Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 841
Filtrar
1.
Geospat Health ; 19(1)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619397

RESUMO

Anthrax, a widespread zoonosis in low and middle-income countries with low disease awareness and insufficient livestock vaccination coverage, has been known in Lao Cai Province in northern Vietnam for years before its apparent absence in 2009, which requires investigation as this infection is frequently reported from neighbouring provinces and countries. We aimed to describe the seasonal patterns of anthrax (1991-2008), compare livestock anthrax vaccine coverage to disease occurrence (1991- 2022), and delineate the high-risk areas to inform local disease surveillance in the province. We illustrated the seasonal pattern of anthrax and provided a comparison between livestock vaccine coverage and disease occurrence by purely spatial SaTScan (Poisson model, 25% population at risk) to detect spatial clusters of human and livestock anthrax using population derived from zonal statistics routines. The number of cases, crude cumulative incidence, and spatial clusters of human and livestock anthrax were mapped in QGIS. Results indicate peak anthrax incidence from May to October. Buffalo, domestic cattle, and horses accounted for 75% of total animal cases. Horse anthrax was more common in Lao Cai than in its neighbours and often occurred in years with human mortality. Vaccination covered less than 30% of the livestock population. We found an apparent pattern where anthrax was controlled from 1998-2003 with higher vaccine coverage (>20%) and identified spatial clusters of human and livestock anthrax in Muong Khuong, Bao Thang, and Bac Ha districts of Lao Cai. The local public health and veterinary agencies are recommended to revisit the high-risk areas and communicate with neighbouring provinces for a regional approach to anthrax surveillance and control.


Assuntos
Antraz , Vacinas , Humanos , Bovinos , Animais , Cavalos , Antraz/epidemiologia , Antraz/veterinária , Gado , Laos , Vietnã/epidemiologia
2.
PLoS Negl Trop Dis ; 18(4): e0012067, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574113

RESUMO

BACKGROUND: Anthrax and brucellosis are endemic national priority zoonotic diseases in Ethiopia. This study assess the possible factors explaining the current limited information available on animal and human cases in pastoral communities. METHODS: Two questionnaire surveys gathered data from 509 pastoralists and 51 healthcare providers between February and April 2019 in five districts of Afar and the Somali region (SRS). RESULTS: Among the 51 healthcare providers, 25 (49%) and 38 (74.5%) had heard of brucellosis, and anthrax, respectively. Of those, only 3 (12%) and 14 (36.8%) knew the symptoms of brucellosis and Anthrax. None of the Health Extension Workers knew any disease symptoms. Healthcare providers recalled two human cases of brucellosis and 39 cases of Anthrax in the last 12 months, based on symptom-based diagnosis. Pastoralists had a moderate level of knowledge about diseases in their animals, with over half (52.4%; n = 267/509) understanding that animals can transmit diseases to people. Overall, 280 out of 508 (55.1%) and 333 out of 507 (65.7%) pastoralists had heard of brucellosis and Anthrax, respectively. Among the latter, 282 (51.3%) knew at least one preventive measure for Anthrax. However, disease knowledge among women was poor. Despite their knowledge, pastoralists engaged in risky unprotected animal handling, animal product consumption/usage as well as husbandry behaviors exposing them to pathogens and favoring the spread of diseases. They identified Anthrax as the most important zoonosis (47.6%) and as one of top three diseases suspected to cause mortality in their livestock. Pastoralists highlighted lack of vaccine coverage, availability and their timely administration. Both, pastoralists and healthcare providers stated the lack of disease awareness and the unavailability of drugs in the market as important challenges. Health facilities lacked protocols and standard operating procedures for managing zoonotic diseases, and did not have access to laboratory confirmation of pathogens. CONCLUSION: Our study revealed significant under-reporting of Anthrax and brucellosis, and weak prevention and response in humans, mostly associated with poor disease knowledge of healthcare providers. Ability to respond to animal outbreaks was limited by vaccine and drugs availability, timely vaccine administration and the mobility of pastoralists.


Assuntos
Antraz , Brucelose , Vacinas , Animais , Humanos , Feminino , Antraz/epidemiologia , Antraz/prevenção & controle , Etiópia/epidemiologia , Somália/epidemiologia , Conhecimentos, Atitudes e Prática em Saúde , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Brucelose/epidemiologia , Brucelose/prevenção & controle
3.
Georgian Med News ; (346): 68-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38501624

RESUMO

This study explores the application of GIS technologies in analyzing and visualizing spatial structures of especially dangerous infections (EPI) in Kazakhstan. International collaborations have facilitated projects studying the focal patterns of diseases, improving data analysis and visualization. Extensive electronic databases resulting from field research on EPI foci have elevated the study's depth. The dynamics of natural foci, influenced by intraspecific structures of infection carriers, are impacted by industrial and agricultural developments, urban expansions, and climate change. The study notes changes in the enzootic territory, affecting mammal migration and consequently altering natural focus boundaries. Industrial activities, rotational methods, and habitat changes contribute to the increased epidemic potential in enzootic areas. Despite anthropogenic and climatic influences, the prevalence of plague remains high in Kazakhstan, with a trend towards expanding enzootic territories. Unified electronic databases on plague, tularemia, anthrax, and other zoonoses, developed for GIS analysis, enable mapping and visualization of natural foci. Electronic maps aid in determining enzootic territory boundaries, assessing infectious disease activity, and planning preventive measures based on risk assessment. ESRI's ArcGIS Desktop 10.8 with Arc Toolbox modules facilitated data processing in the geoinformation environment. Data includes epidemiological examination results, species composition of carriers, and laboratory test outcomes, enhancing comprehensive analysis and decision-making for anti-epidemic measures. The study in Kazakhstan identifies and details six natural and twenty autonomous plague foci, categorizing them by main carriers and observing an expansion of natural hotspots. The enzootic territory is classified into four geographic zones, further divided into 105 landscape-epidemiological regions. Laboratory studies inform electronic maps for analyzing plague's dynamic situation. Anthrax prevalence, primarily in chernozem and chestnut soils, is assessed, revealing 1,778 unaffected settlements and spatially clustered points. An epidemiological index aids in zoning for anthrax trouble. Tularemia's landscape occurrence is classified into four types, with spatial analysis revealing clusters and potential epidemic danger in specific regions. Geographic information technologies highlight high-risk areas, justifying preventive measures for dangerous infections. The results obtained serve as a scientific justification for the priority of preventive measures within the boundaries of administrative territories characterized by a high degree of potential epidemic danger and objectively indicate the prospects for the introduction of GIS technologies into the practice of epidemiological surveillance of particularly dangerous infections.


Assuntos
Antraz , Peste , Tularemia , Animais , Antraz/epidemiologia , Tularemia/epidemiologia , Cazaquistão/epidemiologia , Sistemas de Informação Geográfica , Mamíferos
4.
Acta Trop ; 252: 107128, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309609

RESUMO

Even though anthrax is a disease of antiquity that has been studied for centuries, serious concerns have been raised about our understanding of its epidemiology. Since the 1960s, we have based the epidemiology of anthrax on the results of dose-dependent experiments, especially those involving cattle at that time. In this species the experiments demonstrated that the severity of infection was dependent upon the numbers of Bacillus anthracis spores ingested. The opinion was that ingesting only a few spores would be insufficient to cause an apparent infection; any infection that resulted would be latent (i.e., unrecognized). Based on the results of these experiments, it was accepted that the ingestion of large numbers of spores was the source of infection for hundreds of anthrax outbreaks. However, many investigations of both human and animal anthrax outbreaks have failed to identify sources of large numbers of spores, suggesting that these outbreaks are only rarely a consequence of ingestion or inhalation of large quantities of spores. This opinion piece builds upon the indirect evidence previously presented in an article focused on the existence of latent infections. Much of the evidence for the existence of latent infections was predicated upon a reduction of host resistance, which revealed how latent infections could be a source of more severe forms of the infection. That is, a latent infection can be the source of a severe infection, but the cause of the severe infection is the reduced host resistance. That first article concentrated on the arguments for latent infections, while this article concentrates on the arguments for host resistance. Host resistance is virtually impossible to measure objectively in the field. To provide a subjective measure of host resistance during anthrax outbreaks, we suggest the use of the opinions of livestock owners and or their veterinary practitioners and or field workers during investigations of anthrax outbreaks. When veterinary personal work in the field they are much like field biologists. In some ways field biologists better appreciate environmental factors, population ecology and other perspectives that are of use to epidemiologists. The more diverse the information the better the epidemiology is understood. To this effect we present our personal anecdotal and theoretical ideas from our experiences as well as a collection of bibliographic observations from others'. Our conclusions are that a combination of latent infections and reduced host resistance based on the host's relationship with its environment would better explain the epidemiology of severe infections in anthrax outbreaks for which large quantities of spores have not been located. This applies especially if the area has a history of the disease and/or if necropsies have shown the presence of latent infections in otherwise normal animals in the area and/or if environmental conditions are considered stressful and include intense insect activity.


Assuntos
Antraz , Bacillus anthracis , Infecção Latente , Animais , Humanos , Bovinos , Antraz/epidemiologia , Antraz/veterinária , Surtos de Doenças/veterinária , Ecologia , Infecção Latente/epidemiologia
5.
BMC Public Health ; 24(1): 632, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418986

RESUMO

BACKGROUND: In Zimbabwe, anthrax is endemic with outbreaks being reported almost annually in livestock, wildlife, and humans over the past 40 years. Accurate modelling of its spatial distribution is key in formulating effective control strategies. In this study, an Ensemble Species Distribution Model was used to model the current and future distribution of anthrax occurrence in Zimbabwe. METHODS: Bioclimatic variables derived from the Beijing Climate Centre Climate System Model were used to model the disease. Collinearity testing was conducted on the 19 bioclimatic variables and elevation to remove redundancy. Variables that had no collinearity were used for anthrax habitat suitability modelling. Two future climate change scenarios for different Representative Concentration Pathways (RCP), RCP4.5 and RCP8.5 were used. Model evaluation was done using true skill, Kappa statistics and receiver operating characteristics. RESULTS: The results showed that under current bioclimatic conditions, eastern and western districts of Zimbabwe were modelled as highly suitable, central districts moderately suitable and southern parts marginally suitable for anthrax occurrence. Future predictions demonstrated that the suitable (8%) and highly suitable (7%) areas for anthrax occurrence would increase under RCP4.5 scenario. In contrast, a respective decrease (11%) and marginal increase (0.6%) of suitable and highly suitable areas for anthrax occurrence were predicted under the RCP8.5 scenario. The percentage contribution of the predictors varied for the different scenarios; Bio6 and Bio18 for the current scenario, Bio2, Bio4 and Bio9 for the RCP4.5 and Bio3 and Bio15 for the RCP8.5 scenarios. CONCLUSIONS: The study revealed that areas currently suitable for anthrax should be targeted for surveillance and prevention. The predicted future anthrax distribution can be used to guide and prioritise surveillance and control activities and optimise allocation of limited resources. In the marginally to moderately suitable areas, effective disease surveillance systems and awareness need to be put in place for early detection of outbreaks. Targeted vaccinations and other control measures including collaborative 'One Health' strategies need to be implemented in the predicted highly suitable areas. In the southern part where a high decrease in suitability was predicted, continued monitoring would be necessary to detect incursions early.


Assuntos
Antraz , Animais , Humanos , Antraz/epidemiologia , Antraz/veterinária , Mudança Climática , Zimbábue/epidemiologia , Ecossistema , Animais Selvagens
7.
Zoonoses Public Health ; 71(4): 392-401, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38282103

RESUMO

AIMS: Anthrax is reported with frequency but poorly understood in Southeast Asian countries including Vietnam. In Vietnam, anthrax surveillance is national. However, case detection, prevention, and control are implemented locally at the provincial level. Here, we describe the epidemiological characteristics, identify spatial clusters of human anthrax, and compare the variation in livestock anthrax vaccine coverage to disease incidence in humans and livestock using historical data in Son La province, Vietnam (2003-2020). METHODS AND RESULTS: Most human cases occurred between April and September. Most of the patients were male, aged 15-54 years old. The human cases were mainly reported by public district hospitals. There was a delay between disease onset and hospitalization of ~5 days. We identified spatial clusters of high-high incidence communes in the northern communes of the province using the local Moran's I statistic. The vaccine coverage sharply decreased across the study period. The province reported sporadic human anthrax outbreaks, while animal cases were only reported in 2005 and 2022. CONCLUSIONS: These results suggest underreporting for human and livestock anthrax in the province. Intersectoral information sharing is needed to aid livestock vaccination planning, which currently relies on reported livestock cases. The spatial clusters identify areas for targeted surveillance and livestock vaccination, while the seasonal case data suggest prioritizing vaccination campaigns for February or early March ahead of the April peak. A regional approach for studying the role of livestock trading between Son La and neighbouring provinces in anthrax occurrence is recommended.


Assuntos
Antraz , Humanos , Antraz/epidemiologia , Antraz/veterinária , Antraz/prevenção & controle , Vietnã/epidemiologia , Animais , Adolescente , Masculino , Pessoa de Meia-Idade , Adulto , Adulto Jovem , Feminino , Gado/microbiologia , Vacinas contra Antraz/administração & dosagem , Incidência , Estações do Ano , Surtos de Doenças , Criança
8.
Infect Dis Poverty ; 13(1): 6, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221635

RESUMO

BACKGROUND: Anthrax, a zoonotic disease caused by the spore-forming bacterium Bacillus anthracis, remains a major global public health concern, especially in countries with limited resources. Sierra Leone, a West African country historically plagued by anthrax, has almost been out of report on this disease in recent decades. In this study, we described a large-scale anthrax outbreak affecting both animals and humans and attempted to characterize the pathogen using molecular techniques. METHODS: The causative agent of the animal outbreak in Port Loko District, Sierra Leone, between March and May 2022 was identified using the nanopore sequencing technique. A nationwide active surveillance was implemented from May 2022 to June 2023 to monitor the occurrence of anthrax-specific symptoms in humans. Suspected cases were subsequently verified using quantitative polymerase chain reaction. Full-genome sequencing was accomplished by combining long-read and short-read sequencing methods. Subsequent phylogenetic analysis was performed based on the full-chromosome single nucleotide polymorphisms. RESULTS: The outbreak in Port Loko District, Sierra Leone, led to the death of 233 animals between March 26th and May 16th, 2022. We ruled out the initial suspicion of Anaplasma species and successfully identified B. anthracis as the causative agent of the outbreak. As a result of the government's prompt response, out of the 49 suspected human cases identified during the one-year active surveillance, only 6 human cases tested positive, all within the first month after the official declaration of the outbreak. The phylogenetic analysis indicated that the BaSL2022 isolate responsible for the outbreak was positioned in the A.Br.153 clade within the TransEuroAsian group of B. anthracis. CONCLUSIONS: We successfully identified a large-scale anthrax outbreak in Sierra Leone. The causative isolate of B. anthracis, BaSL2022, phylogenetically bridged other lineages in A.Br.153 clade and neighboring genetic groups, A.Br.144 and A.Br.148, eventually confirming the spillover of anthrax from West Africa. Given the wide dissemination of B. anthracis spores, it is highly advisable to effectively monitor the potential reoccurrence of anthrax outbreaks and to launch campaigns to improve public awareness regarding anthrax in Sierra Leone.


Assuntos
Antraz , Bacillus anthracis , Animais , Humanos , Bacillus anthracis/genética , Antraz/epidemiologia , Antraz/veterinária , Antraz/genética , Filogenia , Genoma Bacteriano , África Ocidental/epidemiologia , Surtos de Doenças
9.
Infect Dis Poverty ; 13(1): 10, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297349

RESUMO

BACKGROUND: Anthrax is a non-contagious zoonotic disease caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. Infection is common in livestock and wild animals such as cattle, goats, sheep, camels, and antelopes. In humans, anthrax may occur after contact with contaminated carcasses or animal products like milk and meat. The best method to prevent anthrax in people is to ensure livestock are vaccinated, which significantly limits the risk of zoonotic spread to humans. However, the rate of vaccination of domesticated animals kept by nomadic pastoralists in West Africa is low. These groups regularly cross over national boundaries with their grazing herds. Nigeria is a country that historically has done comparatively well to contain this public health threat. However, in 2023 several outbreaks of human disease appear linked to the consumption of anthrax-contaminated animal products brought into Nigeria by pastoralists from neighboring countries. Clinical manifestations include skin sores or ulcers, nausea, vomiting, and fever. This article aims to raise awareness of recent outbreaks of anthrax in West Africa and to call for a renewed focus on measures to combat this neglected public health concern to the region. MAIN BODY: The imperative to pinpoint pivotal issues relating to the ongoing emergence of anthrax cases in Nigeria cannot be overstated. By delving into the prevalence of anthrax in both livestock and human populations residing along Nigeria's borders, unraveling the genetic diversity and potential sources of B. anthracis strains, and identifying the primary animal host(s) responsible for transmission, we stand to enhance our understanding of this critical issue. Furthermore, investigating the multifaceted factors contributing to anthrax transmission, assessing community knowledge and practices, mapping common migratory routes of pastoralists, and formulating targeted intervention strategies tailored to the challenges of border communities, are each crucial steps towards effective control and prevention. CONCLUSION: Closing these knowledge gaps on anthrax is not only essential for safeguarding both animal and human health but also for fostering sustainable and resilient communities. Addressing research questions on these interdisciplinary concerns will undoubtedly pave the way for informed decision-making, proactive measures, and a more secure future for Nigeria and its border regions.


Assuntos
Antraz , Bacillus anthracis , Bovinos , Humanos , Animais , Ovinos , Antraz/epidemiologia , Antraz/prevenção & controle , Antraz/veterinária , Nigéria/epidemiologia , Surtos de Doenças/veterinária , Bacillus anthracis/genética , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Gado , Cabras
10.
Int J Infect Dis ; 140: 104-109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195038

RESUMO

OBJECTIVES: Bacillus anthracis infection is a worldwide zoonosis that affects the most vulnerable population and has a high mortality rate without treatment, especially in non-cutaneous presentations. Cutaneous scarification is still common in some regions of the world for the treatment of certain diseases as part of traditional medicine. We describe a series of cutaneus anthrax from a rural setting in Angola where cutaneus scarification is common. CASE PRESENTATION: This is a retrospective observational study describing a series of cutaneous anthrax cases from Cubal (Angola), many of whom were treated with skin scarification before admission. A total of 26 cases were diagnosed from January 2010 to December 2018. None of the cases were confirmed and eight (30.8%) were probable cases according to the Centers for the Disease Control and Prevention anthrax case definition. The median age was 11 (4.7-30.5) years, 17 (65.4%) had lesions on the head, face, or neck and 15 (57.7%) were treated with cutaneous scarification. Nine (34.6%) patients died. Traditional cutaneous scarification was significantly associated with cutaneous superinfection, respiratory, systemic involvement, and death. CONCLUSION: Our case series points to increased complications and worse outcome of cutaneous anthrax disease if treated with skin scarification.


Assuntos
Antraz , Bacillus anthracis , Dermatopatias Bacterianas , Criança , Humanos , Angola , Antraz/diagnóstico , Antraz/tratamento farmacológico , Antraz/epidemiologia , Antibacterianos/uso terapêutico , Dermatopatias Bacterianas/tratamento farmacológico , Dermatopatias Bacterianas/epidemiologia , Dermatopatias Bacterianas/diagnóstico , Estudos Retrospectivos
11.
Vet Res Commun ; 48(2): 623-632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37863848

RESUMO

Anthrax is a serious infection caused by Bacillus anthracis. The anthracis spores are highly resistant and can persist in the environment for several decades. Therefore, anthrax is considered a global health threat affecting wildlife, livestock, and the general public. The resistance mechanism is influenced not only by the environment or the ecological niche but also by virulence factors. In the last 10 years the Southern and Southeastern Europe have been confronted with this threat. Recently, there have been 8 human anthrax cases reported in Croatia (2022), and 4 cases in Romania (2023). Moreover, this incident and the COVID situation could be a starting point to encourage researchers to raise the alarm. On the other hand, climate change is causing glaciers to melt and land to thaw, and many wetlands and swampy areas are being drained. It should not be forgotten that epidemiological and epizootic threats significantly affect the country's economic development. The Covid-19 epidemic best illustrates these threats.


Assuntos
Antraz , Bacillus anthracis , Saúde Única , Animais , Humanos , Antraz/epidemiologia , Antraz/veterinária , Mudança Climática , Animais Selvagens
12.
J Wildl Dis ; 60(1): 179-183, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921658

RESUMO

Outbreaks of anthrax, caused by the soilborne bacterium Bacillus anthracis, are a continuous threat to free-ranging livestock and wildlife in enzootic regions of the United States, sometimes causing mass mortalities. Injectable anthrax vaccines are commercially available for use in livestock, and although hand injection is not a cost- or time-effective long-term management plan for prevention in wildlife, it may provide a tool for managers to target selectively animals of high conservation or economic value. Vaccine-induced anthrax-specific antibody responses have been reported previously in white-tailed deer (Odocoileus virginianus), but the protective nature was not determined. In this study, five white-tailed deer were subcutaneously vaccinated with one dose (1 mL) of the Anthrax Spore Vaccine. Eight blood collections by jugular venipuncture were conducted over 146 d to measure the anthrax-specific antibody response in each deer's serum over time. Antibodies were first detected by ELISA and later with toxin neutralization assays to estimate in vitro protection. Average peak absorbance by ELISA occurred at 14 d postvaccination, whereas average peak in vitro protection occurred at 28 d postvaccination. Observed in vitro protection on average for white-tailed deer after this single-dose vaccination protocol lasted 42-56 d postvaccination, although three individuals still maintained lethal toxin-neutralizing serum antibody titers out to 112 d postvaccination. Vaccination responses were variable but effective to some degree in all white-tailed deer.


Assuntos
Vacinas contra Antraz , Antraz , Bacillus anthracis , Cervos , Humanos , Animais , Antraz/prevenção & controle , Antraz/veterinária , Antraz/epidemiologia , Cervos/microbiologia , Esporos Bacterianos , Animais Selvagens/microbiologia , Vacinação/veterinária , Anticorpos Neutralizantes , Anticorpos Antibacterianos , Antígenos de Bactérias
13.
Acta Trop ; 249: 107044, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866728

RESUMO

Anthrax is reported globally with varying disease intensity and seasonality among countries. In Vietnam, anthrax epidemiology and ecology remain understudied. We used historical data of human and livestock anthrax from 2004 to 2021 in Lai Chau province, to identify spatial clusters of human and livestock anthrax, describe epidemiological characteristics, and compare livestock anthrax vaccine coverage to human and livestock disease incidence. Local Moran's I (LISA) using spatial Bayes smoothed commune-level cumulative incidence (per 10,000) for the study period, epidemiological descriptive statistics, livestock vaccine coverage data, and annual incidence rates (per 10,000) at provincial level were used. LISA identified a human anthrax hotspot (high-high) in the southeast which did not overlap spatially with livestock anthrax hotspots in southeastern and northeastern communes. Most human cases were male, aged 15-59 years, handled sick animals, and/or consumed contaminated meat. Almost all cases were reported by grassroot health facilities with a delay of 6.3 days between exposure and case notification to the national surveillance system. 80 % of human cases were reported from June-October. The increase in disease incidence occurred shortly after livestock anthrax vaccine coverage decreased. This study informs vaccination strategy and targeted surveillance and control measures in newly identified high-risk areas and seasons of anthrax.


Assuntos
Vacinas contra Antraz , Antraz , Animais , Humanos , Masculino , Feminino , Antraz/epidemiologia , Antraz/prevenção & controle , Antraz/veterinária , Gado , Vietnã/epidemiologia , Teorema de Bayes , Surtos de Doenças , Análise Espacial
14.
J Infect Public Health ; 16 Suppl 1: 141-152, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953112

RESUMO

Anthrax is more prevalent in impoverished nations and those without veterinarian public health initiatives. A comprehensive strategy was pursued to build an anthrax-free model in which there would be no anthrax. The strategy included routine vaccination, increased public awareness, rapid confirmation, and prompt disposal, as well as the establishment of an effective surveillance system, the development of an emergency prevention system, the enforcement of regulations, and the improvement of collaboration between human health and veterinary services. From 2017 through 2020, several initiatives including both social and laboratory activities were performed. After strictly applying the study's procedures, it was determined that the vast majority of community people (97.5%) were knowledgeable of the disease's nature, prevalence, significance to public health, and treatment in the study area. The farmers' risky practices and attitudes about the killing of sick livestock decreased dramatically (85%). The vaccination rate climbed from 40% to 85%, and the proportion of farmers who can presumptively identify anthrax based on its prominent clinical symptoms rose from 30% to 85%. A confirmation methodology based on PCR was implemented. A geographical map depicting the green and dangerous pastureland was created. The formation of a steering group to assess the progress of scientific activity. Locals established a slaughterhouse in that location, where individuals slaughtered their animals following veterinary examination and strictly followed drug withdrawal period. The contaminated area has been free of anthrax infection for four years as a consequence of these efforts. There also reduction of antibiotic used due to mass awareness. The study indicated that the model is an efficient, effective, and appropriate technique for establishing an anthrax-free zone where no anthrax outbreaks would occur. It could be replicated in any part of the world where socioeconomic and geographical conditions are similar.


Assuntos
Antraz , Animais , Humanos , Antraz/epidemiologia , Antraz/prevenção & controle , Antraz/veterinária , Países em Desenvolvimento , Surtos de Doenças/prevenção & controle , Saúde Pública , Gado
15.
Travel Med Infect Dis ; 56: 102659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37926374

RESUMO

BACKGROUND: Anthrax is a zoonotic infection resulting from the bacteria Bacillus anthracis. Humans contract cutaneous anthrax by coming into contact, and gastrointestinal (GI) anthrax by consumption of infected animals or animal products. An outbreak investigation was conducted to confirm the occurrence of the anthrax outbreak, comprehend its extent, understand the epidemiological characteristics, identify the outbreak's cause, and propose control measures. METHODS: A descriptive epidemiology was carried out for this outbreak investigation. We defined a suspected human cutaneous anthrax case as appearance of skin lesions and symptoms (itching/redness/swelling) and a suspected case of GI anthrax as appearance of diarrhoea/abdominal pain/vomiting in a resident of Koraput district after being associated with slaughtering and/or consumption of carcass during 5th April to 15th May 2023. The etiological hypothesis was formulated using descriptive epidemiological methods. Laboratory confirmation was performed by real-time polymerase chain reaction (RT-PCR). Statistical analyses were conducted using SPSS 25. RESULTS: A total of 47 clinically suspected anthrax cases were identified during the outbreak in five villages of Koraput district in Odisha. The epidemic curve indicated multiple point-source exposures starting from 13th April 2023. About 10 cases were identified by RT-PCR testing as confirmed cases of anthrax. No death was recorded in this outbreak investigation. CONCLUSIONS: Based on a thorough examination of epidemiological survey results and laboratory findings, we conclude that the outbreak was of human cutaneous and GI anthrax. Exposures from handling dead animals were associated with cutaneous anthrax, whereas eating uncooked meat of dead sheep was associated with gastrointestinal anthrax.


Assuntos
Antraz , Humanos , Animais , Ovinos , Antraz/epidemiologia , Antraz/diagnóstico , Antraz/microbiologia , Vômito , Surtos de Doenças , Diarreia/epidemiologia , Índia/epidemiologia
16.
J Infect Dev Ctries ; 17(8): 1076-1080, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37699094

RESUMO

INTRODUCTION: The virulence binding factor, protective antigen (pag) and poly-D-γ-glutamate capsular (cap) genes, peculiar to Bacillus anthracis are located in the pXO1 and pXO2 plasmids which are transferable horizontally to related species called "cereus group". The cereus group are usually isolated from the environmental/food samples and have been implicated in debilitating human and animal anthrax-like diseases. This study was designed to investigate the presence of the anthrax virulence genes in different Bacillus spp. isolated from handwashing facilities during COVID-19 pandemic in Lagos, Nigeria. METHODOLOGY: The Bacillus anthracis (OK316847), B. thuringiensis (OK316855), B. amyloliquefaciens (OK316857), B. cereus (OK316858) and B. thuringiensis (OK316859) previously isolated from rinsates and bowl water in two local government areas (LGAs) of Lagos state were further investigated by the polymerase chain reaction (PCR) amplification of the pag and cap genes using specific primers. RESULTS: Bacillus anthracis and B. cereus co-harboured the two 578 bp cap and 364 bp pag genes while B. thuringiensis only harboured the cap gene. Similarly, the non-cereus B. amyloliquefaciens was found to habour the pag gene. CONCLUSIONS: The two anthrax toxin genes were amplified in the Bacillus spp isolated from rinsates and bowl water used in hand washing in the two study LGAs. Given that these virulence genes have a global consequence and are a potential threat to life, this study calls for an extensive surveillance, and reassessment of gene regulators and plasmid distribution among these strains in our environment.


Assuntos
Antraz , Bacillus , COVID-19 , Animais , Humanos , Desinfecção das Mãos , Antraz/epidemiologia , Antraz/prevenção & controle , Nigéria/epidemiologia , Pandemias/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle
17.
Infect Genet Evol ; 114: 105496, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678701

RESUMO

Bacillus anthracis, the bacterial cause of anthrax, is a zoonosis affecting livestock and wildlife often spilling over into humans. In Vietnam, anthrax has been nationally reportable since 2015 with cases occurring annually, mostly in the northern provinces. In April 2022, an outbreak was reported in Son La province following the butchering of a water buffalo, Bubalus bubalis. A total of 137 humans from three villages were likely exposed to contaminated meat from the animal. Early epidemiological investigations suggested a single animal was involved in all exposures. Five B. anthracis isolates were recovered from human clinical cases along with one from the buffalo hide, another from associated maggots, and one from soil at the carcass site. The isolates were whole genome sequenced, allowing global, regional, and local molecular epidemiological analyses of the outbreak strains. All recovered B. anthracis belong to the A.Br.001/002 lineage based on canonical single nucleotide polymorphism analysis (canSNP). Although not previously identified in Vietnam, this lineage has been identified in the nearby countries of China, India, Indonesia, Thailand, as well as Australia. A twenty-five marker multi-locus variable number tandem repeat analysis (MLVA-25) was used to investigate the relationship between human, soil, and buffalo strains. Locally, four MLVA-25 genotypes were identified from the eight isolates. This level of genetic diversity is unusual for the limited geography and timing of cases and differs from past literature using MLVA-25. The coupled spatial and phylogenetic data suggest this outbreak originated from multiple, likely undetected, animal sources. These findings were further supported by local news reports that identified at least two additional buffalo deaths beyond the initial animal sampled in response to the human cases. Future outbreak response should include intensive surveillance for additional animal cases and additional molecular epidemiological traceback to identify pathogen sources.


Assuntos
Antraz , Bacillus anthracis , Animais , Humanos , Antraz/epidemiologia , Antraz/veterinária , Antraz/microbiologia , Filogenia , Vietnã/epidemiologia , Núcleo Familiar , Polimorfismo de Nucleotídeo Único , Genótipo , Surtos de Doenças
18.
Comp Immunol Microbiol Infect Dis ; 100: 102027, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517212

RESUMO

Bacillus anthracis causes anthrax disease and can affect humans and other animals. This zoonotic disease has an impact on the economic and health aspects. B. anthracis population is divided into three major clades: A (with worldwide distribution), B, and C (restricted to specific regions). Anthrax is most common in agricultural regions of central and southwestern Asia, sub-Saharan Africa, Southern and Eastern Europe, the Caribbean, and Central and South America. Here, we sequenced by short and long reads technologies to generate a hybrid assembly of a lineage of B. anthracis recovered from animal source in the 1960s in Brazil. Isolate identification was confirmed by phenotypic/biochemical tests and MALDI-TOF MS. Antimicrobial susceptibility was performed by in-house broth microdilution. B. anthracis IAL52 was susceptible to penicillin, amoxicillin, doxycycline, levofloxacin, and tetracycline but non-susceptible to ciprofloxacin. IAL52 was classified as sequence type ST2, clade A.Br.069 (V770 group). Sequencing lineages of B. anthracis, especially from underrepresented regions, can help determine the evolution of this critical zoonotic and virulent pathogen.


Assuntos
Antraz , Bacillus anthracis , Animais , Humanos , Bacillus anthracis/genética , Antraz/epidemiologia , Antraz/veterinária , Brasil/epidemiologia , Zoonoses , Sequenciamento Completo do Genoma/veterinária
19.
Vector Borne Zoonotic Dis ; 23(5): 306-309, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140464

RESUMO

Specific knowledge on the distribution of anthrax, a zoonosis caused by Bacillus anthracis, in Southeast Asia, including Vietnam, remains limited. In this study, we describe disease incidence and spatial distribution of human and livestock anthrax using spatially smoothed cumulative incidence from 2004 to 2020 in Cao Bang province, Vietnam. We employed the zonal statistics routine a geographic information system (GIS) using QGIS, and spatial rate smoothing using spatial Bayes smoothing in GeoDa. Results showed higher incidence of livestock anthrax compared with human anthrax. We also identified co-occurrence of anthrax in humans and livestock in northwestern districts and the province center. Livestock anthrax vaccine coverage was <6% and not equally distributed among the districts of Cao Bang province. We provide implications for future studies and recommend improving disease surveillance and response through data sharing between human and animal health sectors.


Assuntos
Antraz , Bacillus anthracis , Humanos , Animais , Antraz/epidemiologia , Antraz/veterinária , Antraz/prevenção & controle , Incidência , Gado , Vietnã/epidemiologia , Teorema de Bayes , Surtos de Doenças
20.
BMC Infect Dis ; 23(1): 167, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932357

RESUMO

BACKGROUND: Anthrax is a zoonotic disease caused by the Bacillus anthracis bacteria, which is one of the top five important livestock diseases and the second top priority zoonotic disease, next to rabies, in Ethiopia, which remains a major problem for animals and public health in Ethiopia. This study was conducted to verify the existence of the outbreak, determine risk factors, and implement measures to control the anthrax outbreak in Farta woreda, South Gondar zone, Northwest Ethiopia in 2019. METHODS: A community-based case-control study was conducted from March 25 to April 1, 2019. A structured questionnaire was used to collect data and for review of documents and discussion with livestock and health office staff. The collected data were analyzed by SPSS and presented in tables and graphs. RESULTS: A total of 20 human anthrax cases with an attack rate of 2.5 per 1000 population were reported from the affected kebele. The age of the cases ranged from 1 month to 65 years (median age = 37.5 years). Of the total cases, 66.7% were male and 77.8% were 15 and older. The probability of developing anthrax among people who had unvaccinated animals was higher than in those who didn't have unvaccinated animals with an AOR = 8.113 (95% CI 1.685-39.056) and the probability of getting anthrax in relation to people's awareness of anthrax was AOR = 0.114 (95% CI 0.025-0.524). CONCLUSION: An anthrax outbreak occurred in Wawa Mengera Kebele of Farta woreda. The presence of unvaccinated animals in a household was found to be a risk factor for anthrax cases. Timely animal vaccination and strengthening health education on the vaccination of animals, mode of transmission, and disposal of dead animals are essential for preventing anthrax cases.


Assuntos
Antraz , Bacillus , Animais , Humanos , Masculino , Adulto , Lactente , Feminino , Antraz/epidemiologia , Antraz/veterinária , Antraz/microbiologia , Etiópia/epidemiologia , Estudos de Casos e Controles , Zoonoses/epidemiologia , Surtos de Doenças , Gado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...