus analyses of the infection incidence and COVID-19 have demonstrated that SARS-CoV-2 penetrates the pulmonary alveoli's endothelial cells through Angiotensin-Converting Enzyme 2 (ACE2) receptors on the membrane, stimulates various signaling pathways and causes excessive secretion of cytokines. The continuous triggering of the innate and acquired immune system, as well as the overproduction of pro-inflammatory factors, cause a severe condition in the COVID-19 patients, which is called "cytokine storm". It can lead to acute respiratory distress syndrome (ARDS) in critical patients. Severe and critical COVID-19 cases demand oxygen therapy and mechanical ventilator support. Various drugs, including immunomodulatory and immunosuppressive agents (e.g., monoclonal antibodies (mAbs) and interleukin antagonists) have been utilized in clinical trials. However, the studies and clinical trials have documented diverging findings, which seem to be due to the differences in these drugs' possible mechanisms of action. These drugs' mechanism of action generally includes suppressing or modulating the immune system, preventing the development of cytokine storm via various signaling pathways, and enhancing the blood vessels' diameter in the lungs. In this review article, multiple medications from different drug families are discussed, and their possible mechanisms of action are also described.


Assuntos
Antivirais/imunologia , Tratamento Farmacológico da COVID-19 , Agentes de Imunomodulação/farmacologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Antivirais/farmacologia , Azetidinas/imunologia , Azetidinas/farmacologia , COVID-19/etiologia , Dexametasona/imunologia , Dexametasona/farmacologia , Famotidina/imunologia , Famotidina/farmacologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/imunologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Infliximab/imunologia , Infliximab/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Melatonina/imunologia , Melatonina/farmacologia , Purinas/imunologia , Purinas/farmacologia , Pirazóis/imunologia , Pirazóis/farmacologia , Sulfonamidas/imunologia , Sulfonamidas/farmacologia
19.
Nature ; 602(7898): 664-670, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016195

RESUMO

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Deriva e Deslocamento Antigênicos/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Testes de Neutralização , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Deriva e Deslocamento Antigênicos/genética , Vacinas contra COVID-19/imunologia , Linhagem Celular , Convalescença , Epitopos de Linfócito B/imunologia , Humanos , Evasão da Resposta Imune , Camundongos , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vesiculovirus/genética
20.
Clin Transl Sci ; 15(1): 141-157, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582105

RESUMO

Antibody therapeutics can be associated with unwanted immune responses resulting in the development of anti-drug antibodies (ADA). Optimal methods to evaluate the potential effects of ADA on clinical outcomes in oncology are not well established. In this study, we assessed efficacy and safety, based on ADA status, in patients from over 10 clinical trials that evaluated the immune checkpoint inhibitor atezolizumab as a single agent or as combination therapy for several types of advanced cancers. ADA can only be observed post randomization, and imbalances in baseline prognostic factors can confound the interpretation of ADA impact. We applied methodology to account for the confounding effects of baseline clinical characteristics and survivorship bias on efficacy. Adjusted meta-analyses revealed that despite numerical differences in overall survival and progression-free survival between ADA-positive and ADA-negative patients from some studies, ADA-positive patients from studies with an overall treatment effect derived benefit from atezolizumab, compared with their adjusted controls. Based on large, pooled populations from atezolizumab monotherapy or combination studies, unadjusted descriptive analyses did not identify a clear relationship between ADA status and frequency or severity of adverse events. Data also suggested that any ADA impact is not driven by neutralizing activity. Collectively, this exploratory analysis suggests that the potential for ADA development should not impact treatment decisions with atezolizumab.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacocinética , Segurança , Resultado do Tratamento , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Ensaios Clínicos como Assunto , Bases de Dados Factuais , Humanos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...