Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(23): 12967-12974, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814790

RESUMO

Structure-activity relationships of diazinoyl nicotinic insecticides (diazinoyl isomers and 5- or 6-substituted pyrazin-2-oyl analogues) are considered in terms of affinity to the insect nicotinic acetylcholine receptor (nAChR) and insecticidal activity against the imidacloprid-resistant brown planthopper. Among the test compounds, 3-(6-chloropyridin-3-ylmethyl)-2-(pyrazinoyl)iminothiazoline shows the highest potency in nAChR affinity and insecticidal activity. Aplysia californica acetylcholine binding protein (AChBP) mutants (Y55W + Q57R and Y55W + Q57T) are utilized to compare molecular recognition of nicotinic insecticides with diverse pharmacophores. N-nitro- or N-cyanoimine imidacloprid or acetamiprid, respectively, exhibits a high affinity to these AChBP mutants at a similar potency level. Intriguingly, the pyrazin-2-oyl analogue has a higher affinity to AChBP Y55W + Q57R than that to Y55W + Q57T, thereby indicating that pyrazine nitrogen atoms contact Arg57 guanidinium and Trp55 indole NH. Furthermore, nicotine prefers AChBP Y55W + Q57T over Y55W + Q57R, conceivably suggesting that the protonated nicotine is repulsed by Arg57 guanidinium, consistent with its inferior potency to insect nAChR.


Assuntos
Hemípteros , Proteínas de Insetos , Inseticidas , Neonicotinoides , Receptores Nicotínicos , Animais , Inseticidas/química , Inseticidas/farmacologia , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Hemípteros/química , Hemípteros/genética , Hemípteros/efeitos dos fármacos , Hemípteros/metabolismo , Relação Estrutura-Atividade , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Neonicotinoides/química , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Nitrocompostos/química , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Aplysia/química , Aplysia/metabolismo , Aplysia/genética , Nicotina/química , Nicotina/metabolismo , Nicotina/análogos & derivados , Nicotina/farmacologia
2.
Virology ; 589: 109890, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951086

RESUMO

Two recent studies documented the genome of a novel, extremely large (35.9 kb), nidovirus in RNA sequence databases from the marine neural model Aplysia californica. The goal of the present study was to document the distribution and transcriptional dynamics of this virus, Aplysia abyssovirus 1 (AAbV), in maricultured and wild animals. We confirmed previous findings that AAbV RNA is widespread and reaches extraordinary levels in apparently healthy animals. Transmission electron microscopy identified viral replication factories in ciliated gill epithelial cells but not in neurons where viral RNA is most highly expressed. Viral transcripts do not exhibit evidence of discontinuous RNA synthesis as in coronaviruses but are consistent with production of a single leaderless subgenomic RNA, as in the Gill-associated virus of Penaeus monodon. Splicing patterns in chronically infected adults suggested high levels of defective genomes, possibly explaining the lack of obvious disease signs in high viral load animals.


Assuntos
Aplysia , Nidovirales , Animais , Aplysia/genética , Nidovirales/genética , RNA Viral/genética , Microscopia Eletrônica de Transmissão
3.
Gen Comp Endocrinol ; 345: 114393, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865149

RESUMO

Gonadotropin-releasing hormone (GnRH) superfamily comprises multiple families of signaling peptides in both protostomes and deuterostomes. Among this superfamily, vertebrate GnRH stimulates reproduction, but other GnRH superfamily members elicit diverse pleiotropic effects. Within the GnRH superfamily members, adipokinetic hormone (AKH) and its receptor are well described in ecdysozoans but understudied in other lineages. To fill this knowledge gap, we deorphanized a putative receptor for a lophotrochozoan AKH in a gastropod mollusk, Aplysia californica, and named it Aplca-AKHR. Phylogenetic analysis revealed an orthologous relationship of Aplca-AKHR with ecdysozoan AKHRs and other putative lophotrochozoan AKHRs. Aplca-AKHR bound specifically to the previously identified Aplca-AKH with high affinity and activated the inositol phosphate pathway. Aplca-AKHR was expressed widely among central and peripheral tissues, but most prominently in several central ganglia and the heart. The expression of Aplca-AKHR was downregulated by a hyposaline challenge, consistent with a role in volume and fluid regulation previously described for its ligand, Aplca-AKH. In summary, this is the first pairing of a lophotrochozoan AKH with its cognate receptor. Expression data further support diverse central and peripheral roles, including volume and fluid control, of this ligand/receptor pair.


Assuntos
Gastrópodes , Hormônios de Inseto , Animais , Aplysia/genética , Aplysia/metabolismo , Sequência de Aminoácidos , Gastrópodes/metabolismo , Filogenia , Ligantes , Hormônio Liberador de Gonadotropina/metabolismo , Hormônios de Inseto/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo
4.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-104281

RESUMO

The cytoplasmic polyadenylation element (CPE)-binding protein (CPEB) binds to CPE containing mRNAs on their 3' untranslated regions (3'UTRs). This RNA binding protein comes out many important tasks, especially in learning and memory, by modifying the translational efficiency of target mRNAs via poly (A) tailing. Overexpressed CPEB has been reported to induce the formation of stress granules (SGs), a sort of RNA granule in mammalian cell lines. RNA granule is considered to be a potentially important factor in learning and memory. However, there is no study about RNA granule in Aplysia. To examine whether an Aplysia CPEB, ApCPEB1, forms RNA granules, we overexpressed ApCPEB1-EGFP in Aplysia sensory neurons. Consistent with the localization of mammalian CPEB, overexpressed ApCPEB1 formed granular structures, and was colocalized with RNAs and another RNA binding protein, ApCPEB, showing that ApCPEB1 positive granules are RNA-protein complexes. In addition, ApCPEB1 has a high turnover rate in RNA granules which were mobile structures. Thus, our results indicate that overexpressed ApCPEB1 is incorporated into RNA granule which is a dynamic structure in Aplysia sensory neuron. We propose that ApCPEB1 granule might modulate translation, as other RNA granules do, and furthermore, influence memory.


Assuntos
Animais , Aplysia/genética , Recuperação de Fluorescência Após Fotodegradação , RNA/genética , Células Receptoras Sensoriais/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA