Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.574
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928234

RESUMO

Mcl-1 (myeloid cell leukemia 1), a member of the Bcl-2 family, is upregulated in various types of cancer. Peptides representing the BH3 (Bcl-2 homology 3) region of pro-apoptotic proteins have been demonstrated to bind the hydrophobic groove of anti-apoptotic Mcl-1, and this interaction is responsible for regulating apoptosis. Structural studies have shown that, while there is high overall structural conservation among the anti-apoptotic Bcl-2 (B-cell lymphoma 2) proteins, differences in the surface groove of these proteins facilitates binding specificity. This binding specificity is crucial for the mechanism of action of the Bcl-2 family in regulating apoptosis. Bim-based peptides bind specifically to the hydrophobic groove of Mcl-1, emphasizing the importance of these interactions in the regulation of cell death. Molecular docking was performed with BH3-like peptides derived from Bim to identify high affinity peptides that bind to Mcl-1 and to understand the molecular mechanism of their interactions. The interactions of three identified peptides, E2gY, E2gI, and XXA1_F3dI, were further evaluated using 250 ns molecular dynamics simulations. Conserved hydrophobic residues of the peptides play an important role in their binding and the structural stability of the complexes. Understanding the molecular basis of interaction of these peptides will assist in the development of more effective Mcl-1 specific inhibitors.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides , Peptídeos , Ligação Proteica , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Humanos , Peptídeos/química , Peptídeos/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Sítios de Ligação , Sequência de Aminoácidos , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/química
2.
World J Microbiol Biotechnol ; 40(8): 254, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916754

RESUMO

Sesquiterpenes and tetraterpenes are classes of plant-derived natural products with antineoplastic effects. While plant extraction of the sesquiterpene, germacrene A, and the tetraterpene, lycopene suffers supply chain deficits and poor yields, chemical synthesis has difficulties in separating stereoisomers. This review highlights cutting-edge developments in producing germacrene A and lycopene from microbial cell factories. We then summarize the antineoplastic properties of ß-elemene (a thermal product from germacrene A), sesquiterpene lactones (metabolic products from germacrene A), and lycopene. We also elaborate on strategies to optimize microbial-based germacrene A and lycopene production.


Assuntos
Antineoplásicos , Licopeno , Sesquiterpenos de Germacrano , Licopeno/metabolismo , Sesquiterpenos de Germacrano/metabolismo , Antineoplásicos/metabolismo , Humanos , Carotenoides/metabolismo , Carotenoides/química , Sesquiterpenos/metabolismo , Vias Biossintéticas
3.
J Agric Food Chem ; 72(22): 12387-12397, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776247

RESUMO

Agaricus mushrooms are an important genus in the Agaricaceae family, belonging to the order Agaricales of the class Basidiomycota. Among them, Agaricus bisporus is a common mushroom for mass consumption, which is not only nutritious but also possesses significant medicinal properties such as anticancer, antibacterial, antioxidant, and immunomodulatory properties. The rare edible mushroom, Agaricus blazei, contains unique agaricol compounds with significant anticancer activity against liver cancer. Agaricus blazei is believed to expel wind and cold, i.e., the pathogenic factors of wind and cold from the body, and is an important formula in traditional Chinese medicine. Despite its nutritional richness and outstanding medicinal value, Agaricus mushrooms have not been systematically compiled and summarized. Therefore, the present review compiles and classifies 70 natural products extracted from Agaricus mushrooms over the past six decades. These compounds exhibit diverse biological and pharmacological activities, with particular emphasis on antitumor and antioxidant properties. While A. blazei and A. bisporus are the primary producers of these compounds, studies on secondary metabolites from other Agaricus species remain limited. Further research is needed to explore and understand the anticancer and nutritional properties of Agaricus mushrooms. This review contributes to the understanding of the structure, bioactivity, and biosynthetic pathways of Agaricus compounds and provides insights for the development of functional foods using these mushrooms.


Assuntos
Agaricus , Antineoplásicos , Antioxidantes , Produtos Biológicos , Metabolismo Secundário , Agaricus/química , Agaricus/metabolismo , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Animais , Estrutura Molecular
4.
Arch Microbiol ; 206(6): 266, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761213

RESUMO

We succeeded in homogeneously expressing and purifying L-asparaginase from Latilactobacillus sakei LK-145 (Ls-Asn1) and its mutated enzymes C196S, C264S, C290S, C196S/C264S, C196S/C290S, C264S/C290S, and C196S/C264S/C290S-Ls-Asn1. Enzymological studies using purified enzymes revealed that all cysteine residues of Ls-Asn1 were found to affect the catalytic activity of Ls-Asn1 to varying degrees. The mutation of Cys196 did not affect the specific activity, but the mutation of Cys264, even a single mutation, significantly decreased the specific activity. Furthermore, C264S/C290S- and C196S/C264S/C290S-Ls-Asn1 almost completely lost their activity, suggesting that C290 cooperates with C264 to influence the catalytic activity of Ls-Asn1. The detailed enzymatic properties of three single-mutated enzymes (C196S, C264S, and C290S-Ls-Asn1) were investigated for comparison with Ls-Asn1. We found that only C196S-Ls-Asn1 has almost the same enzymatic properties as that of Ls-Asn1 except for its increased stability for thermal, pH, and the metals NaCl, KCl, CaCl2, and FeCl2. We measured the growth inhibitory effect of Ls-Asn1 and C196S-Ls-Asn1 on Jurkat cells, a human T-cell acute lymphoblastic leukemia cell line, using L-asparaginase from Escherichia coli K-12 as a reference. Only C196S-Ls-Asn1 effectively and selectively inhibited the growth of Jurkat T-cell leukemia, which suggested that it exhibited antileukemic activity. Furthermore, based on alignment, phylogenetic tree analysis, and structural modeling, we also proposed that Ls-Asn1 is a so-called "Type IIb" novel type of asparaginase that is distinct from previously reported type I or type II asparaginases. Based on the above results, Ls-Asn1 is expected to be useful as a new leukemia therapeutic agent.


Assuntos
Asparaginase , Asparaginase/genética , Asparaginase/metabolismo , Asparaginase/química , Asparaginase/isolamento & purificação , Asparaginase/farmacologia , Humanos , Bacillaceae/enzimologia , Bacillaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Células Jurkat , Mutação , Sequência de Aminoácidos , Cinética
5.
ACS Chem Biol ; 19(6): 1303-1310, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743035

RESUMO

Isoquinolinequinones represent an important family of natural alkaloids with profound biological activities. Heterologous expression of a rare bifunctional indole prenyltransferase/tryptophan indole-lyase enzyme from Streptomyces mirabilis P8-A2 in S. albidoflavus J1074 led to the activation of a putative isoquinolinequinone biosynthetic gene cluster and production of a novel isoquinolinequinone alkaloid, named maramycin (1). The structure of maramycin was determined by analysis of spectroscopic (1D/2D NMR) and MS spectrometric data. The prevalence of this bifunctional biosynthetic enzyme was explored and found to be a recent evolutionary event with only a few representatives in nature. Maramycin exhibited moderate cytotoxicity against human prostate cancer cell lines, LNCaP and C4-2B. The discovery of maramycin (1) enriched the chemical diversity of natural isoquinolinequinones and also provided new insights into crosstalk between the host biosynthetic genes and the heterologous biosynthetic genes in generating new chemical scaffolds.


Assuntos
Dimetilaliltranstransferase , Isoquinolinas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/enzimologia , Humanos , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/genética , Linhagem Celular Tumoral , Isoquinolinas/química , Isoquinolinas/metabolismo , Isoquinolinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Terpenos/metabolismo , Terpenos/química , Família Multigênica
6.
J Chem Inf Model ; 64(10): 4121-4133, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38706255

RESUMO

Microtubules, composed of α- and ß-tubulin subunits are crucial for cell division with their dynamic tissue-specificity which is dictated by expression of isotypes. These isotypes differ in carboxy-terminal tails (CTTs), rich in negatively charged acidic residues in addition to the differences in the composition of active site residues. 2-Methoxy estradiol (2-ME) is the first antimicrotubule agent that showed less affinity toward hemopoietic-specific ß1 isotype consequently preventing myelosuppression toxicity. The present study focuses on the MD-directed conformational analysis of 2-ME and estimation of its binding affinity in the colchicine binding pocket of various ß-tubulin isotypes combined with the α-tubulin isotype, α1B. AlphaFold 2.0 was used to predict the 3D structure of phylogenetically divergent human ß-tubulin isotypes in dimer form with α1B. The dimeric complexes were subjected to induced-fit docking with 2-ME. The statistical analysis of docking showed differences in the binding characteristics of 2-ME with different isotypes. The replicas of atom-based molecular dynamic simulations of the best conformation of 2-ME provided insights into the molecular-level details of its binding pattern across the isotypes. Furthermore, the MM/GBSA analyses revealed the specific binding energy profile of 2-ME in ß-tubulin isotypes. It also highlighed, 2-ME exhibits the lowest binding affinity toward the ß1 isotype as supported by experimental study. The present study may offer useful information for designing next-generation antimicrotubule agents that are more specific and less toxic.


Assuntos
2-Metoxiestradiol , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Isoformas de Proteínas , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , 2-Metoxiestradiol/metabolismo , 2-Metoxiestradiol/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Estradiol/metabolismo , Estradiol/química , Estradiol/análogos & derivados , Conformação Proteica , Sítios de Ligação
7.
BMC Biotechnol ; 24(1): 27, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725019

RESUMO

Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potential as major therapeutic platforms and led to the production of higher levels of ROS that can present desirable anticancer properties. Chitosan-SeNPs have also presented antitumor properties against hepatic cancer cell lines, especially the Cht-NP (Chitosan-NPs), promoting ROS generation and mitochondria dysfunction. It is proposed that magnetic fields can add new dimensions to nanoparticle applications. Hence, in this study, the biosynthesis of SeNPs using Alborzia kermanshahica and chitosan (CS) as stabilizers has been developed. The SeNPs synthesis was performed at different cyanobacterial cultivation conditions, including control (without magnetic field) and magnetic fields of 30 mT and 60 mT. The SeNPs were characterized by uv-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), zeta potential, and TEM. In addition, the antibacterial activity, inhibition of bacterial growth, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the antifungal activity and cytotoxicity of SeNPs, were performed. The results of uv-visible spectrometry, DLS, and zeta potential showed that 60 mT had the highest value regarding the adsorption, size, and stabilization in compared to the control. FTIR spectroscopy results showed consistent spectra, but the increased intensity of peaks indicates an increase in bond number after exposure to 30 mT and 60 mT. The results of the antibacterial activity and the inhibition zone diameter of synthesized nanoparticles showed that Staphylococcus aureus was more sensitive to nanoparticles produced under 60 mT. Se-NPs produced by Alborzia kermanshahica cultured under a 60 mT magnetic field exhibit potent antimicrobial and anticancer properties, making them a promising natural agent for use in the pharmaceutical and biomedical industries.


Assuntos
Quitosana , Campos Magnéticos , Selênio , Selênio/química , Selênio/farmacologia , Quitosana/química , Quitosana/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Testes de Sensibilidade Microbiana , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/química , Nanopartículas Metálicas/química
8.
Sci Rep ; 14(1): 10561, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719884

RESUMO

This study focuses on understanding the structural and molecular changes in lipid membranes under the influence of six halogenated flavonoid derivatives differing in the number and position of substitution of chlorine and bromine atoms (D1-D6). Utilizing various analytical techniques, including fluorometric methods, dynamic light scattering (DLS), attenuated Fourier transform infrared spectroscopy (ATR- FTIR), and FT-Raman spectroscopy, the research aims to elucidate the mechanisms underlying the interaction of flavonoids with cell membranes. Additionally, the study includes in silico analyses to explore the physicochemical properties of these compounds and their potential pharmaceutical applications, along with toxicity studies to assess their effects on cancer, normal, and red blood cells. Our study showed the ability of halogenated derivatives to interact mostly with the outer part of the membrane, especially in the lipid heads region however, some of them were able to penetrate deeper into the membrane and affect the fluidity of hydrocarbon chains. The potential to reduce cancer cell viability, the lack of toxicity towards erythrocytes, and the favourable physicochemical and pharmacokinetic properties suggest these halogenated flavonoids potential candidates for exploring their potential for medical use.


Assuntos
Flavonoides , Lipídeos de Membrana , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Membrana Celular/metabolismo , Halogenação , Citotoxinas/química , Citotoxinas/farmacologia , Citotoxinas/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral
9.
Recent Pat Biotechnol ; 18(4): 332-343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817010

RESUMO

BACKGROUND: Cancer is a leading cause of death and a significant public health issue worldwide. Standard treatment methods such as chemotherapy, radiotherapy, and surgery are only sometimes effective. Therefore, new therapeutic approaches are needed for cancer treatment. Sea anemone actinoporins are pore-forming toxins (PFTs) with membranolytic activities. RTX-A is a type of PFT that interacts with membrane phospholipids, resulting in pore formation. The synthesis of recombinant proteins in a secretory form has several advantages, including protein solubility and easy purification. In this study, we aimed to discover suitable signal peptides for producing RTX-A in Bacillus subtilis in a secretory form. METHODS: Signal peptides were selected from the Signal Peptide Web Server. The probability and secretion pathways of the selected signal peptides were evaluated using the SignalP server. ProtParam and Protein-sol were used to predict the physico-chemical properties and solubility. AlgPred was used to predict the allergenicity of RTX-A linked to suitable signal peptides. Non-allergenic, stable, and soluble signal peptides fused to proteins were chosen, and their secondary and tertiary structures were predicted using GOR IV and I-TASSER, respectively. The PROCHECK server performed the validation of 3D structures. RESULTS: According to bioinformatics analysis, the fusion forms of OSMY_ECOLI and MALE_ECOLI linked to RTX-A were identified as suitable signal peptides. The final proteins with signal peptides were stable, soluble, and non-allergenic for the human body. Moreover, they had appropriate secondary and tertiary structures. CONCLUSION: The signal above peptides appears ideal for rationalizing secretory and soluble RTX-A. Therefore, the signal peptides found in this study should be further investigated through experimental researches and patents.


Assuntos
Antineoplásicos , Bacillus subtilis , Simulação por Computador , Bacillus subtilis/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Sinais Direcionadores de Proteínas , Humanos , Patentes como Assunto , Solubilidade , Animais , Anêmonas-do-Mar/química , Biologia Computacional/métodos
10.
ACS Synth Biol ; 13(5): 1562-1571, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38679882

RESUMO

Respirantins are 18-membered antimycin-type depsipeptides produced by Streptomyces sp. and Kitasatospora sp. These compounds have shown extraordinary anticancer activities against a panel of cancer cell lines with nanomolar levels of IC50 values. However, further investigation has been impeded by the low titers of the natural producers and the challenging chemical synthesis due to their structural complexity. The biosynthetic gene cluster (BGC) of respirantin was previously proposed based on a bioinformatic comparison of the four members of antimycin-type depsipeptides. In this study, we report the first successful reconstitution of respirantin in Streptomyces albus using a synthetic BGC. This heterologous system serves as an accessible platform for the production and diversification of respirantins. Through polyketide synthase pathway engineering, biocatalysis, and chemical derivatization, we generated nine respirantin compounds, including six new derivatives. Cytotoxicity screening against human MCF-7 and Hela cancer cell lines revealed a unique biphasic dose-response profile of respirantin. Furthermore, a structure-activity relationship study has elucidated the essential functional groups that contribute to its remarkable cytotoxicity. This work paves the way for respirantin-based anticancer drug discovery and development.


Assuntos
Antimicina A , Antineoplásicos , Depsipeptídeos , Família Multigênica , Streptomyces , Humanos , Streptomyces/metabolismo , Streptomyces/genética , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/biossíntese , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/química , Células HeLa , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Antimicina A/metabolismo , Células MCF-7 , Policetídeo Sintases/metabolismo , Policetídeo Sintases/genética , Vias Biossintéticas/genética , Relação Estrutura-Atividade
11.
ACS Chem Biol ; 19(5): 1169-1179, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38624108

RESUMO

Bufadienolides are a class of steroids with a distinctive α-pyrone ring at C17, mostly produced by toads and consisting of over 100 orthologues. They exhibit potent cardiotonic and antitumor activities and are active ingredients of the traditional Chinese medicine Chansu and Cinobufacini. Direct extraction from toads is costly, and chemical synthesis is difficult, limiting the accessibility of active bufadienolides with diverse modifications and trace content. In this work, based on the transcriptome and genome analyses, using a yeast-based screening platform, we obtained eight cytochrome P450 (CYP) enzymes from toads, which catalyze the hydroxylation of bufalin and resibufogenin at different sites. Moreover, a reported fungal CYP enzyme Sth10 was found functioning in the modification of bufalin and resibufogenin at multiple sites. A total of 15 bufadienolides were produced and structurally identified, of which six were first discovered. All of the compounds were effective in inhibiting the proliferation of tumor cells, especially 19-hydroxy-bufalin (2) and 1ß-hydroxy-bufalin (3), which were generated from bufalin hydroxylation catalyzed by CYP46A35. The catalytic efficiency of CYP46A35 was improved about six times and its substrate diversity was expanded to progesterone and testosterone, the common precursors for steroid drugs, achieving their efficient and site-specific hydroxylation. These findings elucidate the key modification process in the synthesis of bufadienolides by toads and provide an effective way for the synthesis of unavailable bufadienolides with site-specific modification and active potentials.


Assuntos
Bufanolídeos , Sistema Enzimático do Citocromo P-450 , Bufanolídeos/química , Bufanolídeos/metabolismo , Bufanolídeos/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Hidroxilação , Linhagem Celular Tumoral , Bufonidae/metabolismo , Proliferação de Células/efeitos dos fármacos
12.
Angew Chem Int Ed Engl ; 63(24): e202402611, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38607929

RESUMO

METTL3, a primary methyltransferase catalyzing the RNA N6-methyladenosine (m6A) modification, has been identified as an oncogene in several cancer types and thus nominated as a potentially effective target for therapeutic inhibition. However, current options using this strategy are limited. In this study, we targeted protein-protein interactions at the METTL3-METTL14 binding interface to inhibit complex formation and subsequent catalysis of the RNA m6A modification. Among candidate peptides, RM3 exhibited the highest anti-cancer potency, inhibiting METTL3 activity while also facilitating its proteasomal degradation. We then designed a stapled peptide inhibitor (RSM3) with enhanced peptide stability and formation of the α-helical secondary structure required for METTL3 interaction. Functional and transcriptomic analysis in vivo indicated that RSM3 induced upregulation of programmed cell death-related genes while inhibiting cancer-promoting signals. Furthermore, tumor growth was significantly suppressed while apoptosis was enhanced upon RSM3 treatment, accompanied by increased METTL3 degradation, and reduced global RNA methylation levels in two in vivo tumor models. This peptide inhibitor thus exploits a mechanism distinct from other small-molecule competitive inhibitors to inhibit oncogenic METTL3 activity. Our findings collectively highlight the potential of targeting METTL3 in cancer therapies through peptide-based inhibition of complex formation and proteolytic degradation.


Assuntos
Antineoplásicos , Metiltransferases , Peptídeos , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos
13.
ACS Chem Biol ; 19(4): 875-885, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483263

RESUMO

It is well established that oxaliplatin, one of the three Pt(II) anticancer drugs approved worldwide, and phenanthriplatin, an important preclinical monofunctional Pt(II) anticancer drug, possess a different mode of action from that of cisplatin and carboplatin, namely, the induction of nucleolar stress. The exact mechanisms that lead to Pt-induced nucleolar stress are, however, still poorly understood. As such, studies aimed at better understanding the biological targets of both oxaliplatin and phenanthriplatin are urgently needed to expand our understanding of Pt-induced nucleolar stress and guide the future design of Pt chemotherapeutics. One approach that has seen great success in the past is the use of Pt-click complexes to study the biological targets of Pt drugs. Herein, we report the synthesis and characterization of the first examples of click-capable phenanthriplatin complexes. Furthermore, through monitoring the relocalization of nucleolar proteins, RNA transcription levels, and DNA damage repair biomarker γH2AX, and by investigating their in vitro cytotoxicity, we show that these complexes successfully mimic the cellular responses observed for phenanthriplatin treatment in the same experiments. The click-capable phenanthriplatin derivatives described here expand the existing library of Pt-click complexes. Significantly they are suitable for studying nucleolar stress mechanisms and further elucidating the biological targets of Pt complexes.


Assuntos
Antineoplásicos , Nucléolo Celular , Compostos Organoplatínicos , Fenantridinas , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Cisplatino/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Oxaliplatina/farmacologia , Fenantridinas/síntese química , Fenantridinas/química , Fenantridinas/farmacologia , Química Click , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo
14.
ACS Chem Biol ; 19(4): 973-980, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38514380

RESUMO

In the field of natural product research, the rediscovery of already-known compounds is one of the significant issues hindering new drug development. Recently, an innovative approach called bioactivity-HiTES has been developed to overcome this limitation, and several new bioactive metabolites have been successfully characterized by this method. In this study, we applied bioactivity-HiTES to Corynebacterium matruchotii, the human oral bacterium, with 3120 clinical drugs as potential elicitors. As a result, we identified two cryptic metabolites, methylindole-3-acetate (MIAA) and indole-3-acetic acid (IAA), elicited by imidafenacin, a urinary antispasmodic drug approved by the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). MIAA showed weak antibacterial activity against a pulmonary disease-causing Mycobacterium conceptionense with an IC50 value of 185.7 µM. Unexpectedly, we also found that C. matruchotii metabolized fludarabine phosphate, a USFDA-approved anticancer drug, to 2-fluoroadenine which displayed moderate antibacterial activity against both Bacillus subtilis and Escherichia coli, with IC50 values of 8.9 and 20.1 µM, respectively. Finally, acelarin, a prodrug of the anticancer drug gemcitabine, was found to exhibit unreported antibacterial activity against B. subtilis with an IC50 value of 33.6 µM through the bioactivity-HiTES method as well. These results indicate that bioactivity-HiTES can also be applied to discover biotransformed products in addition to finding cryptic metabolites in microbes.


Assuntos
Antineoplásicos , Corynebacterium , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Corynebacterium/efeitos dos fármacos , Corynebacterium/metabolismo
15.
Bioorg Chem ; 146: 107283, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513324

RESUMO

The breast cancer resistance protein (BCRP/ABCG2) transporter mediates the efflux of numerous antineoplastic drugs, playing a central role in multidrug resistance related to cancer. The absence of successful clinical trials using specific ABCG2 inhibitors reveals the urge to identify new compounds to attend this critical demand. In this work, a series of 13 magnolol derivatives was tested as ABCG2 inhibitors. Only two compounds, derivatives 10 and 11, showed partial and complete ABCG2 inhibitory effect, respectively. This inhibition was selective toward ABCG2, since none of the 13 compounds inhibited neither P-glycoprotein nor MRP1. Both inhibitors (10 and 11) were not transported by ABCG2 and demonstrated a low cytotoxic profile even at high concentrations (up to 100 µM). 11 emerged as the most promising compound of the series, considering the ratio between cytotoxicity (IG50) and ABCG2 inhibition potency (IC50), showing a therapeutic ratio (TR) higher than observed for 10 (10.5 versus 1.6, respectively). This derivative showed a substrate-independent and a mixed type of inhibition. The effect of compound 11 on the ABCG2 ATPase activity and thermostability revealed allosteric protein changes. This compound did not affect the expression levels of ABCG2 and increased the binding of the conformational-sensitive antibody 5D3. A docking study showed that 11 did not share the same binding site with ABCG2 substrate mitoxantrone. Finally, 11 could revert the chemoresistance to SN-38 mediated by ABCG2.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Neoplasias da Mama , Lignanas , Humanos , Feminino , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo
16.
Inorg Chem ; 63(11): 5235-5245, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38452249

RESUMO

Cancer treatment has faced severe obstacles due to the smart biological system of cancer cells. Herein, we report a three-in-one agent Ir-CA via attenuation of cancer cell stemness with the down-regulated biomarker CD133 expression from the mitochondria-directed chemotherapy. Over 80% of Ir-CA could accumulate in mitochondria, result in severe mitochondrial dysfunctions, and subsequently initiate mitophagy and cell cycle arrest to kill cisplatin-resistant A549R cells. In vitro and in vivo antimetastatic experiments demonstrated that Ir-CA can effectively inhibit metastasis with down-regulated MMP-2/MMP-9. RNA seq analysis and Western blotting indicated that Ir-CA also suppresses the GSTP1 expression to decrease the intracellular Pt-GS adducts, resulting in the detoxification and resensitization to cisplatin of A549R cells. In vivo evaluation indicated that Ir-CA restrains the tumor growth and has minimal side effects and superior biocompatibility. This work not only provides the first three-in-one agent to attenuate cancer cell stemness and simultaneously realize anticancer, antimetastasis, and conquer metallodrug resistance but also demonstrates the effectiveness of the mitochondria-directed strategy in cancer treatment.


Assuntos
Antineoplásicos , Neoplasias , Cisplatino/farmacologia , Linhagem Celular Tumoral , Ciclo Celular , Mitocôndrias , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Neoplasias/metabolismo
17.
Dalton Trans ; 53(14): 6410-6415, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501501

RESUMO

An asymmetric bi-nuclear copper(II) complex with both cytotoxic and immunogenic activity towards breast cancer stem cells (CSCs) is reported. The bi-nuclear copper(II) complex comprises of two copper(II) centres bound to flufenamic acid and 3,4,7,8-tetramethyl-1,10-phenanthroline. The bi-nuclear copper(II) complex exhibits sub-micromolar potency towards breast CSCs grown in monolayers and three-dimensional cultures. Remarkably, the bi-nuclear copper(II) complex is up to 25-fold more potent toward breast CSC mammospheres than salinomycin (a gold standard anti-breast CSC agent) and cisplatin (a clinically administered metallodrug). Mechanistic studies showed that the bi-nuclear copper(II) complex readily enters breast CSCs, elevates intracellular reactive oxygen species levels, induces apoptosis, and promotes damage-associated molecular pattern release. The latter triggers phagocytosis of breast CSCs by macrophages. As far as we are aware, this is the first report of a bi-nuclear copper(II) complex to induce engulfment of breast CSCs by immune cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ácido Flufenâmico/metabolismo , Cobre/metabolismo , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Células-Tronco Neoplásicas
18.
Eur J Med Chem ; 268: 116295, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437750

RESUMO

This paper introduces a new ligand, 4,6-dichloro-5-(1H-imidazo [4,5-f]phenanthroline-2-yl)pyrimidin-2-amine (DPPA), and its corresponding new iridium(III) complexes: [Ir(ppy)2(DPPA)](PF6) (2a) (where ppy represents deprotonated 2-phenylpyridine), [Ir(bzq)2(DPPA)](PF6) (2b) (with bzq indicating deprotonated benzo[h]quinoline), and [Ir(piq)2(DPPA)](PF6) (2c) (piq denoting deprotonated 1-phenylisoquinoline). The cytotoxic effects of both DPPA and 2a, 2b, and 2c were evaluated against human lung carcinoma A549, melanoma B16, colorectal cancer HCT116, human hepatocellular carcinoma HepG2 cancer cell lines, as well as the non-cancerous LO2 cell line using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. While DPPA exhibited moderate anticancer activity toward A549, B16, HCT116 and HepG2 cells, complexes 2a, 2b, and 2c displayed remarkable efficacy against A549, B16, and HCT116 cells. The cell colonies and wound healing were investigated. Moreover, various aspects of the anticancer mechanisms were explored. The cell cycle analyses revealed that the complexes block cell proliferation of A549 cells during the S phase. Complex 2c induce an early apoptosis, while 2a and 2b cause a late apoptosis. The interaction of 2a, 2b and 2c with endoplasmic reticulum and mitochondria was identified, leading to elevated ROS and Ca2+ amounts. This resulted in a reduced mitochondrial membrane potential, mitochondrial permeability transition pore opening, and an increase of cytochrome c. Also, ferroptosis was investigated through measurements of intracellular glutathione (GSH), malondialdehyde (MDA), and recombinant glutathione peroxidase (GPX4) protein expression. The pyroptosis was explored via cell morphology, release of lactate dehydrogenase (LDH) and expression of pyroptosis-related proteins. RNA sequencing was applied to examine the signaling pathways. Western blot analyses illuminated that the complexes regulate the expression of Bcl-2 family proteins. Additionally, an in vivo antitumor study demonstrated that complex 2c exhibited a remarkable inhibitory rate of 58.58% in restraining tumor growth. In summary, the findings collectively suggest that the iridium(III) complexes induce cell death via ferroptosis, apoptosis by a ROS-mediated mitochondrial dysfunction pathway and GSDMD-mediated pyroptosis.


Assuntos
Antineoplásicos , Complexos de Coordenação , Ferroptose , Humanos , Linhagem Celular Tumoral , Irídio/farmacologia , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Mitocôndrias
19.
Dalton Trans ; 53(13): 5993-6005, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38469684

RESUMO

Recently, achieving selective cancer therapy with trifling side effects has been a great challenge in the eradication of cancer. Thus, to amplify the cytoselective approach of complexes, herein, we developed a series of Re(I)[2-aryl-1H-imidazo[4,5-f][1,10]phenanthroline] tricarbonyl chloride complexes and screened their potency against HeLa and MCF-7 cell lines together with the evaluation of their toxicity towards a normal kidney cell line (HEK-293). On meticulous investigation, complex [ReI(CO)3Cl(K2-N,N-(2c))] (3c) was found to be the most potent anticancer entity among other complexes. Complex 3c also showed competency to induce apoptosis in MCF-7 cells through G2/M phase cell-cycle arrest in association with the generation of ample reactive oxygen species (ROS), eventually leading to DNA intercalation and internucleosomal cleavage. The order of the cytotoxicity of these complexes depended on their lipophilic character and the electron-withdrawing halogen substitution at the para-position of the phenyl ring in the imidazophenanthroline ligand.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Humanos , Fenantrolinas/farmacologia , Cloretos , Células HEK293 , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , DNA/metabolismo , Dano ao DNA , Complexos de Coordenação/farmacologia , Complexos de Coordenação/metabolismo , Apoptose , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
20.
Steroids ; 205: 109392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452910

RESUMO

We report the biotransformation of progesterone 1 by whole cells of Brazilian marine-derived fungi. A preliminary screening with 12 fungi revealed that the strains Penicillium oxalicum CBMAI 1996, Mucor racemous CBMAI 847, Cladosporium sp. CBMAI 1237, Penicillium oxalicum CBMAI 1185 and Aspergillus sydowii CBMAI 935 were efficient in the biotransformation of progesterone 1 in the first days of the reaction, with conversion values ranging from 75 % to 99 %. The fungus P. oxalicum CBMAI 1185 was employed in the reactions in quintuplicate to purify and characterize the main biotransformation products of progesterone 1. The compounds testololactone 1a, 12ß-hydroxyandrostenedione 1b and 1ß-hydroxyandrostenedione 1c were isolated and characterized by NMR, MS, [α]D and MP. In addition, the chromatographic yield of compound 1a was determined by HPLC-PDA in the screening experiments. In this study, we show a biotransformation pathway of progesterone 1, suggesting the presence of several enzymes such as Baeyer-Villiger monooxygenases, dehydrogenases and cytochrome P450 monooxygenases in the fungus P. oxalicum CBMAI 1185. In summary, the results obtained in this study contribute to the synthetic area and have environmental importance, since the marine-derived fungi can be employed in the biodegradation of steroids present in wastewater and the environment. The cytotoxic results demonstrate that the biodegradation products were inactive against the cell lines, in contrast to progesterone.


Assuntos
Antineoplásicos , Penicillium , Antineoplásicos/metabolismo , Cladosporium/metabolismo , Fungos/metabolismo , Oxigenases de Função Mista/metabolismo , Penicillium/metabolismo , Progesterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...