Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 305, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436646

RESUMO

Apelin and arginine-vasopressin (AVP) are conversely regulated by osmotic stimuli. We therefore hypothesized that activating the apelin receptor (apelin-R) with LIT01-196, a metabolically stable apelin-17 analog, may be beneficial for treating the Syndrome of Inappropriate Antidiuresis, in which AVP hypersecretion leads to hyponatremia. We show that LIT01-196, which behaves as a potent full agonist for the apelin-R, has an in vivo half-life of 156 minutes in the bloodstream after subcutaneous administration in control rats. In collecting ducts, LIT01-196 decreases dDAVP-induced cAMP production and apical cell surface expression of phosphorylated aquaporin 2 via AVP type 2 receptors, leading to an increase in aqueous diuresis. In a rat experimental model of AVP-induced hyponatremia, LIT01-196 subcutaneously administered blocks the antidiuretic effect of AVP and the AVP-induced increase in urinary osmolality and induces a progressive improvement of hyponatremia. Our data suggest that apelin-R activation constitutes an original approach for hyponatremia treatment.


Assuntos
Apelina/análogos & derivados , Apelina/metabolismo , Arginina Vasopressina/efeitos adversos , Diurese , Hiponatremia/patologia , Hiponatremia/fisiopatologia , Sequência de Aminoácidos , Animais , Apelina/administração & dosagem , Apelina/sangue , Receptores de Apelina/metabolismo , Arginina Vasopressina/sangue , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Linhagem Celular , Colforsina/farmacologia , AMP Cíclico/biossíntese , Desamino Arginina Vasopressina/farmacologia , Modelos Animais de Doenças , Diurese/efeitos dos fármacos , Eletrólitos/sangue , Meia-Vida , Hiponatremia/sangue , Hiponatremia/urina , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/fisiopatologia , Masculino , Camundongos , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Tolvaptan/farmacologia
2.
J Endocrinol ; 249(1): 1-18, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33504680

RESUMO

Microcirculatory injuries had been reported to be involved in diabetic cardiomyopathy, which was mainly related to endothelial cell dysfunction. Apelin, an adipokine that is upregulated in diabetes mellitus, was reported to improve endothelial cell dysfunction and attenuate cardiac insufficiency induced by ischemia and reperfusion. Therefore, it is hypothesized that apelin might be involved in alleviating endothelial cell dysfunction and followed cardiomyopathy in diabetes mellitus. The results showed that apelin improved endothelial cell dysfunction via decreasing apoptosis and expression of adhesion molecules and increasing proliferation, angiogenesis, and expression of E-cadherin, VEGFR 2 and Tie-2 in endothelial cells, which resulted in the attenuation of the capillary permeability in cardiac tissues and following diabetic cardiomyopathy. Meanwhile, the results from endothelial cell-specific APJ knockout mice and cultured endothelial cells confirmed that the effects of apelin on endothelial cells were dependent on APJ and the downstream NFκB pathways. In conclusion, apelin might reduce microvascular dysfunction induced by diabetes mellitus via improving endothelial dysfunction dependent on APJ activated NFκB pathways.


Assuntos
Receptores de Apelina/fisiologia , Apelina/fisiologia , Cardiomiopatias Diabéticas/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Microvasos/fisiopatologia , Animais , Apelina/administração & dosagem , Receptores de Apelina/deficiência , Glicemia/análise , Moléculas de Adesão Celular/análise , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/efeitos dos fármacos , NF-kappa B/metabolismo
3.
Mol Med Rep ; 23(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179090

RESUMO

Apelin­36 is able to mediate a range of effects on various diseases, and is upregulated in lipopolysaccharide (LPS)­induced acute lung injury (ALI). However, to the best of our knowledge, whether apelin­36 is able to regulate LPS­induced ALI has yet to be investigated. The present study aimed to investigate the role of apelin­36 in LPS­induced ALI, and the putative underlying mechanisms. Rats were assigned to one of four treatment groups: The Control group, apelin­36 group, LPS group and LPS + apelin­36 group. At 4 h after intratracheal instillation of LPS (5 mg/kg), rats were intraperitoneally treated with 10 nmol/kg apelin­36. Subsequently, pathological manifestations and the extent of inflammation and apoptosis of the lung tissues were assessed. Untransfected and apoptosis signal­regulating kinase 1 (ASK1)­overexpressing Beas­2B cells were treated with LPS in the absence or presence of apelin­36, and subsequently the levels of inflammation and apoptosis were assessed. The results obtained showed that the level of apelin­36 was increased in the bronchoalveolar lavage fluid (BALF) of LPS­treated rats. Co­treatment with apelin­36 alleviated LPS­induced lung injury and pulmonary edema, reduced the levels of pro­inflammatory cytokines, including interleukin­6, monocyte chemoattractant protein­1 and tumor necrosis factor­α, in BALF, and inhibited apoptosis in the lung tissues. The presence of apelin­36 also blocked the activation of LPS­induced ASK1, p38, c­Jun N­terminal kinase and extracellular signal­regulated kinase in lung tissues. In vitro studies performed with Beas­2B cells showed that the addition of apelin­36 led to an increase in the cell viability of LPS­induced Beas­2B cells in a concentration­dependent manner. Additionally, co­treatment with 1 µM apelin­36 prevented LPS­induced inflammation and apoptosis. However, overexpression of ASK1 significantly reversed the inhibitory effects of apelin­36 on LPS­induced inflammation and apoptosis. Taken together, the results of the present study demonstrated that apelin­36 was able to protect against LPS­induced lung injury both in vivo and in vitro, and these actions may be dependent on inhibition of the ASK1/mitogen­activated protein kinase signaling pathway.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Apelina/administração & dosagem , Lipopolissacarídeos/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Apelina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , MAP Quinase Quinase Quinase 5/metabolismo , Masculino , Distribuição Aleatória , Ratos
4.
Mol Cell Endocrinol ; 504: 110695, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31904406

RESUMO

Stable apelin-13 peptide analogues have shown promising acute antidiabetic effects in mice with diet-induced obesity diabetes. Here the efficacy of (pGlu)apelin-13 amide (apelin amide) and the acylated analogue (pGlu)(Lys8GluPAL)apelin-13 amide (apelin FA), were examined following chronic administration in db/db mice, a genetic model of degenerative diabetes. Groups of 9-week old male db/db mice (n = 8) received twice daily injections (09:00 and 17:00 h; i.p.) or saline vehicle, apelin amide, apelin FA, or the established incretin therapies, exendin-4(1-39) or liraglutide, all at 25 nmol/kg body weight for 21 days. Control C57BL/6J mice were given saline twice daily. No changes in body weight or food intake were observed with either apelin or liraglutide treatments, but exendin-4 showed a reduction in cumulative food intake (p < 0.01) compared with saline-treated db/db mice. Apelin analogues and incretin mimetics induced sustained improvements of glycaemia (p < 0.05 to p < 0.001, from day 9-21), lowered HbA1c at 21 days (p < 0.05) and raised plasma insulin concentrations. The treatments also improved OGTT and ipGTT with enhanced insulin responses compared with saline-treated control db/db mice (p < 0.05 to p < 0.001). Apelin amide was superior to incretin mimetics in lowering plasma triglycerides by 34% (p < 0.05). Apelin analogues unlike both incretin mimetics reduced pancreatic α-cell area (p < 0.05 to p < 0.01) and all peptide treatments enhanced pancreatic insulin content (p < 0.05 to p < 0.01). In conclusion, longer-term administration of apelin-13 analogues, induced similar and in some respects more effective metabolic improvements than incretin mimetics in db/db mice, providing a viable alternative approach for counteracting metabolic dysfunction for mild and more degenerative forms of the disease.


Assuntos
Apelina/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Doenças Metabólicas/tratamento farmacológico , Animais , Apelina/administração & dosagem , Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Incretinas/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/química , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores para Leptina/genética , Resultado do Tratamento
5.
Brain Res ; 1726: 146493, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586624

RESUMO

Parkinson's disease (PD), a common human neurodegenerative disorder, is characterized by the presence of intraneuronal Lewy bodies composed principally of abnormal aggregated and post-translationally modified α-synuclein. In our previous research, we have demonstrated the neuroprotective effect of Apelin-36, a neuroendocrine peptide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP)-lesioned PD model mice. Therefore, this study was designed to evaluate the neuroprotective mechanism of Apelin-36 against MPTP-induced neurotoxicity in mice. The results showed that MPTP-induced the depletion of dopamine in the striatum (STR) was partially reversed by Apelin-36. Apelin-36 also improved the activity of antioxidant system including superoxide dismutase (SOD) and glutathione (GSH), and decreased the overproduction of malondialdehyde (MDA) in the substantia nigra pars compacta (SNpc) and STR of MPTP-treated mice. Moreover, Apelin-36 downregulated inducible nitric oxide synthase (iNOS) and nitrated α-synuclein expression. Furthermore, Apelin-36 significantly promoted autophagy indicated by the up-regulation of LC3-II and Beclin1 and inhibition of p62 expression in the SNpc and STR of MPTP-treated mice. The protective effect of Apelin-36 was also associated with the inhibition of the apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) signaling pathway and inactivation of caspase-3. Taken together, our findings demonstrated that the neuroprotective mechanism of Apelin-36 against MPTP-induced neurotoxicity in mice might be related to decreasing the aggregation of nitrated α-synuclein and alleviating oxidative stress as well as promoting autophagy and inhibiting ASK1/JNK/caspase-3 apoptotic pathway, which provides a novel strategy for PD treatment.


Assuntos
Apelina/administração & dosagem , Apelina/metabolismo , Autofagia , Intoxicação por MPTP/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo , Animais , Autofagia/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Clin Exp Pharmacol Physiol ; 47(3): 393-402, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31630435

RESUMO

The renin-angiotensin system (RAS) has a deleterious and apelin/APJ system has protective effect on the ischaemic heart. The collaboration between these systems in the pathophysiology of myocardial infarction is not clear. We determined the effect of chronic pretreatment with apelin, losartan and their combination on ischaemia-reperfusion (IR) injury in the isolated perfused rat heart and on the expression of apelin-13 receptor (APJ) and angiotensin type 1 receptor (AT1R) in the myocardium. During 5 days before the induction of IR, saline (vehicle), apelin-13 (Apl), F13A (apelin antagonist), losartan (Los, AT1R antagonist) and the combination of Apl and Los were administered intraperitoneally in rats. Ischaemia was induced by left anterior descending (LAD) artery occlusion for 30 minutes followed by reperfusion for 55 minutes in the Langendorff isolated heart perfusion system. Pretreatment with Apl, Los and the combination of Apl + Los significantly reduced infarct size by about 30, 33 and 48 percent respectively; and significantly improved the left ventricular function indices such as left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP) and rate pressure product (RPP). IR increased AT1R protein level but it did not change APJ significantly. AT1R expression was reduced in groups treated with Apl, Los and Apl + Los. Findings showed that chronic pretreatment with apelin along with AT1R antagonist had more protective effects against IR injury. Combination therapy may diminish the risk of IR-induced heart damage, by reducing AT1R expression, in the heart of patients with coronary artery disease that are at the risk of MI and reperfusion injury.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Antiarrítmicos/administração & dosagem , Apelina/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Losartan/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Animais , Quimioterapia Combinada , Frequência Cardíaca/fisiologia , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Wistar
7.
United European Gastroenterol J ; 7(5): 689-698, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31210947

RESUMO

Introduction: Hepatic ischemic reperfusion injury occurs in multiple clinical settings. Novel potential protective agents are still needed to attenuate this injury. Apelin preconditioning protects against ischemic reperfusion injury in different organs. However, the protective mechanism of apelin on hepatic ischemic reperfusion injury is not yet clear. Aim: Evaluate the effect of apelin-13 preconditioning on hepatic ischemic reperfusion injury and clarify possible interactions between apelinergic, renin-angiotensin systems and endothelial nitric oxide synthase. Methods: In total, 60 rats were assigned to four groups: control sham-operated, ischemic reperfusion, apelin-treated ischemic reperfusion and apelin + N-nitro-L-arginine methyl ester-treated ischemic reperfusion. Apelin 2 µg/kg/day and N-nitro-L-arginine methyl ester 10 mg/kg/day were injected intraperitoneally daily for 3 days and 2 weeks respectively before hepatic ischemic reperfusion. Serum aminotransferase, aspartate aminotransferase, hepatic malondialdehyde, apelin, gene expression of caspase-3, endothelial nitric oxide synthase and angiotensin type 1 receptor and liver histopathology were compared between groups. Results: Apelin significantly reduced serum aminotransferase, aspartate aminotransferase, hepatic malondialdehyde, caspase-3 and angiotensin type 1 receptor expression, whereas hepatic apelin and endothelial nitric oxide synthase expression were significantly increased with improved hepatic histopathology. N-nitro-L-arginine methyl ester co-administration partially reversed this hepatoprotective effect. Conclusion: Apelin-13 reduced hepatic ischemic reperfusion injury. This protection could be related to the suppression of hepatic angiotensin type 1 receptor expression and elevation of hepatic apelin level and endothelial nitric oxide synthase expression, which counteracts the pathologic effects of Ang II/angiotensin type 1 receptor. An interaction exists between apelinergic, renin-angiotensin systems and endothelial nitric oxide synthase in hepatic ischemic reperfusion pathophysiology.


Assuntos
Angiotensina II/metabolismo , Apelina/administração & dosagem , Apelina/metabolismo , Precondicionamento Isquêmico/métodos , Óxido Nítrico Sintase Tipo III/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Caspase 3/genética , Modelos Animais de Doenças , Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , NG-Nitroarginina Metil Éster/administração & dosagem , NG-Nitroarginina Metil Éster/metabolismo , Ratos , Receptor Tipo 1 de Angiotensina/genética , Sistema Renina-Angiotensina/fisiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
8.
Arch Physiol Biochem ; 125(3): 244-254, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29564917

RESUMO

Apelin and its receptor (APJ) are involved in the regulation of a variety of pathophysiological processes. We studied the effect of apelin treatment on obesity-induced type 2 diabetes mellitus (T2DM) and possible interaction between apelin/APJ system and renin-angiotensin system (RAS). Forty eight male albino rats were divided into two groups: control group and diabetic group. Diabetic group was subdivided into: control diabetic, apelin-treated, apelin + losartan-treated, apelin + l-NAME-treated and losartan-treated diabetic subgroup. Administration of apelin-13 yielded an improvement of IR, dyslipidaemia, inflammation, oxidative stress with significant decrease in AT1R gene expression and significant increase in ACE2 gene expression in adipose tissues. Losartan + apelin yielded a further significant decrease in ATR1 gene expression, glycaemic indices, serum TGs and TPA versus Apelin only. Adding l-NAME in subgroup (2D) reversed the effect of apelin. We suggested that the beneficial effect of Apelin is mainly mediated by NO-activated pathway and/or ACE2/Ang (1-7) dependent pathway.


Assuntos
Apelina/administração & dosagem , Biomarcadores/análise , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 2/prevenção & controle , Óxido Nítrico/metabolismo , Obesidade/complicações , Sistema Renina-Angiotensina/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Animais , Glicemia/análise , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Insulina/metabolismo , Resistência à Insulina , Losartan/administração & dosagem , Masculino , NG-Nitroarginina Metil Éster/administração & dosagem , Obesidade/etiologia , Obesidade/patologia , Ratos
9.
Clin Exp Pharmacol Physiol ; 46(1): 29-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30225902

RESUMO

Exposure to stress induces gastrointestinal (GI) dysmotility. In rodents, acute restraint stress (ARS) inhibits gastric emptying (GE) and intestinal transit (IT) via central and peripheral corticotropin-releasing factor (CRF)-mediated pathways. Peripherally administered apelin-13 was shown to inhibit GI motor functions; moreover, stress-induced upregulation of gastric apelin content was demonstrated in rats suggesting that peripheral apelin may mediate stress-induced alterations in GI motility. We investigated the role of endogenous peripheral apelin in stress-induced GI dysfunction. GE, IT and gastro-duodenal fasting motility were measured in non-stressed (NS), CRF-injected and ARS-loaded rats. CRF and apelin receptor antagonists astressin or F13A was administered before ARS or peripheral CRF injection. Apelin and APJ receptor expressions were determined using immunohistochemistry and quantified by qRT-PCR. Double immunofluorescence was performed for enteric neuronal apelin. GE and IT were delayed by CRF and ARS. ARS-induced changes were attenuated by F13A, whereas astressin was ineffective. CRF-induced alterations in GE and IT were restored completely by astressin, while they were diminished by F13A. Antral phase III-like contractions were disturbed following ARS which were preserved by preadministration of astressin, but not F13A. CRF impaired gastric and duodenal fasting contractions, while these changes were not altered by F13A. ARS increased apelin expression in stomach and duodenum. Apelin immunoreactivity was detected in mucosa, smooth muscles and myenteric plexi, whereas dense APJ receptor expression was observed within tunica muscularis. APJ receptor was downregulated in rats fasted overnight. These results suggest that enteric apelin acts as an inhibitor stress mediator in the postprandial state.


Assuntos
Apelina/administração & dosagem , Apelina/farmacologia , Esvaziamento Gástrico/efeitos dos fármacos , Trânsito Gastrointestinal/efeitos dos fármacos , Estado Nutricional , Restrição Física/psicologia , Estresse Fisiológico/fisiologia , Animais , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Duodeno/citologia , Duodeno/efeitos dos fármacos , Duodeno/fisiologia , Jejum/fisiologia , Esvaziamento Gástrico/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Fragmentos de Peptídeos/farmacologia , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Estômago/citologia , Estômago/efeitos dos fármacos , Estômago/fisiologia , Estresse Fisiológico/efeitos dos fármacos
10.
J Physiol Pharmacol ; 70(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-32084650

RESUMO

Apelin was thought to be an adipocyte-specific hormone, but recent studies have indicated a link between apelin and placenta function e.g. cell proliferation. The aim of the study was investigating dose- and time-dependent effect of apelin on hormone secretion including steroids: progesterone (P4) and estradiol (E2) and proteins: chorionic gonadotropin (hCG), human placental lactogen (hPL), placental growth factor (PLGF), as well as protein expression of steroid enzymes (3ßHSD, CYP19) and protein hormones (hCG, hPL and PLGF) in placental cells. Syncytiotrophoblast BeWo cells, as human trophoblast models, were treated for 24, 48, and 72 hours with the human recombinant apelin at doses 0.02, 0.2, 2.0, 20 and 200 ng/ml followed by culture medium. Concentrations of the above hormones were studied by ELISA kits. Furthermore, protein expression of steroid enzymes and protein hormones were measured using Western blot. Our results showed that apelin significantly decreased both steroid and protein hormones by inhibiting steroid enzymes or protein hormone expression. Moreover, we demonstrated that apelin at dose 2.0 ng/ml increased phosphorylation of protein kinase A (PKA) from 1 to 60 min of BeWo cell incubation. Inhibitory effect of apelin on P4, E2 and PLGF secretion were abolished when BeWo cells were cultured in the presence of ML221, an apelin receptor antagonist, PD98059, an extracellular signal-regulated kinases (ERK1/2) antagonist and KT5720, a PKA antagonist. In turn, secretion of hCG and hPL occurs only in the presence of ML221 and PD98059. In conclusion, our results indicate that apelin can be considered as a gestational hormone implied in the endocrine function of the human placenta, with an important role in controlling the production of steroid and protein hormones in placental BeWo cells.


Assuntos
Receptores de Apelina/metabolismo , Apelina/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Apelina/administração & dosagem , Linhagem Celular Tumoral , Coriocarcinoma/metabolismo , Gonadotropina Coriônica/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Crescimento Placentário/metabolismo , Lactogênio Placentário/metabolismo , Gravidez , Fatores de Tempo
11.
J Neuroendocrinol ; 30(9): e12635, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30044523

RESUMO

Exposure to an acute stressor induces up-regulation of apelin and cholecystokinin (CCK) in the hypothalamic paraventricular nucleus (PVN), which is the key brain centre integrating the stress-induced alterations in neuroendocrine, autonomic and behavioural functions. We tested the hypothesis that the release of CCK from the PVN is increased by centrally administered or stress-induced up-regulated endogenous apelin via the APJ receptor. Additionally, the effect of hypothalamic CCK on autonomic outflow was investigated under basal and stressed conditions. In vivo brain microdialysis was performed in rats that received (i) intra-PVN administration of apelin-13 or (ii) acute restraint stress (ARS). For chemical stimulation of the neurones in the PVN, a high concentration of KCl was applied by reverse microdialysis. CCK-8 levels in microdialysates were quantified by an enzyme immunoassay. The immunoreactivity of the APJ receptor and CCK was detected by immunofluorescence in hypothalamic sections. Heart rate variability was assessed in rats that received PVN stimulation or ARS following pre-administration of vehicle or CCK1 receptor antagonist lorglumide. Both intra-PVN exogenous apelin-13 and ARS increased the CCK-8 levels in dialysates significantly. The ARS-induced elevations in CCK levels were reversed by intra-PVN pre-administration of the APJ receptor antagonist F13A. Within the PVN, robust APJ receptor expression was detected on the CCK-producing mediocellular cells, in addition to the parvocellular neurones in the periventricular region. Dual immunoreactivity of APJ/CCK was observed in magnocellular cells to a lesser degree. Both exogenous apelin and ARS increased the CCK immunoreactivity markedly within the PVN, which was diminished significantly by F13A. Sympathetic tonus was increased markedly both by PVN stimulation and ARS, which was attenuated by lorglumide. These results revealed the interaction between apelin and CCK in the brain, suggesting that hypothalamic CCK may contribute to the apelin-induced alterations in autonomic outflow under stressed conditions.


Assuntos
Receptores de Apelina/metabolismo , Apelina/administração & dosagem , Colecistocinina/metabolismo , Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Animais , Frequência Cardíaca/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar , Restrição Física
12.
Auton Neurosci ; 212: 17-22, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29778241

RESUMO

Centrally administered apelin has been shown to inhibit gastric emptying (GE) in rodents, however, the relevant mechanism has been investigated incompletely. Using male Wistar rats, we investigated the efferent pathways involved in gastroinhibitory action of central apelin. Stereotaxic intracerebroventricular (icv) cannulation, subdiaphragmatic vagotomy (VGX) and/or celiac ganglionectomy (CGX) were performed 7 days prior to the experiments. Apelin-13 was administered (30 nmol, icv) 90 min prior to GE measurement. Nitric oxide synthase inhibitor L-NAME (100 mg/kg), sympatholytic agent guanethidine (5 mg/kg) and/or muscarinic receptor agonist bethanechol (1 mg/kg) were administered intraperitoneally 30 min prior to the central apelin-13 injection. Two strain gages were implanted serosally onto antrum and pylorus to monitor gastric postprandial motility. Heart rate variability (HRV) analysis was performed before and after central vehicle or apelin-13 administration. Apelin-13 delayed solid GE significantly by disturbing coordinated antral and pyloric postprandial contractions. The apelin-induced delayed GE was attenuated partially by CGX or VGX, whereas it was restored completely in rats underwent both CGX and VGX. L-NAME did not change the apelin-induced alterations. Guanethidine or bethanechol restored the apelin-induced gastroinhibition partially, while it was abolished completely in rats received both agents. Apelin-13 decreased the HRV spectral activity in high-frequency range by increasing low-frequency component and the ratio of LF:HF. The present data suggest that (1) both vagal parasympathetic and sympathetic pathways play a role in apelin-induced gastroinhibition, (2) central apelin attenuates vagal cholinergic pathway rather than activating nonadrenergic-noncholinergic pathway. Apelin/APJ receptor system might be candidate for the treatment of autonomic dysfunction and gastrointestinal motor disorders.


Assuntos
Apelina/farmacologia , Sistema Nervoso Autônomo/efeitos dos fármacos , Esvaziamento Gástrico/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Animais , Apelina/administração & dosagem , Sistema Nervoso Autônomo/fisiologia , Esvaziamento Gástrico/fisiologia , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Masculino , Período Pós-Prandial/efeitos dos fármacos , Período Pós-Prandial/fisiologia , Ratos Wistar , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
13.
Hypertens Res ; 40(8): 732-737, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28275232

RESUMO

The apelin/APJ system has an important role in the regulation of vascular tone and blood pressure. Opioid receptors (OPRs) are also important cardiovascular regulators and exert many of their effects by modulating the function of other G-protein-coupled receptors. The aim of this study was to analyze the interaction of apelin and the opioid system with respect to vascular responses to apelin in rats with renovascular hypertension (two-kidney, one clip (2K1C)). Homodynamic studies were carried out in 2K1C rats. Naloxone (a nonselective OPR inhibitor) or nor-binaltorphimine dihydrochloride (norBNI, a kappa OPR inhibitor) and signaling pathway inhibitors PTX (a Gi path inhibitor) and chelerythrine (a protein kinase C (PKC) inhibitor) were administered before apelin at 20 and 40 µg kg-1. Apelin at 20 and 40 µg kg-1 decreased the systolic blood pressure by 15% and 20%, respectively (P<0.05). The pressure drop caused by apelin 20 was inhibited by naloxone, norBNI and PTX, but it was not affected by chelerythrine. The pressure drop caused by apelin 40 was augmented by naloxone and chelerythrine, and it was not affected by norBNI or PTX. The lowering effect of apelin 20 on blood pressure is exerted through OPRs and stimulation of Gi and PKC pathways. However, apelin 40 functions independently of OPRs, Gi and PKC. This dose-dependent differential effect of apelin may have potential clinical applications as opioids are currently used, and apelin has been introduced as a potential therapeutic agent in cardiovascular complications.


Assuntos
Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/uso terapêutico , Apelina/administração & dosagem , Apelina/uso terapêutico , Hipertensão Renovascular/tratamento farmacológico , Receptores Opioides/efeitos dos fármacos , Animais , Benzofenantridinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Hemodinâmica/efeitos dos fármacos , Hipertensão Renovascular/fisiopatologia , Masculino , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Wistar
14.
Brain Res Bull ; 130: 67-74, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28065733

RESUMO

Apelin, a small bioactive peptide, plays an important role in the pathogenesis of mood disorders through the endogenous ligand APJ. Although the anxiolytic effect of apelin is well established, the mechanisms are poorly understood. In this study, we hypothesized that apelin played an anxiolytic role in chronic normobaric hypoxia (CNH)-induced anxiety like behavior in mice, which might be associated with an inhibition of nuclear factor-κB (NF-κB) activation in the hippocampus. To this end, mice were exposed in a normobaric hypoxic chamber with a fraction of inspired oxygen (FIO2, ∼10%, 23h/d) with or without apelin-13 application (20 nmolkg-1d-1, i.p.), for 4 weeks. The anxiety-like behavior was tested by elevated plus maze and open field. Activities of NF-κB, microglial, and related signaling pathways in the hippocampus during this pathological process were examined. We found that CNH treatment decreased APJ but increased Iba-1 proteins expression, as well as nucleus translocation of p50 and p65 in the hippocampus, which were reversed by apelin-13 treatment. In addition, apelin-13 treatment ameliorated CNH-induced anxiety-like behavior in mice, suggesting anxiogenic effect of apelin-13 might be mediated by an inhibition of NF-κB activation in microglial of the hippocampus. Furthermore, apelin-13 treatment reversed p-CAMKII decrease in the hippocampus under CNH treatment. Apelin-13 treatment did not affect anxiety-like behavior and relative proteins expression in normoxia control mice. Finally, we found that rats with CNH treatment decreased APJ expression while enhanced NF-κB activation in the hippocampus, providing additional evidences that NF-κB activation in hippocampus in CNH-induced anxiety-like behavior in rats we reported previously might be associated with an inhibition of APJ activity. In conclusion, the present results illustrated that inhibition of APJ and promotion of NF-κB activation in the microglial of hippocampus might be involved in anxiogenic effect in CNH-exposed mice, and apelin-13 ameliorates CNH-induced anxiety-like behavior might be associated with an inhibition of NF-κB activation.


Assuntos
Ansiedade/metabolismo , Apelina/metabolismo , Hipocampo/metabolismo , NF-kappa B/metabolismo , Animais , Apelina/administração & dosagem , Receptores de Apelina/metabolismo , Comportamento Animal , Hipocampo/efeitos dos fármacos , Hipóxia , Masculino , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
15.
Sci Rep ; 6: 31849, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549402

RESUMO

Apelin is a bioactive peptide involved in the control of energy metabolism. In the hypothalamus, chronic exposure to high levels of apelin is associated with an increase in hepatic glucose production, and then contributes to the onset of type 2 diabetes. However, the molecular mechanisms behind deleterious effects of chronic apelin in the brain and consequences on energy expenditure and thermogenesis are currently unknown. We aimed to evaluate the effects of chronic intracerebroventricular (icv) infusion of apelin in normal mice on hypothalamic inflammatory gene expression, energy expenditure, thermogenesis and brown adipose tissue functions. We have shown that chronic icv infusion of apelin increases the expression of pro-inflammatory factors in the hypothalamus associated with an increase in plasma interleukin-1 beta. In parallel, mice infused with icv apelin exhibit a significant lower energy expenditure coupled to a decrease in PGC1alpha, PRDM16 and UCP1 expression in brown adipose tissue which could explain the alteration of thermogenesis in these mice. These data provide compelling evidence that central apelin contributes to the development of type 2 diabetes by altering energy expenditure, thermogenesis and fat browning.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Apelina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Apelina/administração & dosagem , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Infusões Intraventriculares , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...