Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Drug Metab Rev ; 56(2): 97-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311829

RESUMO

Many drugs that serve as first-line medications for the treatment of depression are associated with severe side effects, including liver injury. Of the 34 antidepressants discussed in this review, four have been withdrawn from the market due to severe hepatotoxicity, and others carry boxed warnings for idiosyncratic liver toxicity. The clinical and economic implications of antidepressant-induced liver injury are substantial, but the underlying mechanisms remain elusive. Drug-induced liver injury may involve the host immune system, the parent drug, or its metabolites, and reactive drug metabolites are one of the most commonly referenced risk factors. Although the precise mechanism by which toxicity is induced may be difficult to determine, identifying reactive metabolites that cause toxicity can offer valuable insights for decreasing the bioactivation potential of candidates during the drug discovery process. A comprehensive understanding of drug metabolic pathways can mitigate adverse drug-drug interactions that may be caused by elevated formation of reactive metabolites. This review provides a comprehensive overview of the current state of knowledge on antidepressant bioactivation, the metabolizing enzymes responsible for the formation of reactive metabolites, and their potential implication in hepatotoxicity. This information can be a valuable resource for medicinal chemists, toxicologists, and clinicians engaged in the fields of antidepressant development, toxicity, and depression treatment.


Assuntos
Antidepressivos , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Antidepressivos/metabolismo , Antidepressivos/farmacocinética , Antidepressivos/efeitos adversos , Antidepressivos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Animais , Ativação Metabólica
2.
Environ Sci Pollut Res Int ; 31(9): 13501-13511, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38261224

RESUMO

The use of antidepressants is increasing along with the continuing spike in the prevalence of depression worldwide. As a result, more and more antidepressants are entering the water and probably does harm to the aquatic organisms and even human health. Therefore, three antidepressants, including fluoxetine (FLU), citalopram (CIT), and aspirin (APC), were selected to investigate the toxic risks of antidepressants and their mixtures to a freshwater green alga Chlorella pyrenoidosa (C. pyrenoidosa). Due light is critical for the growth of green algae, six different light-dark cycle experiments were constructed to investigate the differences in toxicity and interaction responses of C. pyrenoidosa to antidepressants and their ternary mixture designed by the uniform design ray method. The toxic effects of individual antidepressants and their mixtures on C. pyrenoidosa were systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. Toxicity interactions (synergism or antagonism) within mixtures were analyzed by the concentration addition (CA) and the deviation from the CA model (dCA) models. The results showed that the toxicities of the three antidepressants were different, and the order was FLU > APC > CIT. Light-dark cycles obviously affect the toxicity of three antidepressants and their combined toxicity interaction. Toxicity of the three antidepressants increases with the duration of light but decreases with the duration of darkness. The ternary antidepressant mixture exhibits antagonism, and the longer the initial lighting is, the stronger the antagonism. The antagonism of the ternary mixture is also affected by exposure time and mixture components' pi as well as exposure concentration.


Assuntos
Chlorella , Poluentes Químicos da Água , Humanos , Antidepressivos/toxicidade , Poluentes Químicos da Água/toxicidade
3.
Reprod Toxicol ; 123: 108519, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043629

RESUMO

The placenta is a unique organ with an active metabolism and dynamically changing physiology throughout pregnancy. It is difficult to elucidate the structure of cell-cell and cell-extracellular matrix interactions of the placenta in in vivo studies due to interspecies differences and ethical constraints. In this study, human umbilical cord vein cells (HUVEC) and human placental choriocarcinoma cells (BeWo) were co-cultured for the first time to form spheroids (microtissues) on a three-dimensional (3D) Petri Dish® mold and compared with a traditional two-dimensional (2D) system. Vortioxetine is an antidepressant with a lack of literature on its use in pregnancy in established cultures, the toxicity of vortioxetine was studied to investigate the response of spheroids representing placental tissue. Spheroids were characterised by morphology and exposed to vortioxetine. Cell viability and barrier integrity were then measured. Intercellular junctions and the localisation of serotonin transporter (SERT) proteins were demonstrated by immunofluorescence (IF) staining in BeWo cells. Human chorionic gonadotropin (beta-hCG) hormone levels were also measured. In the 3D system, cell viability and hormone production were higher than in the 2D system. It was observed that the barrier structure was impaired, the structure of intracellular skeletal elements was altered and SERT expression decreased depending on vortioxetine exposure. These results demonstrate that the multicellular microtissue placenta model can be used to obtain results that more closely resemble in vivo toxicity studies of various xenobiotics than other 2D and mono-culture spheroid models in the literature. It also describes the use of 3D models for soft tissues other than the placenta.


Assuntos
Antidepressivos , Placenta , Gravidez , Feminino , Humanos , Placenta/metabolismo , Vortioxetina/toxicidade , Vortioxetina/metabolismo , Antidepressivos/toxicidade , Técnicas de Cocultura , Hormônios/metabolismo
4.
Environ Toxicol Pharmacol ; 105: 104358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154759

RESUMO

Our study aimed to test whether fluoxetine impairs learning in fish and whether this potential impairment is reversible. Learning efficiency, with no aversive stimuli, of the Carassius carassius was analysed under different pharmaceutical conditions: (i) fish cultured without antidepressant (control), (ii) fish exposed to fluoxetine for 21 days (fluoxetine), and (iii) fish exposed to fluoxetine for 21 days and then cultured without fluoxetine for another 21 days (recovery). We exposed animals to environmental concentrations (360 ng L-1) of antidepressant. The learning rate was measured by timing how long it took the individual fish to find food and start feeding, six days in a row. The control and recovery fish took significantly less time to start eating over the six days. Control fish start eating 14 times faster than the fluoxetine fish. Fluoxetine can significantly affect learning and 21-day recovery period is not enough to fully restore the original learning abilities.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Fluoxetina/toxicidade , Antidepressivos/toxicidade
5.
J Ethnopharmacol ; 320: 117415, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37977425

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Central nervous system (CNS) diseases can be diverse and usually present with comorbidity, as in the case of depression and anxiety. Despite alternatives like Psilocybe mushrooms for mental health there is no basic research to evidence their CNS benefits. AIM OF THE STUDY: To evaluate the anxiolytic- and antidepressant-like effects, as well as the acute toxicity of P. cubensis mushroom. MATERIAL AND METHODS: First, the acute toxicity (LD50) of P. cubensis (2000 mg/kg) was determined after the esophageal (p.o.) and intraperitoneal (i.p.) route of administration. The rota-rod test and electroencephalogram (EEG) were included to assess CNS toxicity in free moving mice. Anxiolytic (ambulatory or exploratory and rearing behaviors) and antidepressant behavioral responses were assayed in the open-field, plus-maze, and forced swimming test, respectively, after administration of 1000 mg/kg, p.o., of the whole P. cubensis mushroom or the polar aqueous (AQ) or methanolic (MeOH) extractions (1, 10, and/or 100 mg/kg, i.p.) in comparison to the reference drugs buspirone (4 mg/kg, i.p.), fluoxetine and/or imipramine (10 mg/kg, s.c. and i.p., respectively). A chemical analysis of the AQ and MeOH extractions was performed to detect psilocybin and/or psilocin by using UHPLC. RESULTS: Neurotoxic effects of P. cubensis mushroom administered at high doses were absent in mice assessed in the rota-rod test or for EEG activity. A LD50 > 2000 mg/kg was calculated by p.o. or i.p. administration. While significant and/or dose-response antidepressant-like effects were produced with the whole P. cubensis mushroom, p.o., and after parenteral administration of the AQ or MeOH extractions resembling the effects of the reference drugs. Behavioral responses were associated with an anxiolytic-like effect in the open-field as corroborated in the plus-maze tests. The presence of psilocybin and psilocin was mainly characterized in the AQ extraction. CONCLUSION: Our results provide preclinical evidence of the anxiolytic- and antidepressant-like effects of the P. cubensis mushroom without producing neurotoxicity after enteral or parenteral administration, where psilocybin and psilocin were identified mainly after AQ extraction. This study reinforces the benefits of the P. cubensis mushroom in mental health and therapy for anxiety and depression.


Assuntos
Agaricales , Ansiolíticos , Psilocybe , Animais , Camundongos , Agaricales/química , Ansiolíticos/farmacologia , Ansiolíticos/toxicidade , Antidepressivos/farmacologia , Antidepressivos/toxicidade , Comportamento Animal , Metanol , Modelos Teóricos , Psilocibina/análise
6.
Chemosphere ; 335: 139124, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285976

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants increasingly prescribed to treat patients with clinical depression. As a result of the significant negative impact of the COVID-19 pandemic on the population's mental health, its consumption is expected to increase even more. The high consumption of these substances leads to their environmental dissemination, with evidence of their ability to compromise molecular, biochemical, physiological, and behavioural endpoints in non-target organisms. This study aimed to provide a critical review of the current knowledge regarding the effects of SSRI antidepressants on fish ecologically relevant behaviours and personality-dependent traits. A literature review shows limited data concerning the impact of fish personality on their responses to contaminants and how such responses could be influenced by SSRIs. This lack of information may be attributable to a lack of widely adopted standardized protocols for evaluating behavioural responses in fish. The existing studies examining the effects of SSRIs across various biological levels overlook the intra-specific variations in behaviour and physiology associated with different personality patterns or coping styles. Consequently, some effects may remain undetected, such as variations in coping styles and the capacity to handle environmental stressors. This oversight could potentially result in long-term effects with ecological implications. Data support the need for more studies to understand the impact of SSRIs on personality-dependent traits and how they may impair fitness-related behaviours. Given the considerable cross-species similarity in the personality dimensions, the collected data may allow new insights into the correlation between personality and animal fitness.


Assuntos
COVID-19 , Inibidores Seletivos de Recaptação de Serotonina , Animais , Humanos , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Pandemias , Antidepressivos/toxicidade
7.
PLoS One ; 18(6): e0287582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37368915

RESUMO

BACKGROUND: The environmental prevalence of widely prescribed human pharmaceuticals that target key evolutionary conserved biomolecules present across phyla is concerning. Antidepressants, one of the most widely consumed pharmaceuticals globally, have been developed to target biomolecules modulating monoaminergic neurotransmission, thus interfering with the endogenous regulation of multiple key neurophysiological processes. Furthermore, rising prescription and consumption rates of antidepressants caused by the burgeoning incidence of depression is consistent with increasing reports of antidepressant detection in aquatic environments worldwide. Consequently, there are growing concerns that long-term exposure to environmental levels of antidepressants may cause adverse drug target-specific effects on non-target aquatic organisms. While these concerns have resulted in a considerable body of research addressing a range of toxicological endpoints, drug target-specific effects of environmental levels of different classes of antidepressants in non-target aquatic organisms remain to be understood. Interestingly, evidence suggests that molluscs may be more vulnerable to the effects of antidepressants than any other animal phylum, making them invaluable in understanding the effects of antidepressants on wildlife. Here, a protocol for the systematic review of literature to understand drug target-specific effects of environmental levels of different classes of antidepressants on aquatic molluscs is described. The study will provide critical insight needed to understand and characterize effects of antidepressants relevant to regulatory risk assessment decision-making, and/or direct future research efforts. METHODS: The systematic review will be conducted in line with the guidelines by the Collaboration for Environmental Evidence (CEE). A literature search on Scopus, Web of Science, PubMed, as well as grey literature databases, will be carried out. Using predefined criteria, study selection, critical appraisal and data extraction will be done by multiple reviewers with a web-based evidence synthesis platform. A narrative synthesis of outcomes of selected studies will be presented. The protocol has been registered in the Open Science Framework (OSF) registry with the registration DOI: 10.17605/OSF.IO/P4H8W.


Assuntos
Antidepressivos , Moluscos , Animais , Humanos , Animais Selvagens , Antidepressivos/toxicidade , Organismos Aquáticos , Revisões Sistemáticas como Assunto
8.
Sci Total Environ ; 895: 164984, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356764

RESUMO

Psychiatric drugs are considered among the emerging contaminants of concern in ecological risk assessment, due to their potential to disrupt homeostasis in aquatic organisms. Bupropion is an antidepressant that acts by selective reuptake inhibition of norepinephrine and dopamine. Little is known about this compound's effects on aquatic organisms, despite being detected in significant concentrations in both water and biota close to waste-water treatment plants and densely populated areas. Dynamic Energy Budget (DEB) models are flexible mechanistic tools that can be applied to understand toxic effects and extrapolate individual responses to higher biological levels and under untested environmental conditions. In this work, we used the stdDEB-TKTD (an application of the DEB theory to ecotoxicology) approach to investigate the possible physiological mode of action of Bupropion on the model organism Daphnia magna. Next, Dynamic Energy Budget Individual-Based Models (DEB-IBM) were used to extrapolate the results to the population level and to predict the combined effects of Bupropion exposure and food availability on the daphnids. Our results revealed an increasing negative effect of this antidepressant on the reproduction and survival of the animals with increasing concentration (0.004, 0.058, 0.58 and 58 µM). At the population level, we found that even the lowest used doses of Bupropion could reduce the population density and its reproductive output. The impacts are predicted to be stronger under limited food conditions.


Assuntos
Bupropiona , Poluentes Químicos da Água , Animais , Bupropiona/toxicidade , Daphnia , Reprodução , Organismos Aquáticos , Antidepressivos/toxicidade , Poluentes Químicos da Água/toxicidade
9.
Aquat Toxicol ; 260: 106554, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37167880

RESUMO

The growing consumption of antidepressant pharmaceuticals has resulted in their widespread occurrence in the environment, particularly in waterways with a typical concentration range from ng L-1 to µg L-1. An increasing number of studies have confirmed the ecotoxic potency of antidepressants, not only at high concentrations but also at environmentally relevant levels. The present review covers literature from the last decade on the individual-level ecotoxicological effects of the most commonly used antidepressants, including their impact on behavior, growth, and survival. We focus on the relationship between antidepressants physico-chemical properties and dynamics in the environment. Furthermore, we discuss the advantages of considering behavioral changes as sensitive endpoints in ecotoxicology, as well as some current methodological shortcomings in the field, including low standardization, reproducibility and context-dependency.


Assuntos
Ecotoxicologia , Poluentes Químicos da Água , Ecotoxicologia/métodos , Reprodutibilidade dos Testes , Poluentes Químicos da Água/toxicidade , Antidepressivos/toxicidade , Preparações Farmacêuticas
10.
Sci Total Environ ; 872: 162173, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36775155

RESUMO

Fluoxetine is one of the worlds most prescribed antidepressant, and frequently detected in surface waters. Once present in the aquatic environment, fluoxetine has been shown to disrupt the swimming behaviour of fish and invertebrates. However, swimming behaviour is also known to be highly variable according to experimental conditions, potentially concealing relevant effects. Therefore, the aims of this study were two-fold: i) investigate the swimming and feeding behaviour of Gammarus pulex after exposure to the antidepressant fluoxetine (0.2, 2, 20, and 200 µg/L), and ii) assess to what degree the experimental test duration (short-term and long-term) and test location (laboratory and semi-field conditions) affect gammarid's swimming behaviour. We used automated video tracking and analysis to asses a range of swimming behaviours of G. pulex, including swimming speed, startle responses after light transition, acceleration, curvature and thigmotaxis. We found larger effects on the swimming behaviour of G. pulex due to experimental conditions than due to tested antidepressant concentrations. Gammarids swam faster, more straight and showed a stronger startle response during light transition when kept under semi-field conditions compared to the laboratory. Effects found for different test durations were opposite in the laboratory and semi-field. In the laboratory gammarids swam slower and spent more time at the inner zone of the arena after 2 days compared to 21 days while for the semi-field the reverse was observed. Fluoxetine had only minor impacts on the swimming behaviour of G. pulex, but experimental conditions influenced behavioural outcomes in response to fluoxetine exposure. Overall, our results highlight the importance of standardizing and optimizing experimental protocols that assess behaviour to achieve reproducible results in ecotoxicology.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Fluoxetina/toxicidade , Anfípodes/fisiologia , Natação , Comportamento Animal , Antidepressivos/toxicidade , Poluentes Químicos da Água/toxicidade
11.
Ecotoxicol Environ Saf ; 250: 114493, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608562

RESUMO

Antidepressant prescriptions are on a rise worldwide and this increases the concerns for the impacts of these pharmaceuticals on nontarget organisms. Antidepressants are neuroactive compounds that can affect organism's behavior. Behavior is a sensitive endpoint that may also propagate effects at a population level. Another interesting aspect of antidepressants is that they have shown to induce non-monotonic dose-response (NMDR) curves. While such NMDR relationships may have clear implications for the environmental risk, the resolution of current studies is often too coarse to be able to detect relevant NMDR. Therefore, the current study was performed into the behavioral effects (activity, feeding and chemotaxis) in Caenorhabditis elegans as the model organism of the selective serotonin reuptake inhibitors fluoxetine and sertraline and the acetylcholinesterase inhibiting pesticide chlorpyrifos, using a wide range of concentrations (ng/l to mg/l). In order to statistically examine the non-monotonicity, nonlinear regression models were applied to the results. The results showed a triphasic dose-response relationship for activity and chemotaxis after exposure to fluoxetine, but not to sertraline or chlorpyrifos. Effects of fluoxetine already occurred at low concentrations in the range of ng/l while sertraline only showed effects at concentrations in the µg/l range, similar to chlorpyrifos. The different responses between fluoxetine and sertraline, both SSRIs, indicate that response patterns may not always be extrapolated from chemicals with the same primary mode of action. The effects of fluoxetine at low concentrations, in a non-monotonic manner, confirm the relevance of examining such responses at low concentrations.


Assuntos
Clorpirifos , Fluoxetina , Animais , Fluoxetina/toxicidade , Sertralina/toxicidade , Caenorhabditis elegans , Acetilcolinesterase , Antidepressivos/toxicidade , Inibidores Seletivos de Recaptação de Serotonina/toxicidade
12.
Pharmacol Rep ; 74(5): 969-981, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36076124

RESUMO

BACKGROUND: Vortioxetine hydrobromide (VXT), a new therapeutic option in the treatment of major depressive disorder, is a poorly soluble drug, and instability under stress conditions has been reported. The aim of the present study was to prepare VXT liposomes (VXT-Ls) with an antidepressant-like effect, to improve drug stability and reduce toxicity of the free drug. METHODS: Liposomes were prepared using the thin lipid film hydration method and properly characterized. Forced degradation studies were conducted in photolytic and oxidative conditions. The cytotoxicity was evaluated in VERO cells through MTT assay and in vivo toxicity was assessed in mice. The antidepressant-like effect in mice was confirmed using the open-field test paradigm and tail suspension test. RESULTS: The optimized VXT-Ls have multilamellar vesicles with an average size of 176.74 nm ± 2.43. The liposomal formulation increased the stability of VXT. VERO cell viability was maintained at around 40% when the VXT-Ls were tested at higher concentrations and no signs of acute toxicity were observed in mice. The antidepressant-like effect was effective, for VXT-Ls, at doses ranging from 2.5 mg/kg to 10 mg/kg, measured by the tail suspension test in mice. The non-liposomal formulation was effective at a dose of 10 mg/kg. The open field test was performed and any unspecific changes in locomotor activity were revealed. CONCLUSIONS: Liposomes seem to be a promising alternative for an oral VXT formulation at lower doses (2.5 mg/kg).


Assuntos
Transtorno Depressivo Maior , Lipossomos , Chlorocebus aethiops , Camundongos , Animais , Estabilidade de Medicamentos , Vortioxetina , Células Vero , Antidepressivos/toxicidade , Lipídeos
13.
Ecotoxicol Environ Saf ; 244: 114045, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055042

RESUMO

The antidepressant fluoxetine (FLX) has gained increasing attention due to its frequent detection in aquatic environments and negative effects on non-target organisms. However, knowledge on the ecotoxicological effects of FLX and its removal by microalgae is still limited. In this study, the ecotoxicological effects of FLX (10 -1000 µg/L) were assessed using batch cultures of the freshwater microalgae Chlorella pyrenoidosa for 10 days based on changes in growth, antioxidant response, and photosynthetic process. The removal efficiency, removal mechanism, and degradation pathway of FLX by C. pyrenoidosa were also investigated. The results showed that the growth of C. pyrenoidosa was inhibited by FLX with a 4 d EC50 of 0.464 mg/L. Additionally, FLX significantly inhibited photosynthesis and caused oxidative stress on day 4. However, C. pyrenoidosa can produce resistance and acclimatize to FLX, as reflected by the declining growth inhibition rate, recovered photosynthetic efficiency, and disappearance of oxidative stress on day 10. Despite the toxicity of FLX, C. pyrenoidosa showed 41.2%- 100% removal of FLX after 10 days of exposure. Biodegradation was the primary removal mechanism, accounting for 88.2%- 92.8% of the total removal of FLX. A total of five metabolites were found in the degradation processes of FLX, which showed less toxicity than FLX. The main degradation pathways were proposed as demethylation, O-dealkylation, hydroxylation, and N-acylation. Our results not only highlight the potential application of microalgae in FLX purification, but also provide insight into the fate and ecological risk of FLX in aquatic environments.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Antidepressivos/metabolismo , Antidepressivos/toxicidade , Antioxidantes/metabolismo , Chlorella/metabolismo , Fluoxetina/metabolismo , Fluoxetina/toxicidade , Água Doce , Poluentes Químicos da Água/análise
14.
Chemosphere ; 305: 135440, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35753423

RESUMO

The ubiquity of antidepressants in the environment has posed a potential threat to eco-systematic safety. In this study, six kinds of antidepressants including fluoxetine (FLU), paroxetine (PAR), sertraline (SER), fluvoxamine (FLX), citalopram (CTP), and venlafaxine (VEN) were selected to explore their degrading kinetics, transformation pathways, and the acute toxicity of the reaction solution during UV oxidation. The results showed that the order of the photodegradation rate was FLU > PAR > SER > CTP > FLX > VEN. The calculation results of density functional theory (DFT) and molecular orbital theory showed that it was positively correlated with the frontier electron density of drugs and negatively correlated with the HOMO-LUMO gap, respectively. Intermediates were identified with UHPLC-Q-TOF/MS/MS to propose the possible degradation pathways of the drugs and the most likely directions of the reactions were determined by the single point energy calculation. The results of toxicity tests indicated that the acute toxicity of the reaction solution of PAR did not change significantly. The photolysates toxicity of FLU, SER, and FLX decreased at the end of the reaction, while that of CTP and VEN was increased by 1.5 and 1.3 times compared with the parent compound, respectively. Toxicity predictions by the quantitative structure activity relationship (QSAR) model showed that except FLU-162, FLX-174, and VEN-230, other degradation products have developmental toxicity. The results revealed the transformation pathways of these drugs under the UV disinfection process in wastewater treatment plants, especially the formation of toxic by-products during the disinfection process.


Assuntos
Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Antidepressivos/toxicidade , Teoria da Densidade Funcional , Fluoxetina , Cinética , Estresse Oxidativo , Fotólise , Raios Ultravioleta , Cloridrato de Venlafaxina , Poluentes Químicos da Água/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-35272041

RESUMO

The use of antidepressants has been increasing globally, resulting in their presence in the aquatic environment, mainly by municipal wastewaters. This fact has aroused concern in the scientific community since these biologically active compounds can affect non-target organisms that have physiological systems regulated by these pharmaceuticals. However, the current knowledge on the toxicological effects of antidepressants on aquatic ecosystems is limited. Considering the increasing consumption pattern, quantification studies and toxicity studies, the present work aimed to review the available literature, published in the last seven years, addressing levels of antidepressants and their metabolites in rivers, surface waters, tap water, and wastewater treatment plants, as well, the effects reported in fish and invertebrates. Overall, the available laboratory studies showed that antidepressants can act at different levels of biological organisation, with detrimental effects at the individual level (e.g., survival, growth, and morphology, behaviour, and reproduction). However, the effects of prolonged exposures to environmentally relevant concentrations of these substances, a more realistic scenario, are unknown. Based on short-term studies, the long-term effects of pharmaceuticals at environmentally relevant concentrations (alone and in the presence of other environmental contaminants) should be studied.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Animais , Antidepressivos/toxicidade , Ecossistema , Monitoramento Ambiental , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Sci Total Environ ; 814: 152731, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34974022

RESUMO

Contamination of the environment by pharmaceutical pollutants poses an increasingly critical threat to aquatic ecosystems around the world. This is particularly true of psychoactive compounds, such as antidepressant drugs, which have become ubiquitous contaminants and have been demonstrated to modify aquatic animal behaviours at very low concentrations (i.e. ng/L). Despite raising risks to the hydrosphere, there is a notable paucity of data on the long term, multigenerational effects of antidepressants at environmentally realistic concentrations. Moreover, current research has predominantly focused on mean-level effects, with little research on variation among and within individuals when considering key behavioural traits. In this work, we used a multigenerational exposure of a freshwater snail (Physa acuta) to an environmentally relevant concentration of the antidepressant fluoxetine (mean measured concentration: 32.7 ng/L, SE: 2.3). The snails were allowed to breed freely in large mesocosm populations over 3 years. Upon completion of the exposure, we repeatedly measured the locomotory activity (624 measures total), reproductive output (234 measures total) as well as morphometric endpoints (78 measures total). While we found no mean-level differences between treatments in locomotory activities, we did find that fluoxetine exposed snails (n = 46) had significantly reduced behavioural plasticity (i.e. VW; within-individual variation) in activity levels compared to unexposed snails (n = 32). As a result, fluoxetine exposed snails demonstrated significant behavioural repeatability, which was not the case for unexposed snails. Further, we report a reduction in egg mass production in fluoxetine exposed snails, and a marginally non-significant difference in morphology between treatment groups. These results highlight the potential detrimental effects of long-term fluoxetine exposure on non-target organisms at environmentally realistic dosages. Additionally, our findings demonstrate the underappreciated potential for psychoactive contaminants to have impacts beyond mean-level effects, with consequences for population resilience to current and future environmental challenges.


Assuntos
Fluoxetina , Poluentes Químicos da Água , Animais , Antidepressivos/toxicidade , Ecossistema , Fluoxetina/toxicidade , Água Doce , Humanos , Reprodução , Caramujos , Poluentes Químicos da Água/toxicidade
17.
Sci Total Environ ; 807(Pt 2): 150846, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34626640

RESUMO

Antidepressant (AD) drugs are widely prescribed for the treatment of psychiatric disorders, including depression and anxiety disorders. The continuous use of ADs causes significant quantities of these bioactive chemicals to enter the aquatic ecosystems mainly through wastewater effluent discharge. This may result in many aquatic organisms being inadvertently affected by these drugs. Fluoxetine (FLX) and venlafaxine (VEN) are currently among the most widely detected ADs in aquatic systems. A growing body of experimental evidence demonstrates that FLX and VEN have a substantial capacity to induce neurotoxicity and cause behavioral dysfunctions in a wide range of teleost species. At the same time, these studies often report seemingly contradictory results that are confounding in nature. Hence, we clearly require comprehensive reviews that attempt to find overarching patterns and establish possible causes for these variable results. This review aims to explore the current state of knowledge regarding the neurobehavioral effects of FLX and VEN on fishes. This study also discusses the potential mechanistic linkage between the neurotoxicity of ADs and behavioral dysfunction and identifies key knowledge gaps and areas for future research.


Assuntos
Ecossistema , Fluoxetina , Animais , Antidepressivos/toxicidade , Peixes , Fluoxetina/toxicidade , Humanos , Cloridrato de Venlafaxina/toxicidade
18.
Curr Drug Discov Technol ; 19(2): e290721195144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34376134

RESUMO

BACKGROUND: Aegle marmelos Corr. (Rutaceae) commonly known as 'Indian Bael' has been used as a brain tonic traditionally. However, despite this traditional use, not enough scientific report is present that can confirm the use of this plant in neurological disorders. Thus, the total sterols fraction and stigmasterol from the leaves of Aegle marmelos were investigated for antidepressant-like effect along with their possible mechanism(s) of action by primarily performing acute toxicity study of total sterols. METHODS: An acute toxicological study was carried out at a single oral dose of 2000 mg/kg. Sign of toxicity was observed by estimating biochemical and performing histopathological analysis. For the antidepressant-like effect, different doses of total sterols (50-200 mg/kg, p.o. for seven days) and stigmasterol (5- 20 mg/kg, i.p. acute) were administered in mice using TST and FST models. To evaluate the mechanism of action, mice were pretreated with GABA, 5-HT, DA, adrenergic antagonists, and glutamate agonists. Furthermore, a neurochemical study was performed following TST and molecular docking study was also performed to determine the binding affinity of stigmasterol. RESULTS: Total sterols fraction presents no sign of toxicity up to the oral dose of 2000 mg/kg. Oral treatment of total sterols and acute intraperitoneal treatment of stigmasterol (except 5 mg/kg) reduced the immobility time significantly. Pretreatment with pCPA (5-HT synthesis inhibitor) and NMDA (an agonist of the glutamate site) effectively reversed the immobility time of total sterols and stigmasterol (except pCPA) in TST. However, bicuculline (competitive GABA antagonist), haloperidol (D2 dopaminergic antagonist) and prazosin (α1 adrenergic antagonist) could not reverse the immobility time. Meanwhile, total sterols also effectively altered the hippocampus 5-HT and Glu levels. Also, the result of the molecular docking study depicted that stigmasterol has an affinity to the NMDA receptor. CONCLUSIONS: The present study suggests that the total sterols fraction did not produce any acute toxicity in rats. Also, we reported that total sterols, stigmasterol and sub-effective stigmasterol coadministration with fluoxetine significantly reduced the time of immobility in TST and FST confirmed the antidepressant-like effect of total sterols fraction and stigmasterol. Moreover, further findings suggest that the antidepressant-like effect of total sterols might be mediated by the serotonergic and glutamatergic systems. Whereas only the glutamatergic system was involved in the antidepressant activity of stigmasterol.


Assuntos
Aegle , Animais , Antidepressivos/uso terapêutico , Antidepressivos/toxicidade , Depressão/tratamento farmacológico , Depressão/metabolismo , Elevação dos Membros Posteriores , Camundongos , Simulação de Acoplamento Molecular , Folhas de Planta , Ratos , Serotonina , Esteróis , Estigmasterol/farmacologia , Estigmasterol/uso terapêutico , Natação
19.
Aquat Toxicol ; 242: 106041, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34856460

RESUMO

Venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is a highly prescribed antidepressant and is detected at µg/L concentrations in waterways receiving municipal wastewater effluents. We previously showed that early-life venlafaxine exposure disrupted the normal development of the nervous system and reduces larval activity in zebrafish (Danio rerio). However, it is unclear whether the reduced swimming activity may be associated with impaired cardiac function. Here we tested the hypothesis that zygotic exposure to venlafaxine impacts the development and function of the larval zebrafish heart. Venlafaxine (0, 1 or 10 ng) was administered by microinjection into freshly fertilized zebrafish embryos (1-4 cell stage) to assess heart development and function during early-life stages. Venlafaxine deposition in the zygote led to precocious development of the embryo heart, including the timing of the first heartbeat, increased heart size, and a higher heart rate at 24- and 48-hours post-fertilization (hpf). Also, waterborne exposure to environmental levels of this antidepressant during early development increased the heart rate at 48 hpf of zebrafish larvae mimicking the zygotic deposition. The venlafaxine-induced higher heart rate in the embryos was abolished in the presence of NAN-190, an antagonist of the 5HT1A receptor. Also, heart rate dropped below control levels in the 10 ng, but not 1 ng venlafaxine group at 72 and 96 hpf. An acute stressor reduced the venlafaxine-induced heart rate at 48 hpf but did not affect the already reduced heart rate at 72 and 96 hpf in the 10 ng venlafaxine group. Our results suggest that the higher heart rate in the venlafaxine group may be due to an enhanced serotonin stimulation of the 5HT1A receptor. Taken together, early-life venlafaxine exposure disrupts cardiac development and has the potential to compromise the cardiovascular performance of larval zebrafish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Antidepressivos/toxicidade , Embrião não Mamífero , Coração , Larva , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/toxicidade
20.
Environ Sci Technol ; 55(24): 16299-16312, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34856105

RESUMO

Antidepressants are one of the most commonly prescribed pharmaceutical classes for the treatment of psychiatric conditions. They act via modulation of brain monoaminergic signaling systems (predominantly serotonergic, adrenergic, dopaminergic) that show a high degree of structural conservation across diverse animal phyla. A reasonable assumption, therefore, is that exposed fish and other aquatic wildlife may be affected by antidepressants released into the natural environment. Indeed, there are substantial data reported for exposure effects in fish, albeit most are reported for exposure concentrations exceeding those occurring in natural environments. From a critical analysis of the available evidence for effects in fish, risk quotients (RQs) were derived from laboratory-based studies for a selection of antidepressants most commonly detected in the aquatic environment. We conclude that the likelihood for effects in fish on standard measured end points used in risk assessment (i.e., excluding effects on behavior) is low for levels of exposure occurring in the natural environment. Nevertheless, some effects on behavior have been reported for environmentally relevant exposures, and antidepressants can bioaccumulate in fish tissues. Limitations in the datasets used to calculate RQs revealed important gaps in which future research should be directed to more accurately assess the risks posed by antidepressants to fish. Developing greater certainty surrounding risk of antidepressants to fish requires more attention directed toward effects on behaviors relating to individual fitness, the employment of environmentally realistic exposure levels, on chronic exposure scenarios, and on mixtures analyses, especially given the wide range of similarly acting compounds released into the environment.


Assuntos
Poluentes Químicos da Água , Animais , Antidepressivos/toxicidade , Peixes , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...