Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Environ Geochem Health ; 45(10): 7081-7097, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542205

RESUMO

Exposure to coal mining dust poses a substantial health hazard to individuals due to the complex mixture of components released during the extraction process. This study aimed to assess the oxidative potential of residual coal mining dust on human lymphocyte DNA and telomeres and to perform a chemical characterization of coal dust and urine samples. The study included 150 individuals exposed to coal dust for over ten years, along with 120 control individuals. The results revealed significantly higher levels of DNA damage in the exposed group, as indicated by the standard comet assay, and oxidative damage, as determined by the FPG-modified comet assay. Moreover, the exposed individuals exhibited significantly shorter telomeres compared to the control group, and a significant correlation was found between telomere length and oxidative DNA damage. Using the PIXE method on urine samples, significantly higher concentrations of sodium (Na), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), iron (Fe), zinc (Zn), and bromine (Br) were observed in the exposed group compared to the control group. Furthermore, men showed shorter telomeres, greater DNA damage, and higher concentrations of nickel (Ni), calcium (Ca), and chromium (Cr) compared to exposed women. Additionally, the study characterized the particles released into the environment through GC-MS analysis, identifying several compounds, including polycyclic aromatic hydrocarbons (PAHs) such as fluoranthene, naphthalene, anthracene, 7H-benzo[c]fluorene, phenanthrene, pyrene, benz[a]anthracene, chrysene, and some alkyl derivatives. These findings underscore the significant health risks associated with exposure to coal mining dust, emphasizing the importance of further research and the implementation of regulatory measures to safeguard the health of individuals in affected populations.


Assuntos
Dano ao DNA , Hidrocarbonetos Policíclicos Aromáticos , Masculino , Humanos , Feminino , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Poeira/análise , Antracenos/análise , Carvão Mineral/toxicidade , Carvão Mineral/análise , Estresse Oxidativo
2.
J Hazard Mater ; 459: 132053, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37482040

RESUMO

The study of anaerobic high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) biodegradation under sulfate-reducing conditions by microorganisms, including microbial species responsible for biodegradation and relative metabolic processes, remains in its infancy. Here, we found that a new sulfate-reducer, designated as Desulforamulus aquiferis strain DSA, could biodegrade pyrene and benzo[a]pyrene (two kinds of HMW-PAHs) coupled with the reduction of sulfate to sulfide. Interestingly, strain DSA could simultaneously biodegrade pyrene and benzo[a]pyrene when they co-existed in culture. Additionally, the metabolic processes for anaerobic pyrene and benzo[a]pyrene biodegradation by strain DSA were newly proposed in this study based on the detection of intermediates, quantum chemical calculations and analyses of the genome and RTqPCR. The initial activation step for anaerobic pyrene and benzo[a]pyrene biodegradation by strain DSA was identified as the formation of pyrene-2-carboxylic acid and benzo[a]pyrene-11-carboxylic acid by carboxylation Thereafter, CoA ligase, ring reduction through hydrogenation, and ring cracking occurred, and short-chain fatty acids and carbon dioxide were identified as the final products. Additionally, DSA could also utilize benzene, naphthalene, anthracene, phenanthrene, and benz[a]anthracene as carbon sources. Our study can provide new guidance for the anaerobic HMW-PAHs biodegradation under sulfate-reducing conditions.


Assuntos
Benzo(a)pireno , Hidrocarbonetos Policíclicos Aromáticos , Benzo(a)pireno/metabolismo , Anaerobiose , Sulfatos/análise , Pirenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Antracenos/análise , Biodegradação Ambiental
3.
Environ Sci Technol ; 57(32): 11967-11976, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478127

RESUMO

Little information is available on the roles of natural phenolic compounds in polycyclic aromatic hydrocarbons (PAHs) attenuation at dry soil-air interfaces. The purpose of this study was to determine the roles of model phenolic constituents of soil organic matter (SOM) on the abiotic attenuation of PAHs. The phenolic compounds can significantly change the attenuation rates of PAHs, among which hydroquinone was the most effective in promoting anthracene and benzo[a]anthracene attenuation. Product identification and sequential extraction experiments revealed hydroquinone enhanced the formation of oxidative coupling products and promoted the incorporation of PAHs into humic analogues, thereby reducing potential risks to humans and ecosystems. Electron paramagnetic resonance spectroscopy analyses showed both PAHs and phenolic compounds could donate electrons to Lewis acid sites of soil minerals, resulting in the generation of persistent free radicals (PFRs). PFRs could promote the generation of ·OH to enhance PAH oxidation and could cross-couple with PAHs, resulting in high-molecular-weight oxidative coupling products. This study revealed for the first time the reaction mechanism between PAHs and phenolic components of SOM under relatively dry conditions and provided new insights into promoting PAHs detoxification in soils but also a potential strategy to increase the organic carbon sequestration.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Solo/química , Hidroquinonas/análise , Acoplamento Oxidativo , Ecossistema , Antracenos/análise , Fenóis , Radicais Livres
4.
Environ Sci Process Impacts ; 25(7): 1169-1180, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37313682

RESUMO

Microplastics are environmentally ubiquitous and their role in the fate and distribution of trace contaminants is of emerging concern. We report the first use of membrane introduction mass spectrometry to directly monitor the rate and extent of microplastic-contaminant sorption. Target contaminant (naphthalene, anthracene, pyrene, and nonylphenol) sorption behaviours were examined at nanomolar concentrations with four plastic types: low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS). Under the conditions employed here, short-term sorption kinetics were assessed using on-line mass spectrometry for up to one hour. Subsequent sorption was followed by periodically measuring contaminant concentrations for up to three weeks. Short-term sorption followed first order kinetics with rate constants that scaled with hydrophobicity for the homologous series of polycyclic aromatic hydrocarbons (PAHs). Sorption rate constants on LDPE for equimolar solutions of naphthalene, anthracene, and pyrene were 0.5, 2.0, and 2.2 h-1, respectively, while nonylphenol did not sorb to pristine plastics over this time period. Similar trends among contaminants were observed for other pristine plastics with 4- to 10-fold faster sorption rates associated with LDPE when compared to PS and PP. Sorption was largely complete after three weeks, with the percent analyte sorbed ranging from 40-100% across various microplastic-contaminant combinations. Photo-oxidative ageing of LDPE had little effect on PAH sorption. However, a marked increase in nonylphenol sorption was consistent with increased hydrogen-bonding interactions. This work provides kinetic insights into surface interactions and describes a powerful experimental platform to directly observe contaminant sorption behaviours in complex samples under a variety of environmentally relevant conditions.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Microplásticos , Polietileno , Adsorção , Poluentes Químicos da Água/análise , Naftalenos/análise , Pirenos/análise , Poliestirenos/química , Polipropilenos , Espectrometria de Massas , Antracenos/análise
5.
Environ Pollut ; 328: 121578, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028789

RESUMO

Petroleum refineries generate oily sludge that contains hazardous polycyclic aromatic hydrocarbons (PAH), and hence, its proper disposal is of foremost concern. Analysis of the physicochemical properties and functions of indigenous microbes of the contaminated sites are essential in deciding the strategy for bioremediation. This study analyses both parameters at two geographically distant sites, with different crude oil sources, and compares the metabolic capability of soil bacteria with reference to different contamination sources and the age of the contaminated site. The results indicate that organic carbon and total nitrogen derived from petroleum hydrocarbon negatively affect microbial diversity. Contamination levels vary widely on site, with levels of PAHs ranging from 5.04 to 1.66 × 103 µg kg-1 and 6.20 to 5.64 × 103 µg kg-1 in Assam and Gujarat sites respectively, covering a higher proportion of low molecular weight (LMW) PAHs (fluorene, phenanthrene, pyrene, and anthracene). Functional diversity values were observed to be positively correlated (p < 0.05) with acenaphthylene, fluorene, anthracene, and phenanthrene. Microbial diversity was the highest in fresh oily sludge which decreased upon storage, indicating that immediate bioremediation, soon after its generation, would be beneficial. Improvement in the bio-accessibility of hydrocarbon compounds by the treatment of biosurfactant produced by a (soil isolate/isolate) was demonstrated., with respect to substrate utilization.


Assuntos
Microbiota , Petróleo , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Petróleo/análise , Esgotos/microbiologia , Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Fenantrenos/metabolismo , Fluorenos/análise , Hidrocarbonetos/metabolismo , Antracenos/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Microbiologia do Solo
6.
Environ Monit Assess ; 195(4): 506, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961625

RESUMO

The US Environmental Protection Agency (US-EPA) published a priority list of 16 polycyclic aromatic hydrocarbons (PAHs), which are compounds that are studied in a variety of matrices due to their wide range of risks. Environmental compartments can be contaminated with PAHs from different sources, such as wastewater from industries and petroleum spills. For the case of Cameroon, there are no recorded data concerning the sources, distributions, and toxicity levels of PAHs in water and sediment from Cameroon beaches which are found in South-West, Littoral, and South Regions. In this work, only three beaches from South-West Region were studied regarding the sources, distributions, and toxicity levels of PAHs in water and sediment. The analyzed samples came from Bobende coastal beach, Down-beach, and Cape-Limboh beach. To achieve the analyses, liquid-liquid extraction and gas chromatography enabled the identification and quantification of PAH compounds from sediments and marine water. Out of the 16 PAHs listed by US-EPA, twelve were identified and quantified among which four of them were light molecular weight PAHs (acenaphthylene, fluorene, phenanthrene, and anthracene). Anthracene in the Cape-Limboh sample presented the highest concentration (477.57 ng/kg weight of dry sediment) of LMW-PAHs. Eight identified and quantified PAHs of high molecular weight as a whole, three absent PAHs (benzo[a]anthracene, dibenzo[a,h]anthracene, and benzo[g,h,i]perylene) in the Cape-Limboh sample, while only one is absent in the Bobende samples (dibenzo[a,h]anthracene) and Down Beach (benzo[g,h,i]perylene). According to the ratios used for the determination of the sources of PAHs, it came out that the source of PAHs from all beaches is pyrolytic. In all samples, BaA is the only high molecular weight PAH presenting serious toxicity and ecological risk.


Assuntos
Perileno , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Camarões , Perileno/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Monitoramento Ambiental , Antracenos/análise
7.
Environ Geochem Health ; 45(7): 5415-5439, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36976374

RESUMO

The research aims to evaluate the seasonal differences in the distribution, source, and risks of water-contaminated PAHs. The PAHs were extracted by the liquid-liquid method and analyzed with GC-MS, and a total of eight PAHs were detected. There was a percentage increase in the average concentration of the PAHs from the wet to the dry season in the range of 20 (Anthracene)-350 (Pyrene)%. Total PAHs (∑PAHs) range from 0.31 to 1.23 mg/l in the wet period and from 0.42 to 1.96 mg/l in the dry period. The distribution of the average PAHs in mg/l showed that Fluoranthene ≤ Pyrene < Acenaphthene < Fluorene < Phenanthrene < Acenaphthylene < Anthracene < Naphthalene in wet period and while Fluoranthene < Acenaphthene < Pyrene < Fluorene < Phenanthrene < Acenaphthylene < Anthracene < Naphthalene in the dry period. The children were exposed to non-carcinogenic risk through non-dietary ingestion due to the accumulative effect (HI) of the PAHs in the dry period. Furthermore, the naphthalene was responsible for ecological and carcinogenic risk in the wet period, while the fluorene, phenanthrene, and anthracene were responsible for ecological and carcinogenic risk in the dry period. However, while adults and children are both susceptible to carcinogenic risk through the oral channel during the dry period, only children are susceptible to non-carcinogenic risk through this pathway. The multivariate statistical analysis revealed the influence of physicochemical parameters on the detected PAHs and also showed the PAHs' sources to be mainly combustion, pyrolysis, and vehicular emission.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Acenaftenos/análise , Estações do Ano , Água/análise , Fluorenos/análise , Pirenos , Naftalenos/análise , Antracenos/análise , Medição de Risco , Monitoramento Ambiental
8.
Chemosphere ; 321: 138102, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764617

RESUMO

Anthracene biodegradation potential has been studied in liquid culture and soil microcosm environment by employing green synthesized TiO2 nanoparticles (NPs) and Alcaligenes faecalis HP8. The bacterium was isolated from crude oil contaminated soil, while TiO2 nanoparticles were synthesized using Paenibacillus sp. HD1PAH and Cyperus brevifolius which have PAHs remediation abilities. The dual application of TiO2 nanoparticles and Alcaligenes faecalis HP8 decreases anthracene concentration up to 21.3% in liquid at the end of 7 days and 37.9% in the soil treatments after completion of 30 days. Besides, the GC-MS analysis revealed production of five metabolites including 1,2-anthracenedihydrodiol; 6,7-benzocoumarin; 3-hydroxy-2-naphthoic acid; salicylic acid and 9,10-anthraquinone at different time interval of the treatments. Anthracene degradation pathway confirms the breakdown of three ring anthracene to one ring salicylic acid. Additionally, soil dehydrogenase, urease, alkaline phosphatase, catalase and amylase activities increased up to 4.09 folds, 8.6 folds, 4.4 folds, 3.6 folds and 2.1 folds respectively after the combined treatments of TiO2 nanoparticles and Alcaligenes faecalis HP8. The bacterial biomass and residual anthracene concentration were found to be negatively correlated. Finally, the study brings into light a novel anthracene biodegradation pathway and provides a new dimension in nano assisted bacterial remediation.


Assuntos
Alcaligenes faecalis , Nanopartículas , Poluentes do Solo , Alcaligenes faecalis/metabolismo , Titânio/análise , Antracenos/análise , Ácido Salicílico/análise , Solo , Poluentes do Solo/análise
9.
Food Chem Toxicol ; 175: 113693, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36849088

RESUMO

The aim of this study was to evaluate the concentration of 5-hydroxymethylfurfural (HMF), furfural, polycyclic aromatic hydrocarbons (PAHs), and pesticide residues, as well as assessment of cancer risk of the Polish-origin bee products. The bee product samples were prepared using a modified QuEChERS method, then PAHs and pesticides were analysed by gas chromatography-mass spectrometry (GC-MS), neonicotinoids by high-performance liquid chromatography with a diode array detector (HPLC-DAD), and HMF and furfural by spectrophotometry (HPLC-UV/Vis). The results showed that the highest furfural content was found in bee bread from the northeast part of Poland; moreover, samples obtained from the same region were also characterized with a higher level of HMF. The total sum of PAHs ranged from 324.0 to 866.4 µg/kg; the highest content of PAH4 (the sum of benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene) was 21.0 µg/kg, but only benzo[a]anthracene and chrysene were detected in the samples. Imidacloprid and acetamiprid were found only in bee bread from the northeast part of Poland, while clothianidin was detected in honey samples. The acceptable cancer risk has been calculated for PAHs due to ingestion of honey, while increasing the risk of cancer was calculated for bee bread and bee pollen. Due to the high concentration of PAHs and excessively high recommended consumption dose, regular consumption of bee bread and pollen may pose a severe threat to human health and should be strictly limited.


Assuntos
Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Própole , Abelhas , Humanos , Animais , Crisenos/análise , Polônia , Furaldeído , Hidrocarbonetos Policíclicos Aromáticos/análise , Antracenos/análise , Medição de Risco , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia
10.
Se Pu ; 40(11): 1022-1030, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36351811

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are among the most harmful persistent organic pollutants that possess high carcinogenicity and teratogenicity; hence, establishing a highly sensitive analytical method for monitoring PAHs in environmental samples is an urgent need. However, due to the low PAHs content in environmental samples and the complex matrix of the samples, it is difficult to directly determine the amount of PAHs using the existing analytical instruments. Therefore, an essential pretreatment of environmental samples should be carried out before instrumental analysis. In most pretreatment techniques, the extraction efficiency depends on the characteristics of the extraction materials. Currently, metal-organic framework materials (MOFs), which are porous materials self-assembled by metal ions and organic ligands, are used as solid-phase microextraction (SPME) coating materials for the extraction of PAHs. However, the following problems limit the application of MOFs in the SPME field: (1) MOF coating materials often require a long equilibration time for extraction because the it is difficult for the target to reach the deep adsorption sites; (2) In addition, most MOFs are formed by the coordination of single metal ions with organic monomers. The single type of open metal active sites is not conducive for realizing high extraction performance. In this study, a hollow bimetal-organic framework (H-BiMOF) was synthesized by the solvothermal method and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption-desorption analysis, thermogravimetric analysis, etc. The TEM images and XRD patterns demonstrated the successful synthesis of H-BiMOF with a hollow structure, which was formed through the competitive coordination between benzoic acid and water. The H-BiMOF material showed type-Ⅳ isotherms with a surface area of 1437 m2/g and excellent thermal stability. Subsequently, a H-BiMOF-coated SPME fiber was prepared by the physical adhesion method and used to extract trace PAHs from environmental samples. Due to the hollow structure of H-BiMOF, the prepared fibers offer the advantages of high utilization of specific surface area as well as short mass transfer distance, so that the extraction process quickly reaches equilibrium. At the same time, the introduction of bimetals provides a variety of metal active sites, which improves the extraction efficiency of the fiber against electron-rich cloud targets such as PAHs. The prepared fiber also had good service life, with at least 150 cycles. Combined with gas chromatography-tandem mass spectrometry (GC-MS/MS), a new method for the determination of PAHs in environmental water samples was established. Single factor experiments were performed to investigate the effects of the SPME conditions on the analytical performance. Under the optimal conditions, the established method showed low limits of detection (0.01-0.08 ng/L), wide linear range (0.03-500.0 ng/L), good linearity (correlation coefficients≥0.9986), and acceptable reproducibility (relative standard deviations≤9.8%, n=5). Finally, typical water samples were analyzed by the established method. Four environmental water samples were collected from Dianchi Lake, Poyang Lake, Taihu Lake, and Xihu Lake in China. No benzo(a)anthracene (BaA) and chrysene (CHR) were detected in any of the water samples. However, 17.9 ng/L of fluorene (FLU) and 5.3 ng/L of phenanthrene (PHE) were found in the Poyang Lake sample; 11.3 ng/L of fluoranthene (FLA) and 24.2 ng/L of pyrene (PYR) were found in the Taihu Lake sample; 50.0 ng/L of FLU, 19.5 ng/L of PHE, 14.9 ng/L of anthracene (ANT), 34.2 ng/L of FLA, and 44.5 ng/L of PYR were found in the Xihu Lake sample. The contents of the PAHs detected in all the lake water samples were lower than the Chinese National Standard GB 5749-2006 (2000.0 ng/L). The results of this study indicate that the developed method is suitable for the sensitive detection of trace levels of PAHs in real environmental water samples.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem , Reprodutibilidade dos Testes , Cromatografia Gasosa-Espectrometria de Massas/métodos , Poluentes Químicos da Água/análise , Limite de Detecção , Metais , Água , Antracenos/análise
11.
Se Pu ; 40(10): 889-899, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36222252

RESUMO

Many solid-phase microextraction (SPME) sorbents have been developed from aerogels because of their low densities, large surface areas, and high porosities. Melamine-formaldehyde (MF) aerogel, made from melamine and formaldehyde by a sol-gel reaction, is one of the typical organic aerogels. MF aerogel has better mechanical strength, chemical stability and extraction performance than inorganic aerogels. The performance of the aerogel is limited in some fields, while composite aerogels can meet different requirements such as good mechanical strength and strong adsorption performance. Graphene oxide (GO) is a two-dimensional nanomaterial composed of a single layer of carbon atoms and provides π-π interaction by a large π-electron. In addition, the oxygen-containing groups at the edge of the lamellar structure improve the hydrophilicity of the material and can interact with various compounds. To improve the extraction performance of MF aerogel for polycyclic aromatic hydrocarbons (PAHs), GO/MF aerogels were prepared by functionalizing MF aerogel with GO. In this study, 1.2612 g of melamine and 80 mg of sodium carbonate were dissolved in 30 mL of water, and the mixture was heated to 80 ℃ under stirring. Then, 2.8 mL formaldehyde solution (37%) was slowly added, and a clear solution was obtained gradually. Next, 50 mg of GO powder was ultrasonically dispersed in 10.0 mL of water and evenly mixed with the above solution. After adjusting the pH to 1.5, the sol-gel process was performed for 48 h, then the gel was aged at room temperature for 24 h. The gel was then soaked in ethanol, acetone, and cyclohexane in turn to replace the solvent. Finally, the GO/MF aerogel was obtained by freeze-drying for 24 h. The GO/MF aerogel was characterized by scanning electron microscopy (SEM) and X-ray photoelectric spectroscopy (XPS), confirming that GO was successfully introduced into MF aerogel, while retaining its three-dimensional network and porous structure. GO/MF aerogel was coated onto the surface of a stainless steel wire to be used as sorbent. Four such wires were placed into a polyetheretherketone (PEEK) tube (0.75 mm i. d., 30 cm length) for in-tube (IT) SPME. The tube was combined with a high-performance liquid chromatography (HPLC) unit to construct an IT-SPME-HPLC online system. When the six-way valve was in the Load state, sample solution achieved online enrichment with analytes while it flowed through the extraction tube. After extraction, the valve was turned to the Inject state, and the analytes were eluted into the chromatographic column by the mobile phase at a flow rate of 1.0 mL/min for separation and detection with the detector. Under the same extraction conditions (sampling volume=30 mL, sampling rate=1.00 mL/min, and concentration of polycyclic aromatic hydrocarbons (PAHs, viz. naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Ace), fluorine (Flu), phenanthrene (Phe), anthracene (Ant), fluoranthene (Fla) and pyrene (Pyr))=5.00 µg/L), GO/MF aerogel-based tube was compared with that of MF aerogel-based tube. GO enhanced the enrichment efficiency of MF aerogel towards PAHs from 1.1 to 2.5 times, due to the increased number of adsorption sites and enhanced π-π interaction with PAHs. IT-SPME was affected by the sampling volume, sampling rate, concentration of organic solvent in sample, desorption solvent, desorption rate, and desorption time. To obtain accurate results, the main extraction and desorption conditions (sampling volume, sampling rate, organic solvent concentration, desorption time) were investigated carefully. As the sampling volume in the extraction tube was increased, the extraction efficiency was found to increase gradually until saturation. In this study, the extraction efficiency was investigated for sampling volumes ranging from 30 to 80 mL, and 70 mL was selected as a suitable sampling volume to achieve satisfactory extraction efficiency. The sampling rate affects not only the extraction efficiency, but also the extraction time. When the sample flows through the extraction tube at a low rate, it requires a long test time. Although the increase in sampling rate reduces the extraction time, it often decreases extraction efficiency. In addition, large sampling rate leads to high pressure in the tube, which in turn reduces the service life of the tube. Therefore, the effect of sampling rate (1.25-2.50 mL/min) on extraction efficiency was investigated, and good extraction efficiency and short test time were achieved when the sampling rate was 2 mL/min. High hydrophobic PAHs have poor solubility in water. An appropriate amount of organic solvent in the sample solution can improve the solubility of PAHs to obtain accurate analytical results. However, the extraction efficiency was affected by the added organic solvent. Thus, the effect of volume fraction of methanol (0, 0.5%, 1%, 2%, 3%, and 5%, v/v) on the extraction efficiency was investigated. The sample solution without methanol afforded better extraction efficiency and satisfactory repeatability. After online extraction, the desorption directly affects the desorption efficiency. The peak areas of the eight PAHs were investigated with different desorption times (0.2, 0.4, 0.6, 0.8, 1.0, and 2.0 min), and a desorption time of 2.0 min was required to fully desorb all analytes and reduce their residuals. The IT-SPME-HPLC-DAD method was established under the optimized conditions, and the limits of detection (LODs), linear equations, linear ranges, and correlation coefficients were obtained. The LODs of the eight PAHs were in the range of 0.001-0.005 µg/L, the quantitative ranges of the analytes were 0.003-15.0 µg/L for Fla and Pyr, 0.010-20.0 µg/L for Phe and Ant, and 0.017-20.0 µg/L for Nap, Acy, Ace and Flu, the enrichment factors were in the range of 2029-2875, and the analytical precision was satisfactory (intra-day RSD%≤4.8%, and inter-day RSD≤8.6%). Compared with some reported methods, the method reported herein provided higher sensitivity, wider linear range, and shorter test time. This method was applied to the detection of PAHs in common drinking water, including bottled mineral water and water from drinking fountain. The satisfactory recovery (76.3%-132.8%) obtained proves that the method is suitable for the determination of trace PAHs in real water samples, with high sensitivity, rapid testing, online detection, and good accuracy. The extraction tube also exhibited satisfactory durability and chemical stability.


Assuntos
Água Potável , Grafite , Águas Minerais , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Acenaftenos/análise , Acetona/análise , Antracenos/análise , Cicloexanos/análise , Água Potável/análise , Etanol/análise , Flúor/análise , Formaldeído/análise , Grafite/análise , Metanol/análise , Oxigênio/análise , Fenantrenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Pós , Pirenos/análise , Microextração em Fase Sólida/métodos , Solventes/análise , Aço Inoxidável/análise , Triazinas
12.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36235001

RESUMO

In this paper, a new aqueous two-phase extraction system(ATPES) consisting of UCON (poly(ethylene glycol-ran-propylene glycol) monobutyl ether)-NaH2PO4 was established, and four trace polycyclic aromatic hydrocarbons (PAHs: fluorene, anthracene, pyrene and phenanthrene) in water and soil were analyzed by high-performance liquid chromatography (HPLC)-ultraviolet detection. In the multi-factor experiment, the central composite design (CCD) was used to determine the optimum technological conditions. The final optimal conditions were as follows: the concentration of UCON was 0.45 g·mL-1, the concentration of NaH2PO4 was 3.5 mol·L-1, and the temperature was 30 °C. The recovery of the four targets was 98.91-99.84% with a relative standard deviation of 0.3-2.1%. Then UCON recycling and cyclic tests were designed in the experiment, and the results showed that the recovery of PAHs gradually increased in the three extractions because of the remaining PAHs in the salt phase of last extraction. The recovery of PAHs in the UCON recycling test was less than that in the extraction test due to the wastage of UCON. In addition, a two-phase aqueous extraction model was established based on the random forest (RF) model. The results obtained were compared with the experimental data, and the root mean square error (RMSE) was 0.0371-0.0514 and the correlation coefficient R2 was 96.20-98.53%, proving that the model is robust and reliable.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Antracenos/análise , Cromatografia Líquida de Alta Pressão/métodos , Éteres , Etilenoglicóis , Fluorenos , Fenantrenos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Propilenoglicóis , Pirenos , Solo , Extração em Fase Sólida/métodos , Água/química , Poluentes Químicos da Água/química
13.
Environ Monit Assess ; 194(11): 822, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149534

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are considered potentially toxic, even carcinogenic, because of their affection to public health and the environment. It is necessary to know their ambient levels and the origin of these pollutants in order to mitigate them. A concerning scenario is the one in which commercial/administrative, industrial, and residential activities coexist. In this context, Gran La Plata (Argentina) presents such characteristics, in addition to the presence of one of the most important petrochemical complexes in the country and intense vehicular traffic. The source apportionment of PAH emission in the region, associated to 10-µm and 2.5-µm particulate matter fractions, was studied. First, different missing value imputation methods were evaluated for PAH databases. GSimp presented a better performance, with mean concentrations of ∑PAHs of 65.8 ± 40.2 ng m-3 in PM10 and 39.5 ± 18.0 ng m-3 in PM2.5. For both fractions, it was found that the highest contribution was associated with low molecular weight PAHs (3 rings), with higher concentrations of anthracene. Emission sources were identified by using principal component analysis (PCA) together with multiple linear regression (MLR) and diagnostic ratios of PAHs. The results showed that the main emission source is associated with vehicular traffic in both fractions. Classification by discriminant analysis showed that emissions can be identified by region and that fluoranthene, benzo(a)anthracene, and anthracene in PM10 and anthracene and phenanthrene in PM2.5 are a characteristic of emissions from the petrochemical complex.


Assuntos
Poluentes Atmosféricos , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Antracenos/análise , Argentina , Monitoramento Ambiental/métodos , Material Particulado/análise , Fenantrenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise
14.
Environ Res ; 215(Pt 1): 114185, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049506

RESUMO

The impacts of crude oil contamination on soil microbial populations were explored in seven different polluted areas near oil and gas drilling sites and refineries of Assam, India. Using high-throughput sequencing techniques, the functional genes and metabolic pathways involved in the bioconversion of crude oil contaminants by the indigenous microbial community were explored. Total petroleum hydrocarbon (TPH) concentrations in soil samples ranged from 1109.47 to 75,725.33 mg/kg, while total polyaromatic hydrocarbon (PAH) concentrations ranged from 0.780 to 560.05 mg/kg. Pyrene, benzo[a]anthracene, naphthalene, phenanthrene, and anthracene had greater quantities than the maximum permitted limits, suggesting a greater ecological risk, in comparison to other polyaromatic hydrocarbons. According to the metagenomic data analysis, the bacterial phyla Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroides were the most prevalent among all polluted areas. The most prominent hydrocarbon degraders in the contaminated sites included Burkholderia, Mycobacterium, Polaromonas, and Pseudomonas. However, the kinds of pollutants and their concentrations did not correlate with the abundances of respective degrading genes for all polluted locations, as some of the sites with little to low PAH contamination had significant abundances of corresponding functional genes for degradation. Thus, the findings of this study imply that the microbiome of hydrocarbon-contaminated areas, which are biologically involved in the degradation process, has various genes, operons and catabolic pathways that are independent of the presence of a specific kind of contaminant.


Assuntos
Microbiota , Petróleo , Fenantrenos , Poluentes do Solo , Antracenos/análise , Antracenos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos , Naftalenos/análise , Naftalenos/metabolismo , Petróleo/análise , Fenantrenos/análise , Pirenos/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/análise
15.
J Chromatogr A ; 1681: 463419, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044783

RESUMO

Developing functional fiber coating for selective solid phase microextraction (SPME) of trace pollutants is critical in environmental analysis. Herein, the novel covalent organic frameworks (COFs) with three-dimensional (3D) frameworks and multiple interactions were designed and presented for the selective SPME of polychlorinated biphenyls (PCBs). Using tetra (p-aminophenyl) methane (TAM) and 1,3,5-triformylphloroglucinol (Tp) as the monomers, the 3D TpTAM-COF was synthesized and possessed a large specific surface area, high thermal stability, and spatial selectivity toward PCBs. Characterizations such as morphology, XPS, XRD, thermal stability, and enhancement factors (EFs) were studied. Multiple interactions including π-π conjugation, hydrophobic interaction, and selectivity toward non-planar structure were adopted, which resulted in a superior adsorption affinity toward PCBs on TpTAM-COF. Under the optimal conditions, the spatial selectivity toward PCBs, organic analogs (o-dichlorobenzene, biphenyl) and polycyclic aromatic hydrocarbons (naphthalene, pyrene, and anthracene)) was achieved. Efficient and selective adsorption of fifteen PCBs was fulfilled with the highest EF up to 10305. Using the HS-SPME-GC-MS method, the recoveries of PCBs in the river water and soil samples were determined to be 84.8 ± 7.8% ∼ 117.2 ± 8.5% (n = 3) and 84.4 ± 8.6% ∼ 114.7 ± 7.6% (n = 3), respectively. Compared with most commercial SPME fibers and other COFs-based fibers, the resultant TpTAM-COF-coated fibers possessed higher selectivity and EFs of PCBs. It proposed a promising approach for selective SPME of trace PCBs by multiple interactions in the steric structure of 3D COFs.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Antracenos/análise , Poluentes Ambientais/análise , Estruturas Metalorgânicas/química , Metano , Naftalenos/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos , Solo/química , Microextração em Fase Sólida/métodos , Água/química
16.
Chemosphere ; 308(Pt 1): 136182, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36037942

RESUMO

Volatile organic compounds (VOCs) are a group of organic compounds that have a molecular structure containing carbon and their chemical properties allow them to be easily converted to steam and gas and remain for a long period of time and have diverse effects on the environment. The purpose of this study is determination of the concentration of VOCs such as alachlor, anthracene, benzene, bromoform, chloroform, heptachlor, isophorone, tetrachloroethylene, γ -chlordane, toluene, etc. in water matrices. The results showed that among studies conducted on VOCs, the concentration of tetrachloroethylene, m,p-xylene, and toluene were at the top in water matrices, and the lowest average concentrations were found in chloroform, anthracene, and butyl benzyl phthalate. In terms of VOC concentrations in water matrices, China was the most polluted country. Moreover, the data analysis indicated that China was the only country with carcinogenic risk. A Monte-Carlo simulation showed that although the averages obtained were comparable to the acceptable limits, for heptachlor, the maximum carcinogenic risk is achieved at a level that is slightly over the limit, only 25% from the population being exposed.


Assuntos
Poluentes Atmosféricos , Tetracloroetileno , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Antracenos/análise , Benzeno/análise , Carbono/análise , China , Clordano/análise , Clorofórmio/análise , Monitoramento Ambiental/métodos , Heptacloro/análise , Vapor/análise , Tetracloroetileno/análise , Tolueno/análise , Compostos Orgânicos Voláteis/análise , Água/análise
17.
Rapid Commun Mass Spectrom ; 36(21): e9381, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35986921

RESUMO

RATIONALE: Various solvent supports have been developed to overcome solvent instability during liquid-phase microextraction. The hydrophobic polyurethane sponge (PS) possesses numerous cross-linked internal microchannels and terminal micropores that can facilitate steady solvent storage capacity, high extraction efficiency, extractant loading, and recycling convenience. METHODS: In this study, an easy, convenient, and efficient PS-supported liquid-phase microextraction (PS-LPME) coupled with gas chromatography-mass spectrometry (GC-MS) method was developed for the trace analysis of different organic compounds in aqueous solutions. Different extraction solvents, PS dosages, stirring speeds, and extraction times were first investigated by extracting eight polycyclic aromatic hydrocarbons (PAHs: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene), and then applied for the analysis of triazines, amides, chloroacetamides, and organophosphorus compounds. RESULTS: High enrichment factors (approximately 208-439) were observed for the monitored PAHs. Good linearities, with determination coefficients (r2 ) greater than 0.9992, were achieved in the concentration range of 0.01-50 µg L-1 . Low limits of detection and quantification were found in the ranges of 0.3-3 ng L-1 and 1-10 ng L-1 , respectively. At three spiked concentrations (0.1, 1, and 10 µg L-1 ), good recoveries were obtained in the range of 91.6-118.5% with intra- and inter-day relative standard deviations of less than 6.4% and 11.7%, respectively. CONCLUSIONS: The developed PS-LPME method coupled with GC-MS was successfully applied in the analysis of different organic compounds in aqueous solutions and has shown great convenience and satisfactory enrichment performance in microextraction analysis.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Acenaftenos/análise , Amidas , Antracenos/análise , Fluorenos/análise , Limite de Detecção , Compostos Organofosforados , Fenantrenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poliuretanos , Pirenos , Solventes/química , Triazinas/análise , Água/química , Poluentes Químicos da Água/análise
18.
Huan Jing Ke Xue ; 43(6): 3005-3015, 2022 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-35686770

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are hazardous and ubiquitous pollutants in the aquatic environment, and understanding the pollution characteristics and risk levels of PAHs is of great significance to the sustainable development of drinking water sources and drinking water safety. Hence, PAHs residues were measured qualitatively and quantitatively with solid-phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS) in 33 water samples (including 22 groundwater and 11 surface water samples) of the drinking water sources in the Manzhouli and Xinyouqi areas of northeast Inner Mongolia, and assessments of the pollution level of PAHs and the health and ecological risks were carried out. The results showed that PAHs were detected in all 33 sampling points of Manzhouli drinking water sources, except for benzo[k] fluoranthene, benzo[a] pyrene, and dibenzo[a,h] anthracene, with detection rates ranging from 36.36% to 95.45%; the detection rates of the other 13 PAHs monomers were 100%. The detection range of ρ(ΣPAHs) was 42.76-164.50 ng·L-1, and the mean value was 90.82 ng·L-1. The detection ranges of ρ(ΣPAHs) in surface water and groundwater were 66.39-164.50 ng·L-1 and 42.76-147.70 ng·L-1, respectively. The concentration of the detected naphthalene was the highest, with a mean value of 36.91 ng·L-1, and the concentration of anthracene was the lowest, with a mean value of 0.81 ng·L-1; there were no significant differences among the concentrations of all the PAHs monomers of the surface and groundwater (P>0.05). The pollution of PAHs was at a median level in China and abroad, mainly in the middle and low loops (3-4 loops). The analysis of the sources of PAHs in groundwater and surface water in Manzhouli using the ratio feature method and principal component analysis showed that the PAHs in the drinking water source water bodies in the Manzhouli area were mainly affected by the combustion of coal and biomass and oil, and some surface water sources were affected by the oil source. The human health and ecological risk assessment results showed that the water body of drinking water would not cause health risks to the human body, and the ecological risk was at a medium level; however, the high risk of benzo[b] fluoranthene (BbF) monomer production should be continuous cause for concern. From the perspective of the sustainable development of drinking water sources and drinking water safety, the necessary supervision and protection measures should be considered to prevent further pollution. The results of this research provide a scientific basis for the pollution control and prevention and control of PAHs in drinking water sources.


Assuntos
Água Potável , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Antracenos/análise , Benzo(a)pireno , Água Potável/análise , Monitoramento Ambiental , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Poluentes Químicos da Água/análise
19.
Food Res Int ; 157: 111366, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761626

RESUMO

More than 5.8 million tonnes of oil have been spilled into the oceans. Some oil disasters marked history, causing multiple social and economic consequences in addition to catastrophic environmental impacts. Recently, Brazil and Mauritius faced oil disasters that have severely impacted seafood sanitary credibility. One of the components of the oil composition are the polycyclic aromatic hydrocarbons (PAH), which are the main contamination markers of petrogenic origin. There is enough evidence to correlate the intake of food contaminated with PAH with increased risks of developing cancer. The set PAH4, composed of benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, and chrysene, and the set PAH8, composed of benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, chrysene, dibenzo[a,h]anthracene, and indeno[1,2,3-cd]pyrene are recognized as markers of food chemical contamination. After oil disasters in the oceans, the risk to the health of seafood consumers tends to be of special concern, Countries like the European Union set maximum levels for benzo[a]pyrene (5 µg kg-1) and PAH4 (30 µg kg-1) in bivalve mollusks. Levels of concern established by countries that have faced oil disasters are given special attention in this review. Laboratory analysis of PAH in food samples is very challenging because it deals with quite different kinds of matrices. Furthermore, analytical results are usually related to the closure or reopening of cultivated areas and fishing points. Therefore, the progress of the analytical methods for PAH in seafood is covered in detail. Chemical laboratory measurements provide essential data to assess the potential risks to human health due to consumption of seafood contaminated with PAH. The main human health risk assessment approaches in a seafood contamination scenario with PAH are reviewed and discussed, providing an insightful and guiding tool to each step of the risk assessment framework.


Assuntos
Desastres , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Antracenos/análise , Benzo(a)pireno , Crisenos/análise , Inocuidade dos Alimentos , Humanos , Poluição por Petróleo/efeitos adversos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
20.
Environ Pollut ; 308: 119659, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738515

RESUMO

Exposure to electronic and electrical waste (e-waste) has been related to a few adverse health effects. In this study, sediment samples from an e-waste recycling town in China were collected, and aryl hydrocarbon receptor (AhR) agonists in the samples were identified using an effect-directed analysis (EDA) strategy. The CBG2.8D cell line reporter gene bioassay was used as a toxicity test, while suspect screening against chemical databases was performed for potential AhR agonist identification where both gas chromatography- and liquid chromatography-high resolution mass spectrometry analyses were run. When the original sample extract showed high AhR-mediated activity, sample fractionation was performed, and fractions exhibiting high bioactivity were chemically analyzed again to reveal the corresponding AhR agonists. In total, 23 AhR agonists were identified, including 14 commonly known ones and 9 new ones. Benzo [k]fluoranthene and 6-nitrochrysene were the dominant AhR agonists, covering 16-71% and 2.7-12%, respectively, of the AhR activation effects measured in the parent extracts. The newly identified AhR-active chemicals combined explained 0.13-0.20% of the parent extracts' effects, with 7,12-dimethylbenz [a]anthracene and 8,9,11-trimethylbenz [a]anthracene being the major contributors. A diagnostic isomer ratio analysis of polycyclic aromatic hydrocarbons suggested that the major source of AhR agonists identified in these e-waste related sediment samples were probably petroleum product combustion and biomass combustion. In the future, for a more comprehensive AhR agonist investigation, in-house chemical synthesis and purification, and, when necessary, a secondary sample fractionation, would be beneficial.


Assuntos
Resíduo Eletrônico , Hidrocarbonetos Policíclicos Aromáticos , Antracenos/análise , Resíduo Eletrônico/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...