Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38504517

RESUMO

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Assuntos
Doença de Alzheimer , Apolipoproteína E2 , Modelos Animais de Doenças , Terapia Genética , Camundongos Transgênicos , Microglia , Placa Amiloide , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/etiologia , Camundongos , Terapia Genética/métodos , Humanos , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Microglia/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores
2.
Alzheimers Res Ther ; 16(1): 7, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212861

RESUMO

BACKGROUND: APOE4 is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), whereas APOE2 confers protection. However, effects of APOE on neurodegeneration in cognitively intact individuals, and how these associations evolve with cognitive decline, are unclear. Furthermore, few studies have evaluated whether effects of APOE on neurodegenerative changes are modified by other AD key risk factors including age and sex. METHODS: Participants included older adults (57% women; 77 ± 7 years) from the Rancho Bernardo Study of Health Aging and the University of California San Diego Alzheimer's Disease Research Center, including 192 cognitively normal (CN) individuals and 33 with mild cognitive impairment. Participants underwent diffusion MRI, and multicompartment restriction spectrum imaging (RSI) metrics were computed in white matter, gray matter, and subcortical regions of interest. Participants were classified as APOE4 carriers, APOE2 carriers, and APOE3 homozygotes. Analysis of covariance among CN (adjusting for age, sex, and scanner) assessed differences in brain microstructure by APOE, as well as interactions between APOE and sex. Analyses across all participants examined interactions between APOE4 and cognitive status. Linear regressions assessed APOE by age interactions. RESULTS: Among CN, APOE4 carriers showed lower entorhinal cortex neurite density than non-carriers, whereas APOE2 carriers showed lower cingulum neurite density than non-carriers. Differences in entorhinal microstructure by APOE4 and in entorhinal and cingulum microstructure by APOE2 were present for women only. Age correlated with lower entorhinal restricted isotropic diffusion among APOE4 non-carriers, whereas age correlated with lower putamen restricted isotropic diffusion among APOE4 carriers. Differences in microstructure between cognitively normal and impaired participants were stronger for APOE4-carriers in medial temporal regions, thalamus, and global gray matter, but stronger for non-carriers in caudate. CONCLUSIONS: The entorhinal cortex may be an early target of neurodegenerative changes associated with APOE4 in presymptomatic individuals, whereas APOE2 may support beneficial white matter and entorhinal microstructure, with potential sex differences that warrant further investigation. APOE modifies microstructural patterns associated with aging and cognitive impairment, which may advance the development of biomarkers to distinguish microstructural changes characteristic of normal brain aging, APOE-dependent pathways, and non-AD etiologies.


Assuntos
Doença de Alzheimer , Apolipoproteína E2 , Apolipoproteína E4 , Disfunção Cognitiva , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/genética , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Idoso de 80 Anos ou mais
3.
FEBS Lett ; 598(3): 347-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38279679

RESUMO

The low-density lipoprotein (LDL) receptor-related protein (LRP)1 participates in the metabolism of apolipoprotein (apo) E-containing lipoproteins (apoE-LP). We investigated the effects of modifications of cysteine (Cys)-thiol of apoE on LRP1-mediated metabolism. Among the three isoforms, apoE2-LP exhibited the lowest affinity for LRP1 but was significantly catabolized, whereas apoE4-LP was sufficiently bound to LRP1 but showed the lowest catabolic capability. The reduction enhanced the binding and suppressed the catabolism of apoE3-LP, but had no effect on apoE2-LP. The formation of disulfide-linked complexes with apoAII suppressed binding, but enhanced the catabolism of apoE2-LP. Redox modifications of apoE-Cys-thiol may modulate the LRP1-mediated metabolism of apoE2- or apoE3-LP, but not apoE4-LP. The failure of this function may be involved in the pathophysiology of dyslipidemia.


Assuntos
Apolipoproteínas E , Compostos de Sulfidrila , Apolipoproteína E2/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Triglicerídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Transporte
4.
Brain Struct Funct ; 229(1): 231-249, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091051

RESUMO

APOE allelic variation is critical in brain aging and Alzheimer's disease (AD). The APOE2 allele associated with cognitive resilience and neuroprotection against AD remains understudied. We employed a multipronged approach to characterize the transition from middle to old age in mice with APOE2 allele, using behavioral assessments, image-derived morphometry and diffusion metrics, structural connectomics, and blood transcriptomics. We used sparse multiple canonical correlation analyses (SMCCA) for integrative modeling, and graph neural network predictions. Our results revealed brain sub-networks associated with biological traits, cognitive markers, and gene expression. The cingulate cortex emerged as a critical region, demonstrating age-associated atrophy and diffusion changes, with higher fractional anisotropy in males and middle-aged subjects. Somatosensory and olfactory regions were consistently highlighted, indicating age-related atrophy and sex differences. The hippocampus exhibited significant volumetric changes with age, with differences between males and females in CA3 and CA1 regions. SMCCA underscored changes in the cingulate cortex, somatosensory cortex, olfactory regions, and hippocampus in relation to cognition and blood-based gene expression. Our integrative modeling in aging APOE2 carriers revealed a central role for changes in gene pathways involved in localization and the negative regulation of cellular processes. Our results support an important role of the immune system and response to stress. This integrative approach offers novel insights into the complex interplay among brain connectivity, aging, and sex. Our study provides a foundation for understanding the impact of APOE2 allele on brain aging, the potential for detecting associated changes in blood markers, and revealing novel therapeutic intervention targets.


Assuntos
Doença de Alzheimer , Conectoma , Humanos , Pessoa de Meia-Idade , Feminino , Masculino , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Alelos , Encéfalo/metabolismo , Envelhecimento/genética , Cognição , Perfilação da Expressão Gênica , Atrofia/patologia
5.
Cancer Res ; 83(18): 3013-3025, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37335131

RESUMO

The secreted lipid transporter apolipoprotein E (APOE) plays important roles in atherosclerosis and Alzheimer's disease and has been implicated as a suppressor of melanoma progression. The APOE germline genotype predicts human melanoma outcomes, with APOE4 and APOE2 allele carriers exhibiting prolonged and reduced survival, respectively, relative to APOE3 homozygotes. While the APOE4 variant was recently shown to suppress melanoma progression by enhancing antitumor immunity, further work is needed to fully characterize the melanoma cell-intrinsic effects of APOE variants on cancer progression. Using a genetically engineered mouse model, we showed that human germline APOE genetic variants differentially modulate melanoma growth and metastasis in an APOE2>APOE3>APOE4 manner. The low-density lipoprotein receptor-related protein 1 (LRP1) receptor mediated the cell-intrinsic effects of APOE variants on melanoma progression. Protein synthesis was a tumor cell-intrinsic process differentially modulated by APOE variants, with APOE2 promoting translation via LRP1. These findings reveal a gain-of-function role for the APOE2 variant in melanoma progression, which may aid in predicting melanoma patient outcomes and understanding the protective effect of APOE2 in Alzheimer's disease. SIGNIFICANCE: APOE germline variants impact melanoma progression through disparate mechanisms, such as the protein synthesis-promoting function of the APOE2 variant, indicating that germline genetic variants are causal contributors to metastatic outcomes.


Assuntos
Doença de Alzheimer , Melanoma , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Proteínas de Transporte , Melanoma/genética
6.
Cells ; 12(3)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766690

RESUMO

(1) Background: Apolipoprotein E (ApoE) is a critical plasma apolipoprotein for lipid transport and nonlipid-related functions. Humans possess three isoforms of ApoE (2, 3, and 4). ApoE2, which exhibits beneficial effects on cardiac health, has not been adequately studied. (2) Methods: We investigated the cardiac phenotypes of the humanized ApoE knock-in (hApoE KI) rats and compared to wild-type (WT) and ApoE knock-out (ApoE KO) rats using echocardiography, ultrasound, blood pressure measurements, histology strategies, cell culture, Seahorse XF, cardiomyocyte contractility and intracellular Ca2+ tests, and Western blotting; (3) Results: hApoE2 rats exhibited enhanced heart contractile function without signs of detrimental remodeling. Isolated adult hApoE2 cardiomyocytes had faster and stronger sarcomere contractility because of more mitochondrial energy generation and stimulation-induced fast and elevated intracellular Ca2+ transient. The abundant energy is a result of elevated mitochondrial function via fatty acid ß-oxidation. The fast and elevated Ca2+ transient is associated with decreased sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2) and increased expression of cardiac ryanodine receptor 2 (RyR2) conducting a potent Ca2+ release from SR.; (4) Conclusions: Our studies validated the association of polymorphic ApoEs with cardiac health in the rat model, and revealed the possible mechanisms of the protective effect of ApoE2 against heart diseases.


Assuntos
Miócitos Cardíacos , Retículo Sarcoplasmático , Ratos , Humanos , Animais , Miócitos Cardíacos/metabolismo , Apolipoproteína E2/metabolismo , Apolipoproteína E2/farmacologia , Retículo Sarcoplasmático/metabolismo , Ecocardiografia
7.
Cells ; 12(3)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36766752

RESUMO

Apolipoprotein E4 (ApoE4) is the most recognized genetic risk factor for late-onset Alzheimer's disease (LOAD), whereas ApoE2 reduces the risk for LOAD. The underlying mechanisms are unclear but may include effects on brain energy metabolism. Here, we used neuro-2a (N2a) cells that stably express human ApoE isoforms (N2a-hApoE), differentiated N2a-hApoE neuronal cells, and humanized ApoE knock-in mouse models to investigate relationships among ApoE isoforms, glycolytic metabolism, and neuronal health and aging. ApoE2-expressing cells retained robust hexokinase (HK) expression and glycolytic activity, whereas these endpoints progressively declined with aging in ApoE4-expressing cells. These divergent ApoE2 and ApoE4 effects on glycolysis directly correlated with markers of cellular wellness. Moreover, ApoE4-expressing cells upregulated phosphofructokinase and pyruvate kinase with the apparent intent of compensating for the HK-dependent glycolysis reduction. The introduction of ApoE2 increased HK levels and glycolysis flux in ApoE4 cells. PI3K/Akt signaling was distinctively regulated by ApoE isoforms but was only partially responsible for the ApoE-mediated effects on HK. Collectively, our findings indicate that human ApoE isoforms differentially modulate neuronal glycolysis through HK regulation, with ApoE2 upregulating and ApoE4 downregulating, which markedly impacts neuronal health during aging. These findings lend compelling support to the emerging inverse-Warburg theory of AD and highlight a therapeutic opportunity for bolstering brain glycolytic resilience to prevent and treat AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Camundongos , Humanos , Animais , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Doença de Alzheimer/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apolipoproteínas E/genética , Glicólise , Envelhecimento , Isoformas de Proteínas/metabolismo
8.
J Neurochem ; 165(1): 55-75, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36549843

RESUMO

Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Camundongos , Humanos , Animais , Apolipoproteína E4/genética , Astrócitos/metabolismo , Apolipoproteínas E/metabolismo , Doença de Alzheimer/metabolismo , Bainha de Mielina/metabolismo , Colesterol/metabolismo , Diferenciação Celular , Apolipoproteína E3/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo
9.
Hepatobiliary Pancreat Dis Int ; 22(2): 179-189, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36243659

RESUMO

BACKGROUND: Apolipoprotein E2 (ApoE2) is a pleiotropic protein that influences several aspects of cancer metabolism and development. Evading apoptosis is a vital factor for facilitating cancer cell growth. However, the role and mechanism of ApoE2 in regulating cell apoptosis of pancreatic cancer remain unclear. METHODS: In this study, we firstly detected the mRNA and protein expressions of ApoE2 in PANC-1 and Capan-2 cells by real-time polymerase chain reaction and Western blotting. We then performed TUNEL and flow cytometric analyses to explore the role of recombinant human ApoE2, pCMV6-ApoE2 and siApoE2 in the apoptosis of PANC-1 and Capan-2 cells. Furthermore, we investigated the molecular mechanism through which ApoE2 affected apoptosis in PANC-1 cells using immunofluorescence, immunoprecipitation, Western blotting and co-immunoprecipitation analysis. RESULTS: ApoE2 phosphorylated ERK1/2 and inhibited pancreatic cancer cell apoptosis. In addition, our data showed that ApoE2/ERK1/2 altered the expression and mitochondrial localization of BCL-2 via activating CREB. ApoE2/ERK1/2/CREB also increased the total BCL-2/BAX ratio, inhibited the opening of the mitochondrial permeability transition pore and the depolarization of mitochondrial transmembrane potential, blocked the leakage of cytochrome-c and the formation of the apoptosome, and consequently, suppressed mitochondrial apoptosis. CONCLUSIONS: ApoE2 regulates the mitochondrial localization and expression of BCL-2 through the activation of the ERK1/2/CREB signaling cascade to evade the mitochondrial apoptosis of pancreatic cancer cells. ApoE2 may be a distinct prognostic marker and a potential therapeutic target for pancreatic cancer.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas , Humanos , Apolipoproteína E2/metabolismo , Apoptose , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neoplasias Pancreáticas
10.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361733

RESUMO

The association between APOE genotypes and cardiovascular disease (CVD) is partially mediated by LDL-cholesterol concentration but persists after adjusting for lipid levels and other cardiovascular risk factors. Data from the Aragon Workers Health Study (AWHS) (n = 4159) and the Lipid Unit at the Hospital Universitario Miguel Servet (HUMS) (n = 3705) were used to investigate the relationship between C-reactive protein (CRP) levels and APOE genotype. Lipoprotein particle and GlycA concentrations were analyzed in a subsample from AWHS. APOE genotyping was carried out by the Sanger method in both cohorts. APOE4 carriers had significantly lower levels of CRP than APOE3 carriers. Furthermore, APOE4 carriers had cholesterol-enriched LDL particles compared to APOE2 carriers. APOE4 carriers also had higher concentrations of small, medium, and large LDL particles. CRP levels were not associated with lipoprotein particle number, size, or composition. GlycA levels were not associated with APOE genotypes. However, GlycA levels were significantly associated with the size and the amount of cholesterol contained in HDL, VLDL, and LDL particles. APOE genotype influences CRP concentration regardless of lipid profile. APOE2 carriers showed the highest CRP levels, followed by APOE3 and APOE4. A more atherogenic lipid profile, but not inflammatory markers could partly explain the higher CVD risk observed in APOE4 carriers.


Assuntos
Apolipoproteína E4 , Doenças Cardiovasculares , Humanos , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Metabolismo dos Lipídeos/genética , Apolipoproteína E2/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Genótipo , LDL-Colesterol/metabolismo , Colesterol , Inflamação/genética , Doenças Cardiovasculares/genética
11.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077289

RESUMO

A preponderance of evidence obtained from genetically modified mice and human population studies reveals the association of apolipoprotein E (apoE) deficiency and polymorphisms with pathogenesis of numerous chronic diseases, including atherosclerosis, obesity/diabetes, and Alzheimer's disease. The human APOE gene is polymorphic with three major alleles, ε2, ε3 and ε4, encoding apoE2, apoE3, and apoE4, respectively. The APOE gene is expressed in many cell types, including hepatocytes, adipocytes, immune cells of the myeloid lineage, vascular smooth muscle cells, and in the brain. ApoE is present in subclasses of plasma lipoproteins, and it mediates the clearance of atherogenic lipoproteins from plasma circulation via its interaction with LDL receptor family proteins and heparan sulfate proteoglycans. Extracellular apoE also interacts with cell surface receptors and confers signaling events for cell regulation, while apoE expressed endogenously in various cell types regulates cell functions via autocrine and paracrine mechanisms. This review article focuses on lipoprotein transport-dependent and -independent mechanisms by which apoE deficiency or polymorphisms contribute to cardiovascular disease, metabolic disease, and neurological disorders.


Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose , Doenças Cardiovasculares , Animais , Apolipoproteína E2/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Aterosclerose/genética , Doenças Cardiovasculares/metabolismo , Humanos , Camundongos , Receptores de LDL/genética
12.
Drug Metab Dispos ; 50(10): 1414-1428, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35878927

RESUMO

Cadmium (Cd) exposure is associated with increased Alzheimer's disease (AD) risks. The human Apolipoprotein E (ApoE) gene encodes a lipid-transporting protein that is critical for brain functions. Compared with ApoE2 and E3, ApoE4 is associated with increased AD risk. Xenobiotic biotransformation-related genes have been implicated in the pathogenesis of AD. However, little is known about the effects of Cd, ApoE, and sex on drug-processing genes. We investigated the Cd-ApoE interaction on the transcriptomic changes in the brains and livers of ApoE3/ApoE4 transgenic mice. Cd disrupts the transcriptomes of transporter and drug-processing genes in brain and liver in a sex- and ApoE-genotype-specific manner. Proinflammation related genes were enriched in livers of Cd-exposed ApoE4 males, whereas circadian rhythm and lipid metabolism related genes were enriched in livers of Cd-exposed ApoE3 females. In brains, Cd up-regulated the arachidonic acid-metabolizing Cyp2j isoforms only in the brains of ApoE3 mice, whereas the dysregulation of cation transporters was male-specific. In livers, several direct target genes of the major xenobiotic-sensing nuclear receptor pregnane X receptor were uniquely upregulated in Cd-exposed ApoE4 males. There was a female-specific hepatic upregulation of the steroid hormone-metabolizing Cyp2 isoforms and the bile acid synthetic enzyme Cyp7a1 by Cd exposure. The dysregulated liver transporters were mostly involved in intermediary metabolism, with the most significant response observed in ApoE3 females. In conclusion, Cd dysregulated the brain and liver drug-processing genes in a sex- and ApoE-genotype specific manner, and this may serve as a contributing factor for the variance in the susceptibility to Cd neurotoxicity. SIGNIFICANCE STATEMENT: Xenobiotic biotransformation plays an important role in modulating the toxicity of environmental pollutants. The human ApoE4 allele is the strongest genetic risk factor for AD, and cadmium (Cd) is increasingly recognized as an environmental factor of AD. Very little is known regarding the interactions between Cd exposure, sex, and the genes involved in xenobiotic biotransformation in brain and liver. The present study has addressed this critical knowledge gap.


Assuntos
Doença de Alzheimer , Poluentes Ambientais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Animais , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Apolipoproteína E2/farmacologia , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/farmacologia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/farmacologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Ácido Araquidônico/metabolismo , Ácidos e Sais Biliares/metabolismo , Encéfalo/metabolismo , Cádmio/toxicidade , Poluentes Ambientais/metabolismo , Feminino , Predisposição Genética para Doença , Hormônios/metabolismo , Hormônios/farmacologia , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptor de Pregnano X/metabolismo , Isoformas de Proteínas/metabolismo , Xenobióticos/metabolismo
13.
Eur J Neurosci ; 56(9): 5476-5515, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35510513

RESUMO

The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Doença de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
14.
Stem Cell Reports ; 17(1): 110-126, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34919811

RESUMO

The apolipoprotein E4 (APOE4) variant is the strongest genetic risk factor for Alzheimer disease (AD), while the APOE2 allele is protective. A major question is how different APOE genotypes affect the physiology of astrocytes, the main APOE-producing brain cells. Here, we differentiated human APOE-isogenic induced pluripotent stem cells (iPSCs) (APOE4, E3, E2, and APOE knockout [APOE-KO]) to functional "iAstrocytes". Mass-spectrometry-based proteomic analysis showed genotype-dependent reductions of cholesterol and lipid metabolic and biosynthetic pathways (reduction: APOE4 >E3 >E2). Cholesterol efflux and biosynthesis were reduced in APOE4 iAstrocytes, while subcellular localization of cholesterol in lysosomes was elevated. An increase in immunoregulatory proteomic pathways (APOE4 >E3 >E2) was accompanied by elevated cytokine release in APOE4 cells (APOE4 >E3 >E2 >KO). Activation of iAstrocytes exacerbated proteomic changes and cytokine secretion mostly in APOE4 iAstrocytes, while APOE2 and APOE-KO iAstrocytes were least affected. Taken together, APOE4 iAstrocytes reveal a disease-relevant phenotype, causing dysregulated cholesterol/lipid homeostasis, increased inflammatory signaling, and reduced ß-amyloid uptake, while APOE2 iAstrocytes show opposing effects.


Assuntos
Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Astrócitos/metabolismo , Diferenciação Celular/genética , Homeostase , Células-Tronco Pluripotentes Induzidas/citologia , Alelos , Apolipoproteína E2/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Ciclo Celular/genética , Colesterol/metabolismo , Genótipo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Metabolismo dos Lipídeos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
15.
J Biol Chem ; 297(3): 101106, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34425108

RESUMO

Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport-dependent and lipid transport-independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE-/- mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE-/- mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport-independent manner.


Assuntos
Apolipoproteína E2/metabolismo , Apolipoproteína E4/metabolismo , Aterosclerose/genética , Animais , Apolipoproteína E2/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Feminino , Humanos , Inflamação , Lipoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/metabolismo , Transdução de Sinais
16.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209175

RESUMO

Apolipoprotein E (ApoE) isoforms exert intricate effects on cellular physiology beyond lipid transport and metabolism. ApoEs influence the onset of Alzheimer's disease (AD) in an isoform-dependent manner: ApoE4 increases AD risk, while ApoE2 decreases it. Previously we demonstrated that syndecans, a transmembrane proteoglycan family with increased expression in AD, trigger the aggregation and modulate the cellular uptake of amyloid beta (Aß). Utilizing our previously established syndecan-overexpressing cellular assays, we now explore how the interplay of ApoEs with syndecans contributes to key events, namely uptake and aggregation, in Aß pathology. The interaction of ApoEs with syndecans indicates isoform-specific characteristics arising beyond the frequently studied ApoE-heparan sulfate interactions. Syndecans, and among them the neuronal syndecan-3, increased the cellular uptake of ApoEs, especially ApoE2 and ApoE3, while ApoEs exerted opposing effects on syndecan-3-mediated Aß uptake and aggregation. ApoE2 increased the cellular internalization of monomeric Aß, hence preventing its extracellular aggregation, while ApoE4 decreased it, thus helping the buildup of extracellular plaques. The contrary effects of ApoE2 and ApoE4 remained once Aß aggregated: while ApoE2 reduced the uptake of Aß aggregates, ApoE4 facilitated it. Fibrillation studies also revealed ApoE4's tendency to form fibrillar aggregates. Our results uncover yet unknown details of ApoE cellular biology and deepen our molecular understanding of the ApoE-dependent mechanism of Aß pathology.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E2/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/metabolismo , Agregados Proteicos , Sindecana-3/metabolismo , Linhagem Celular Tumoral , Humanos , Isoformas de Proteínas
17.
Atherosclerosis ; 325: 57-62, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33892328

RESUMO

BACKGROUND AND AIMS: Familial dysbetalipoproteinemia (FD), characterized by remnant lipoprotein accumulation and premature cardiovascular disease, occurs in homozygous carriers of the APOE ε2 allele, but genetic predisposition alone does not suffice for the clinical phenotype. Cross-sectional studies suggest that a second metabolic hit - notably adiposity or insulin resistance - is required, but the association between these risk factors and development of FD has not been studied prospectively. METHODS: For this study, we evaluated 18,987 subjects from two large prospective Dutch population-based cohorts (PREVEND and Rotterdam Study) of whom 118 were homozygous APOE ε2 carriers. Of these, 69 subjects were available for prospective analyses. Dyslipidemia - likely to be FD - was defined as fasting triglyceride (TG) levels >3 mmol/L in untreated subjects or use of lipid lowering medication. The effect of weight, body mass index (BMI), waist circumference, type 2 diabetes mellitus and non-TG metabolic syndrome on development of dyslipidemia was investigated. RESULTS: Eleven of the 69 ε2ε2 subjects (16%) developed dyslipidemia - likely FD - during follow-up. Age-, sex- and cohort-adjusted risk factors for the development of FD were BMI (OR 1.19; 95%CI 1.04-1.39), waist circumference (OR 1.26 95%CI 1.01-1.61) and presence of non-TG metabolic syndrome (OR 4.39; 95%CI 1.04-18.4) at baseline. Change in adiposity during follow-up was not associated with development of dyslipidemia. CONCLUSIONS: Adiposity increases the risk of developing an FD-like lipid phenotype in homozygous APOE ε2 subjects. These results stress the importance of healthy body weight in subjects at risk of developing FD.


Assuntos
Apolipoproteína E2 , Diabetes Mellitus Tipo 2 , Dislipidemias , Adiposidade/genética , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Estudos Transversais , Dislipidemias/diagnóstico , Dislipidemias/epidemiologia , Dislipidemias/genética , Humanos , Estudos Prospectivos
18.
Elife ; 92020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33074098

RESUMO

Although the ε2 allele of apolipoprotein E (APOE2) benefits longevity, its mechanism is not understood. The protective effects of the APOE2 on Alzheimer's disease (AD) risk, particularly through their effects on amyloid or tau accumulation, may confound APOE2 effects on longevity. Herein, we showed that the association between APOE2 and longer lifespan persisted irrespective of AD status, including its neuropathology, by analyzing clinical datasets as well as animal models. Notably, APOE2 was associated with preserved activity during aging, which also associated with lifespan. In animal models, distinct apoE isoform levels, where APOE2 has the highest, were correlated with activity levels, while some forms of cholesterol and triglycerides were associated with apoE and activity levels. These results indicate that APOE2 can contribute to longevity independent of AD. Preserved activity would be an early-observable feature of APOE2-mediated longevity, where higher levels of apoE2 and its-associated lipid metabolism might be involved.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E2/genética , Metabolismo dos Lipídeos , Longevidade/genética , Doença de Alzheimer/mortalidade , Animais , Apolipoproteína E2/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos
19.
Nat Commun ; 11(1): 4727, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948752

RESUMO

The apolipoprotein E (APOE) gene contains both the major common risk variant for late onset Alzheimer's disease (AD), e4, and the major neuroprotective variant, e2. Here we examine the association of APOE e2 with multiple neurodegenerative pathologies, leveraging the NACC v. 10 database of 1557 brains that included 130 e2 carriers and 679 e4 carriers in order to examine potential neuroprotective effects. For AD-related pathologies of amyloid plaques and Braak stage, e2 had large and highly significant protective effects contrasted with e3/e3 and e4 carriers with odds ratios of about 0.50 for e3 contrasts and 0.10 for e4 contrasts. When we separately examined e2/e4 carriers, risk for AD pathologies was similar to that of e4 carriers, not e2 carriers. For multiple fronto-temporal lobar pathologies and tauopathies, e2 was not significantly associated with pathology. In sum, we found that e2 was associated with large but circumscribed protective effects.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Genótipo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Modelos Logísticos , Masculino , Placa Amiloide/patologia , Tauopatias/metabolismo , alfa-Sinucleína/metabolismo
20.
Trends Endocrinol Metab ; 31(11): 872-883, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32684408

RESUMO

Apolipoprotein E (ApoE) is a glycoprotein consisting of 299 amino acids, highly produced in the mammalian ovaries. The main function of the ApoE is to transport cholesterol from the peripheral tissues to be metabolized in the liver. In humans, the ApoE gene is polymorphic, with three alleles in a single chromosome-19 locus: APOE2, APOE3, and APOE4. ApoE has also been implicated in cholesterol transport within ovarian follicles to regulate steroidogenesis. Ovarian thecal and granulosa cell cholesterol uptake requires ApoE either by participating in the lipoprotein-receptor complex or lipid endocytosis. In this review, we summarize ApoE role on mammalian ovarian steroidogenesis and on human fertility and discuss recent findings of ApoE4 as an antagonistic pleiotropy gene under adverse environments.


Assuntos
Apolipoproteínas E/farmacologia , Ovário/metabolismo , Animais , Apolipoproteína E2/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Cromossomos Humanos Par 19/metabolismo , Feminino , Humanos , Ovário/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...