Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 15(6): 852-64, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24623674

RESUMO

The emergence of extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb) highlights the need for new therapeutics to treat tuberculosis. We are attempting to fast-track a targeted approach to drug design by generating analogues of a validated hit from molecular library screening that shares its chemical scaffold with a current therapeutic, the anti-arthritic drug Lobenzarit (LBZ). Our target, anthranilate phosphoribosyltransferase (AnPRT), is an enzyme from the tryptophan biosynthetic pathway in Mtb. A bifurcated hydrogen bond was found to be a key feature of the LBZ-like chemical scaffold and critical for enzyme inhibition. We have determined crystal structures of compounds in complex with the enzyme that indicate that the bifurcated hydrogen bond assists in orientating compounds in the correct conformation to interact with key residues in the substrate-binding tunnel of Mtb-AnPRT. Characterising the inhibitory potency of the hit and its analogues in different ways proved useful, due to the multiple substrates and substrate binding sites of this enzyme. Binding in a site other than the catalytic site was found to be associated with partial inhibition. An analogue, 2-(2-5-methylcarboxyphenylamino)-3-methylbenzoic acid, that bound at the catalytic site and caused complete, rather than partial, inhibition of enzyme activity was found. Therefore, we designed and synthesised an extended version of the scaffold on the basis of this observation. The resultant compound, 2,6-bis-(2-carboxyphenylamino)benzoate, is a 40-fold more potent inhibitor of the enzyme than the original hit and provides direction for further structure-based drug design.


Assuntos
Antituberculosos/química , Mycobacterium tuberculosis/enzimologia , Triptofano/biossíntese , ortoaminobenzoatos/química , Antranilato Fosforribosiltransferase/antagonistas & inibidores , Antranilato Fosforribosiltransferase/metabolismo , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacologia
2.
Biochemistry ; 52(10): 1776-87, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23363292

RESUMO

Anthranilate phosphoribosyltransferase (AnPRT, EC 2.4.2.18) is a homodimeric enzyme that catalyzes the reaction between 5'-phosphoribosyl 1'-pyrophosphate (PRPP) and anthranilate, as part of the tryptophan biosynthesis pathway. Here we present the results of the first chemical screen for inhibitors against Mycobacterium tuberculosis AnPRT (Mtb-AnPRT), along with crystal structures of Mtb-AnPRT in complex with PRPP and several inhibitors. Previous work revealed that PRPP is bound at the base of a deep cleft in Mtb-AnPRT and predicted two anthranilate binding sites along the tunnel leading to the PRPP binding site. Unexpectedly, the inhibitors presented here almost exclusively bound at the entrance of the tunnel, in the presumed noncatalytic anthranilate binding site, previously hypothesized to have a role in substrate capture. The potencies of the inhibitors were measured, yielding Ki values of 1.5-119 µM, with the strongest inhibition displayed by a bianthranilate compound that makes hydrogen bond and salt bridge contacts with Mtb-AnPRT via its carboxyl groups. Our results reveal how the substrate capture mechanism of AnPRT can be exploited to inhibit the enzyme's activity and provide a scaffold for the design of improved Mtb-AnPRT inhibitors that may ultimately form the basis of new antituberculosis drugs with a novel mode of action.


Assuntos
Antranilato Fosforribosiltransferase/antagonistas & inibidores , Antranilato Fosforribosiltransferase/química , Mycobacterium tuberculosis/enzimologia , Antranilato Fosforribosiltransferase/genética , Antituberculosos/farmacologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Fosforribosil Pirofosfato/metabolismo , Especificidade por Substrato , ortoaminobenzoatos/metabolismo
3.
Biochemistry ; 48(23): 5199-209, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19385665

RESUMO

Anthranilate phosphoribosyltransferase from the hyperthermophilic archaeon Sulfolobus solfataricus (ssAnPRT) is encoded by the sstrpD gene and catalyzes the reaction of anthranilate (AA) with a complex of Mg(2+) and 5'-phosphoribosyl-alpha1-pyrophosphate (Mg.PRPP) to N-(5'-phosphoribosyl)-anthranilate (PRA) and pyrophosphate (PP(i)) within tryptophan biosynthesis. The ssAnPRT enzyme is highly thermostable (half-life at 85 degrees C = 35 min) but only marginally active at ambient temperatures (turnover number at 37 degrees C = 0.33 s(-1)). To understand the reason for the poor catalytic proficiency of ssAnPRT, we have isolated from an sstrpD library the activated ssAnPRT-D83G + F149S double mutant by metabolic complementation of an auxotrophic Escherichia coli strain. Whereas the activity of purified wild-type ssAnPRT is strongly reduced in the presence of high concentrations of Mg(2+) ions, this inhibition is no longer observed in the double mutant and the ssAnPRT-D83G single mutant. The comparison of the crystal structures of activated and wild-type ssAnPRT shows that the D83G mutation alters the binding mode of the substrate Mg.PRPP. Analysis of PRPP and Mg(2+)-dependent enzymatic activity indicates that this leads to a decreased affinity for a second Mg(2+) ion and thus reduces the concentration of enzymes with the inhibitory Mg(2).PRPP complex bound to the active site. Moreover, the turnover number of the double mutant ssAnPRT-D83G + F149S is elevated 40-fold compared to the wild-type enzyme, which can be attributed to an accelerated release of the product PRA. This effect appears to be mainly caused by an increased conformational flexibility induced by the F149S mutation, a hypothesis which is supported by the reduced thermal stability of the ssAnPRT-F149S single mutant.


Assuntos
Antranilato Fosforribosiltransferase/metabolismo , Magnésio/farmacologia , Sulfolobus solfataricus/enzimologia , Antranilato Fosforribosiltransferase/antagonistas & inibidores , Antranilato Fosforribosiltransferase/química , Catálise , Cristalografia por Raios X , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/metabolismo
4.
Eur J Biochem ; 180(1): 33-40, 1989 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-2651124

RESUMO

Anthranilate phosphoribosyltransferase from Saccharomyces cerevisiae has been purified to homogeneity from an overproducing strain. Analytical ultracentrifugation demonstrated that the enzyme is a dimer of Mr = 83,000 +/- 4,000 (S20.w = 4.7 S). Moreover, as shown by active enzyme sedimentation, the enzyme remains dimeric even at low concentrations. The presence of yeast phosphoribosylanthranilate isomerase in the gradient does not lead to complex formation between the two enzymes as might be expected if phosphoribosyl anthranilate, the very labile product of the anthranilate phosphoribosyltransferase, were channelled to phosphoribosylanthranilate isomerase in vivo. The steady-state-kinetic behaviour of the enzyme suggests that catalysis involves a ternary enzyme-substrate complex, with KANTm = 1.6 microM, and KPRib-PPm = 22.4 microM. The enzyme has been used to generate phosphoribosylanthranilate in situ for kinetic studies of phosphoribosylanthranilate isomerase from Escherichia coli: KPRAm = 5 microM, kcat = 40 s-1.


Assuntos
Aldose-Cetose Isomerases , Antranilato Fosforribosiltransferase/isolamento & purificação , Pentosiltransferases/isolamento & purificação , Saccharomyces cerevisiae/enzimologia , Antranilato Fosforribosiltransferase/antagonistas & inibidores , Carboidratos Epimerases/isolamento & purificação , Carboidratos Epimerases/metabolismo , Catálise , Cromatografia em Gel , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Cinética , Magnésio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...