Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Sci Signal ; 17(824): eadg9256, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377179

RESUMO

High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.


Assuntos
Apolipoproteínas , Lipocalinas , Humanos , Camundongos , Animais , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Lipocalinas/metabolismo , Lipocalinas/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Apolipoproteínas M , Inflamação , Lipoproteínas HDL/farmacologia , Lipoproteínas HDL/metabolismo , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Esfingosina
2.
Eur J Obstet Gynecol Reprod Biol ; 292: 8-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37948929

RESUMO

OBJECTIVE: Tibolone is a synthetic steroid with estrogenic, androgenic and progestogenic properties that is used as hormone replacement therapy (HRT) in postmenopausal women. Treatment with tibolone has been demonstrated to lead to changes of the lipid profile, including alterations in lipoprotein (a) and apolipoprotein levels. Hence, we conducted the present meta-analysis of randomized controlled trials (RCTs) to assess the effect of tibolone treatment on apolipoproteins and lipoprotein (a) values in postmenopausal women. METHODS: Several databases (Cochrane Library, PubMed/Medline, Scopus, and Google Scholar) were searched for English-language manuscripts published up to September 2023 that scrutinized the effects of tibolone administration on apolipoprotein A-I (ApoA-I), apolipoprotein A-II (ApoA-II), apolipoprotein B (ApoB), and lipoprotein (a) in postmenopausal women. The results were reported as the weighted mean difference (WMD) with a 95% confidence interval (CI), generated using a random-effects model. RESULTS: Finally, 12 publications with 13 RCT arms were included in the current meta-analysis. The overall results from the random-effects model demonstrated a notable reduction in ApoA-I (n = 9 RCT arms, WMD: -34.96 mg/dL, 95 % CI: -42.44, -27.48, P < 0.001) and lipoprotein (a) (n = 12 RCT arms, WMD: -7.49 mg/dl, 95 % CI: -12.17, -2.81, P = 0.002) after tibolone administration in postmenopausal women. However, treatment with tibolone did not impact ApoA- II (n = 4 RCT arms, WMD: 1.32 mg/dL, 95 % CI: -4.39, 7.05, P = 0.64) and ApoB (n = 9 RCT arms, WMD: -2.68 mg/dL, 95 % CI: -20.98, 15.61, P = 0.77) values. In the subgroup analyses, we noticed a notable decrease in lipoprotein (a) levels when tibolone was prescribed to females aged < 60 years (WMD: -10.78 mg/dl) and when it was prescribed for ≤ 6 months (WMD: -15.69 mg/dl). CONCLUSION: The present meta-analysis of RCTs highlighted that treatment with tibolone reduces lipoprotein (a) and apolipoprotein A-I levels in postmenopausal women. As the decrease in serum lipids' concentrations is associated with a decrease in the risk of cardiovascular disease (CVD), treatment with tibolone could be a suitable therapy for postmenopausal women with elevated CVD risk.


Assuntos
Apolipoproteína A-I , Doenças Cardiovasculares , Feminino , Humanos , Apolipoproteína A-I/farmacologia , Lipoproteína(a)/farmacologia , Pós-Menopausa , Ensaios Clínicos Controlados Aleatórios como Assunto , Apolipoproteínas/farmacologia , Apolipoproteínas B/farmacologia , Doenças Cardiovasculares/prevenção & controle
3.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958938

RESUMO

The rupture of an abdominal aortic aneurysm (AAA) causes about 200,000 deaths worldwide each year. However, there are currently no effective drug therapies to prevent AAA formation or, when present, to decrease progression and rupture, highlighting an urgent need for more research in this field. Increased vascular inflammation and enhanced apoptosis of vascular smooth muscle cells (VSMCs) are implicated in AAA formation. Here, we investigated whether hydralazine, which has anti-inflammatory and anti-apoptotic properties, inhibited AAA formation and pathological hallmarks. In cultured VSMCs, hydralazine (100 µM) inhibited the increase in inflammatory gene expression and apoptosis induced by acrolein and hydrogen peroxide, two oxidants that may play a role in AAA pathogenesis. The anti-apoptotic effect of hydralazine was associated with a decrease in caspase 8 gene expression. In a mouse model of AAA induced by subcutaneous angiotensin II infusion (1 µg/kg body weight/min) for 28 days in apolipoprotein E-deficient mice, hydralazine treatment (24 mg/kg/day) significantly decreased AAA incidence from 80% to 20% and suprarenal aortic diameter by 32% from 2.26 mm to 1.53 mm. Hydralazine treatment also significantly increased the survival rate from 60% to 100%. In conclusion, hydralazine inhibited AAA formation and rupture in a mouse model, which was associated with its anti-inflammatory and anti-apoptotic properties.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Animais , Camundongos , Angiotensina II/farmacologia , Anti-Inflamatórios/farmacologia , Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/metabolismo , Apolipoproteínas/farmacologia , Apolipoproteínas E , Apoptose , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Biochem Biophys Res Commun ; 686: 149158, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-37922574

RESUMO

Caspase-11 is an inflammatory caspase that triggers an inflammatory response by regulating non-canonical NLRP3 inflammasome activation. Although the deficiency of both caspase-11 and caspase-1, another inflammatory caspase that functions as an executor of the inflammasome, prevents the development of atherosclerosis, the effect of caspase-11 deficiency alone on the development of atherosclerosis has not been fully evaluated. In the present study, we found that caspase-11 deficiency prevented the formation of the necrotic core, whereas it did not affect the development of atherosclerosis in Apoe-deficient mice. Notably, the infiltration of neutrophils into atherosclerotic lesions was attenuated by caspase-11 deficiency. RNA-seq analysis of stage-dependent expression of atherosclerotic lesions revealed that both upregulations of caspase-11 and neutrophil migration are common features of advanced atherosclerotic lesions. Furthermore, similar expression profiles were observed in unstable human plaque. These data suggest that caspase-11 regulates neutrophil recruitment and plaque destabilization in advanced atherosclerotic lesions.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Inflamassomos/metabolismo , Caspases , Infiltração de Neutrófilos , Camundongos Knockout , Aterosclerose/metabolismo , Placa Aterosclerótica/patologia , Apolipoproteínas E/genética , Apolipoproteínas/farmacologia , Camundongos Endogâmicos C57BL
5.
J Cardiovasc Pharmacol Ther ; 28: 10742484231205204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37814541

RESUMO

INTRODUCTION: This study evaluated the efficacy and safety of a single-pill triple-combination of olmesartan/amlodipine/rosuvastatin (Olme/Amlo/Rosu) in comparison with a single-pill dual-combination of olmesartan/amlodipine (Olme/Amlo) in hypertensive patients with low-to-moderate cardiovascular risk. METHODS: This multicenter, active-control, randomized study included 106 hypertensive patients at low-to-moderate cardiovascular risk who were randomly assigned to receive either Olme/Amlo/Rosu 20/5/5 mg (Treatment 1), Olme/Amlo/Rosu 20/5/10 mg (Treatment 2), or Amlo/Olme 20/5 mg (Control) once daily for 8 weeks. The primary endpoint was the difference of the percent change in low-density lipoprotein cholesterol (LDL-C) level at 8 weeks from baseline in the 3 groups. RESULTS: The difference in the least square mean percent change (standard deviation) of LDL-C in the Treatment 1 and 2 groups compared with the Control group at 8 weeks was -32.6 (3.7) % and -45.9 (3.3) %, respectively (P < .001). The achievement rates of LDL-C level <100 mg/dL at 8 weeks were significantly different between the 3 groups (65.8%, 86.7%, and 6.3% for Treatment 1, 2, and Control groups, respectively, P < .001). The results of total cholesterol, triglycerides, high-density lipoprotein cholesterol, apolipoprotein B, and apolipoprotein B/apolipoprotein A1 were superior in the Treatment 1 and 2 groups compared with the Control group. Serious adverse drug reaction did not occur in the 3 groups. Medication adherence rates were excellent in the 3 groups (98.0% for Treatment 1 group, 99.7% for Treatment 2 group, and 96.3% for the Control group, P > .05). CONCLUSION: Single-pill triple-combination of olmesartan/amlodipine/rosuvastatin was superior to the single-pill dual-combination of amlodipine/olmesartan in LDLC-lowering effects, with excellent safety profiles and adherence rates, in hypertensive patients at low-to-moderate cardiovascular risk.Trial Registration: CLinicalTrials.gov identifier NCT04120753.


Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Anlodipino , Rosuvastatina Cálcica/efeitos adversos , Anti-Hipertensivos/efeitos adversos , LDL-Colesterol , Doenças Cardiovasculares/tratamento farmacológico , Quimioterapia Combinada , Fatores de Risco , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Fatores de Risco de Doenças Cardíacas , Apolipoproteínas/farmacologia , Apolipoproteínas/uso terapêutico , Resultado do Tratamento , Método Duplo-Cego , Combinação de Medicamentos , Pressão Sanguínea
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(2): 232-241, 2023 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-36946043

RESUMO

OBJECTIVE: To study the role of apolipoprotein E (APOE) in regulating endometrial cancer metastasis and explore the signaling pathway in the regulatory mechanism. METHODS: Human endometrial cancer cell line HEC-1B was transfected with a control siRNA (siCtrl) or a specific siRNA targeting APOE (siAPOE) or with either pEGFP-N1 plasmid or an APOEoverexpressing plasmid. The changes in migration, proliferation, apoptosis and cell cycle of the transfected cells were examined using wound healing assay, Transwell migration assay, MTT assay, flow cytometry, and Hoechst staining. The activity of the ERK/MMP9 signaling pathway in the transfected cells was assessed using RT-qPCR and Western blotting. The expression level of APOE in clinical specimens of endometrial cancer tissues were detected using immunohistochemistry and its correlation with differentiation of endometrial cancer tissues was analyzed. RESULTS: Wound healing assay and Transwell migration assay showed that compared with those in siCtrl group, HEC-1B cells transfected with siAPOE showed significantly reduced migration ability (P < 0.05), whereas APOE overexpression significantly promoted the migration of the cells (P < 0.05). Neither APOE knockdown nor overexpression produced significant effects on HEC-1B cell proliferation as shown by MTT assay and flow cytometry. Hoechst staining revealed that transfection with siAPOE did not significantly affect apoptosis of HEC-1B cells. APOE knockdown obviously reduced and APOE overexpression enhanced ERK phosphorylation and MMP9 expression in HEC-1B cells (P < 0.05). Treatment with U0126 partially reversed the effects of APOE overexpression on ERK phosphorylation, migration and MMP9 expression in HEC-1B cells (P < 0.05). APOE is highly expressed in clinical samples of endometrial cancer tissues as compared with the adjacent tissues. CONCLUSION: APOE is highly expressed in endometrial cancer tissues to promote cancer cell migration by enhancing ERK phosphorylation and MMP9 expression.


Assuntos
Neoplasias do Endométrio , Metaloproteinase 9 da Matriz , Feminino , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias do Endométrio/genética , Proliferação de Células , Apoptose , Movimento Celular , RNA Interferente Pequeno , Apolipoproteínas E , Apolipoproteínas/farmacologia
7.
Int J Biol Macromol ; 236: 123998, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906203

RESUMO

Apolipoprotein E (ApoE), a protein closely related to various metabolic diseases, is recently considered to play an essential role in bone metabolism. However, the effect and mechanism of ApoE on implant osseointegration have not been clarified. This study aims to investigate the influence of additional ApoE supplementation in regulating the osteogenesis-lipogenesis balance on bone marrow mesenchymal stem cells (BMMSCs) cultured on titanium surface, and the effect of ApoE on the osseointegration of titanium implants. In vivo, the bone volume/total volume (BV/TV) and the bone-implant contact (BIC) significantly elevated in the exogenous supplement of ApoE group, compared with the Normal group. Meanwhile, the adipocyte area proportion around the implant dramatically decreased after 4-week healing. In vitro, the additional ApoE substantially drove the osteogenic differentiation of BMMSCs cultured on the titanium surface and inhibit their lipogenic differentiation as well as lipid droplet accumulation. These results suggest that ApoE, by mediating the differentiation of stem cells on the surface of titanium with this macromolecular protein, is deeply involved in facilitating titanium implant osseointegration, which reveals the potential mechanism and proposes a promising solution for further improving the osseointegration of titanium implants.


Assuntos
Osseointegração , Osteogênese , Titânio/farmacologia , Lipogênese , Apolipoproteínas E , Apolipoproteínas/farmacologia , Propriedades de Superfície
8.
Transl Res ; 258: 16-34, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36805561

RESUMO

Diabetic nephropathy remains a common cause of end-stage renal failure and its associated mortality around the world. Sphingosine 1-phosphate (S1P) is a multifunctional lipid mediator and binds to HDL via apolipoprotein M (ApoM). Since HDL has been reported to be epidemiologically associated with kidney disease, we attempted to investigate the involvement of the ApoM/S1P axis in the pathogenesis/progression of diabetic nephropathy. In type 2 diabetic patients, the serum ApoM levels were inversely correlated with the clinical stage of diabetic nephropathy. The decline in the eGFR over a 5-year observation period proceeded more rapidly in subjects with lower serum ApoM levels. In a mouse model of streptozotocin-induced diabetes, deletion of ApoM deteriorated the phenotypes of diabetic nephropathy: the urinary albumin and plasma creatinine levels increased, the kidneys enlarged, and renal fibrosis and thickening of the basement membrane progressed. On the other hand, overexpression of ApoM ameliorated these phenotypes. These protective effects of ApoM were partially inhibited by treatment with VPC23019, an antagonist of S1P1 and S1P3, but not by treatment with JTE013, an antagonist of S1P2. ApoM/S1P axis attenuated activation of the Smad3 pathway, while augmented eNOS phosphorylation through the S1P1 pathway. Moreover, ApoM/S1P increased the SIRT1 protein levels and enhanced mitochondrial functions by increasing the S1P content of the cell membrane, which might cause selective activation of S1P1. ApoM might be a useful biomarker for predicting the progression of diabetic nephropathy, and the ApoM/S1P-S1P1 axis might serve as a novel therapeutic target for preventing the development/progression of diabetic nephropathy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Apolipoproteínas M/genética , Apolipoproteínas M/metabolismo , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Nefropatias Diabéticas/prevenção & controle , Esfingosina
9.
Drug Deliv ; 30(1): 2173333, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36718920

RESUMO

Liposomes are versatile carriers that can encapsulate various drugs; however, for delivery to the brain, they must be modified with a targeting ligand or other modifications to provide blood-brain barrier (BBB) permeability, while avoiding rapid clearance by reticuloendothelial systems through polyethylene glycol (PEG) modification. BBB-penetrating peptides act as brain-targeting ligands. In this study, to achieve efficient brain delivery of liposomes, we screened the functionality of eight BBB-penetrating peptides reported previously, based on high-throughput quantitative evaluation methods with in vitro BBB permeability evaluation system using Transwell, in situ brain perfusion system, and others. For apolipoprotein E mimetic tandem dimer peptide (ApoEdp), which showed the best brain-targeting and BBB permeability in the comparative evaluation of eight peptides, its lipid conjugate with serine-glycine (SG)5 spacer (ApoEdp-SG-lipid) was newly synthesized and ApoEdp-modified PEGylated liposomes were prepared. ApoEdp-modified PEGylated liposomes were effectively associated with human brain capillary endothelial cells via the ApoEdp sequence and permeated the membrane in an in vitro BBB model. Moreover, ApoEdp-modified PEGylated liposomes accumulated in the brain 3.9-fold higher than PEGylated liposomes in mice. In addition, the ability of ApoEdp-modified PEGylated liposomes to localize beyond the BBB into the brain parenchyma in mice was demonstrated via three-dimensional imaging with tissue clearing. These results suggest that ApoEdp-SG-lipid modification is an effective approach for endowing PEGylated liposomes with the brain-targeting ability and BBB permeability.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Animais , Humanos , Camundongos , Apolipoproteínas/farmacologia , Encéfalo , Células Endoteliais , Lipídeos/farmacologia , Lipossomos/farmacologia , Peptídeos/farmacologia , Polietilenoglicóis/farmacologia , Apolipoproteínas E
10.
Inhal Toxicol ; 35(3-4): 86-100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35037817

RESUMO

OBJECTIVE: Environmental exposures exacerbate age-related pathologies, such as cardiovascular and neurodegenerative diseases. Nanoparticulates, and specifically carbon nanomaterials, are a fast-growing contributor to the category of inhalable pollutants, whose risks to health are only now being unraveled. The current study assessed the exacerbating effect of age on multiwalled-carbon nanotube (MWCNT) exposure in young and old C57BL/6 and ApoE-/- mice. MATERIALS AND METHODS: Female C57BL/6 and apolipoprotein E-deficient (ApoE-/-) mice, aged 8 weeks and 15 months, were exposed to 0 or 40 µg MWCNT via oropharyngeal aspiration. Pulmonary inflammation, inflammatory bioactivity of serum, and neurometabolic changes were assessed at 24 h post-exposure. RESULTS: Pulmonary neutrophil infiltration was induced by MWCNT in bronchoalveolar lavage fluid in both C57BL/6 and ApoE-/-. Macrophage counts decreased with MWCNT exposure in ApoE-/- mice but were unaffected by exposure in C57BL/6 mice. Older mice appeared to have greater MWCNT-induced total protein in lavage fluid. BALF cytokines and chemokines were elevated with MWCNT exposure, but CCL2, CXCL1, and CXCL10 showed reduced responses to MWCNT in older mice. However, no significant serum inflammatory bioactivity was detected. Cerebellar metabolic changes in response to MWCNT were modest, but age and strain significantly influenced metabolite profiles assessed. ApoE-/- mice and older mice exhibited less robust metabolite changes in response to exposure, suggesting a reduced health reserve. CONCLUSIONS: Age influences the pulmonary and neurological responses to short-term MWCNT exposure. However, with only the model of moderate aging (15 months) in this study, the responses appeared modest compared to inhaled toxicant impacts in more advanced aging models.


Assuntos
Nanotubos de Carbono , Feminino , Animais , Camundongos , Nanotubos de Carbono/toxicidade , Camundongos Endogâmicos C57BL , Pulmão , Líquido da Lavagem Broncoalveolar , Inflamação/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Exposição por Inalação/efeitos adversos
11.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735979

RESUMO

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Triglicerídeos/metabolismo , Fígado/metabolismo , Lipoproteínas VLDL/metabolismo
12.
Exp Gerontol ; 172: 112055, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36521567

RESUMO

BACKGROUND AND AIM: The administration of 17ß-estradiol plus norethisterone acetate seems to confer women cardioprotection, however, its impact on lipoprotein (a) and apolipoproteins' concentrations remains unclear. Thus, we conducted a meta-analysis of randomized controlled trials (RCTs) to investigate the effect of 17ß-estradiol plus norethisterone acetate treatment on lipoprotein (a) and apolipoproteins' values in females. METHODS: We systematically searched four databases (PubMed/MEDLINE, Scopus, Embase, and Web of Science) to identify relevant publications published until March 9th, 2022. No language restrictions were applied. The random-effects model (the DerSimonian and Laird methods) was employed to calculate the weighted mean difference (WMD). RESULTS: The administration of 17ß-estradiol plus norethisterone acetate resulted in a significant decrease of lipoprotein (a) (WMD: -67.59 mg/L, 95 % CI: -106.39 to -28.80; P < 0.001) and apolipoprotein B concentrations (WMD: -3.71 mg/dL, 95 % CI: -6.68 to -0.75; P = 0.014), respectively. No effect of 17ß-estradiol plus norethisterone acetate on apolipoprotein AI (WMD: 0.23 mg/dL, 95 % CI: -3.99 to 4.46; P = 0.91) or AII (WMD: 0.21 mg/dL, 95 % CI: -2.24 to 2.68; P = 0.86) concentrations was detected. In the stratified analysis, there was a notable reduction in lipoprotein (a) levels in the RCTs with a duration of ≥6 months (WMD: -73.34 mg/L), in postmenopausal women with a BMI ≥25 kg/m2 (WMD: -69.85 mg/L) and in postmenopausal women aged ˂60 years (WMD: -61.93 mg/L). CONCLUSION: The present meta-analysis of RCTs demonstrates that 17ß-estradiol plus norethisterone acetate treatment reduces lipoprotein (a) and apolipoprotein B levels in postmenopausal women.


Assuntos
Lipoproteína(a) , Noretindrona , Feminino , Humanos , Apolipoproteínas/farmacologia , Estradiol/farmacologia , Lipídeos , Lipoproteína(a)/farmacologia , Noretindrona/farmacologia , Acetato de Noretindrona/farmacologia , Pós-Menopausa , Ensaios Clínicos Controlados Aleatórios como Assunto , Apolipoproteínas B
13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-971520

RESUMO

OBJECTIVE@#To study the role of apolipoprotein E (APOE) in regulating endometrial cancer metastasis and explore the signaling pathway in the regulatory mechanism.@*METHODS@#Human endometrial cancer cell line HEC-1B was transfected with a control siRNA (siCtrl) or a specific siRNA targeting APOE (siAPOE) or with either pEGFP-N1 plasmid or an APOEoverexpressing plasmid. The changes in migration, proliferation, apoptosis and cell cycle of the transfected cells were examined using wound healing assay, Transwell migration assay, MTT assay, flow cytometry, and Hoechst staining. The activity of the ERK/MMP9 signaling pathway in the transfected cells was assessed using RT-qPCR and Western blotting. The expression level of APOE in clinical specimens of endometrial cancer tissues were detected using immunohistochemistry and its correlation with differentiation of endometrial cancer tissues was analyzed.@*RESULTS@#Wound healing assay and Transwell migration assay showed that compared with those in siCtrl group, HEC-1B cells transfected with siAPOE showed significantly reduced migration ability (P < 0.05), whereas APOE overexpression significantly promoted the migration of the cells (P < 0.05). Neither APOE knockdown nor overexpression produced significant effects on HEC-1B cell proliferation as shown by MTT assay and flow cytometry. Hoechst staining revealed that transfection with siAPOE did not significantly affect apoptosis of HEC-1B cells. APOE knockdown obviously reduced and APOE overexpression enhanced ERK phosphorylation and MMP9 expression in HEC-1B cells (P < 0.05). Treatment with U0126 partially reversed the effects of APOE overexpression on ERK phosphorylation, migration and MMP9 expression in HEC-1B cells (P < 0.05). APOE is highly expressed in clinical samples of endometrial cancer tissues as compared with the adjacent tissues.@*CONCLUSION@#APOE is highly expressed in endometrial cancer tissues to promote cancer cell migration by enhancing ERK phosphorylation and MMP9 expression.


Assuntos
Feminino , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias do Endométrio/genética , Proliferação de Células , Apoptose , Movimento Celular , RNA Interferente Pequeno , Apolipoproteínas E , Apolipoproteínas/farmacologia
14.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1057-1067, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35983977

RESUMO

WWP2 is a HECT-type E3 ubiquitin ligase that regulates various physiological and pathological activities by binding to different substrates, but its role in atherosclerosis (AS) remains largely unknown. The objective of the present study is to investigate the role and underlying molecular mechanisms of WWP2 in endothelial injury. We found that WWP2 expression is significantly decreased in Apolipoprotein E (ApoE) -/- mice. Overexpression of WWP2 attenuates oxidative stress and inflammation in AS mice, while knockdown of WWP2 has opposite effects. WWP2 overexpression alleviates oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cell (HUVEC) injury, evidenced by the decreased oxidative stress levels and the secretion of inflammatory cytokines. Programmed cell death 4 (PDCD4) is identified as a potential substrate of WWP2. Co-immunoprecipitation (Co-IP) further demonstrates that WWP2 interacts with PDCD4, which is enhanced by ox-LDL treatment. Furthermore, the level of PDCD4 ubiquitination is significantly increased by WWP2 overexpression under the condition of MG132 treatment, while WWP2 knockdown shows opposite results. Subsequently, rescue experiments demonstrate that WWP2 knockdown further aggravates oxidative stress and inflammation in ox-LDL-treated HUVECs, while knockdown of PDCD4 alleviates this effect. Moreover, the use of sn-protoporphyrin (SnPP), an inhibitor of HO-1 pathway, confirms that PDCD4 enhances endothelial injury induced by ox-LDL through inhibiting HO-1 pathway. In conclusion, our results suggest that WWP2 protects against atherosclerosis progression via the PDCD4/HO-1 pathway, which may provide a novel treatment strategy for atherosclerosis.


Assuntos
Aterosclerose , Protoporfirinas , Animais , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Apolipoproteínas E/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Estresse Oxidativo , Protoporfirinas/metabolismo , Protoporfirinas/farmacologia , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Exp Neurol ; 353: 114051, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35314147

RESUMO

The prevalence and burden of CNS disorders are increasing significantly due to the increase in life span and population. The contemporary need in CNS drug discovery is to develop the therapy that can halt the disease progression (disease-modifying therapy). While developing such CNS therapies, the major bottleneck is the blood-brain barrier (BBB) impermeability of drugs that influences the development of effective therapies to treat various CNS disorders. Since the influential innovation of insulin to treat diabetic patients in the 1920s, a lot of attention has been given for producing therapeutic proteins and peptides as remedies for several diseases, including neurological disorders. Recently, researchers have explored therapeutic potential of apolipoprotein E (ApoE)-mimetic peptides in the same context. ApoE is the major apolipoprotein produced in the brain by the astrocytes and plays a significant role in the formation of synapses, myelination, and neuronal proliferation. ApoE can be a potential candidate for treating CNS disorders. However, the large size of the ApoE leads to the BBB impermeability that restricts its use in native form. This problem can be overcome by developing small ApoE-mimetic peptides with good BBB permeability and similar biological function as native ApoE. Various ApoE-mimetic peptides have been developed and investigated in different CNS disorders. This review provide insights into the latest development of ApoE and its mimetic peptides in CNS disorders, along with their beneficial outcomes.


Assuntos
Apolipoproteínas E , Doenças do Sistema Nervoso Central , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Barreira Hematoencefálica/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Humanos , Peptídeos/farmacologia
16.
Biol Open ; 11(1)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34878094

RESUMO

Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied. Here, we characterized microglial expression of apoc1 in the zebrafish central nervous system (CNS) in situ and demonstrate that in the CNS, apoc1 expression is unique to microglia. We then examined the effects of PPAR/RXR and LXR/RXR modulation on microglial expression of apoc1 and apoeb during early CNS development using a pharmacological approach. Changes in apoc1 and apoeb transcripts in response to pharmacological modulation were quantified by RT-qPCR in whole heads, and in individual microglia using hybridization chain reaction (HCR) in situ hybridization. We found that expression of apoc1 and apoeb by microglia were differentially regulated by LXR/RXR and PPAR/RXR modulating compounds, respectively, during development. Our results also suggest RXR receptors could be involved in endogenous induction of apoc1 expression by microglia. Collectively, our work supports the use of zebrafish to better understand regulation and function of these apolipoproteins in the CNS.


Assuntos
Microglia , Peixe-Zebra , Animais , Apolipoproteínas/genética , Apolipoproteínas/farmacologia , Receptores X de Retinoides/genética , Receptores X de Retinoides/farmacologia , Retinoides/farmacologia , Peixe-Zebra/genética
17.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922158

RESUMO

Eosinophils are key components of our host defense and potent effectors in allergic and inflammatory diseases. Once recruited to the inflammatory site, eosinophils release their cytotoxic granule proteins as well as cytokines and lipid mediators, contributing to parasite clearance but also to exacerbation of inflammation and tissue damage. However, eosinophils have recently been shown to play an important homeostatic role in different tissues under steady state. Despite the tremendous progress in the treatment of eosinophilic disorders with the implementation of biologics, there is an unmet need for novel therapies that specifically target the cytotoxic effector functions of eosinophils without completely depleting this multifunctional immune cell type. Recent studies have uncovered several endogenous molecules that decrease eosinophil migration and activation. These include short chain fatty acids (SCFAs) such as butyrate, which are produced in large quantities in the gastrointestinal tract by commensal bacteria and enter the systemic circulation. In addition, high-density lipoprotein-associated anti-inflammatory apolipoproteins have recently been shown to attenuate eosinophil migration and activation. Here, we focus on the anti-pathogenic properties of SCFAs and apolipoproteins on eosinophil effector function and provide insights into the potential use of SCFAs and apolipoproteins (and their mimetics) as effective agents to combat eosinophilic inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Apolipoproteínas/farmacologia , Eosinofilia/complicações , Eosinófilos/patologia , Ácidos Graxos Voláteis/farmacologia , Inflamação/tratamento farmacológico , Animais , Humanos , Inflamação/etiologia , Inflamação/patologia
18.
Future Microbiol ; 15: 1015-1032, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32811181

RESUMO

Aim: This study investigated the effect of an insect antimicrobial protein, apolipophorin III (apoLp-III), against two newly isolated, identified and characterized clinical strains of Staphylococcus spp. Materials & methods: Both strains were identified by 16S rRNA sequencing and metabolic and phenotypic profiling. The antibacterial activity of apoLp-III was tested using a colony counting assay. ApoLp-III interaction with bacterial cell surface was analyzed by Fourier transform IR spectroscopy. Results:Staphylococcus epidermidis and Staphylococcus capitis were identified. ApoLp-III exerted a dose-dependent bactericidal effect on the tested strains. The differences in the Staphylococcus spp. surface components may contribute to the various sensitivities of these strains to apoLp-III. Conclusion: ApoLp-III may provide a baseline for development of antibacterial preparations against Staphylococcus spp. involved in dermatological problems.


Assuntos
Antibacterianos/farmacologia , Apolipoproteínas/farmacologia , Proteínas de Insetos/farmacocinética , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/isolamento & purificação , Animais , Antibacterianos/química , Apolipoproteínas/química , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Testes de Sensibilidade Microbiana , Mariposas , Staphylococcus/genética , Staphylococcus/crescimento & desenvolvimento
19.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823647

RESUMO

The growth of Legionella dumoffii can be inhibited by Galleria mellonella apolipophorin III (apoLp-III) which is an insect homologue of human apolipoprotein E., and choline-cultured L. dumoffii cells are considerably more susceptible to apoLp-III than bacteria grown without choline supplementation. In the present study, the interactions of apoLp-III with intact L. dumoffii cells cultured without and with exogenous choline were analyzed to explain the basis of this difference. Fluorescently labeled apoLp-III (FITC-apoLp-III) bound more efficiently to choline-grown L. dumoffii, as revealed by laser scanning confocal microscopy. The cell envelope of these bacteria was penetrated more deeply by FITC-apoLp-III, as demonstrated by fluorescence lifetime imaging microscopy analyses. The increased susceptibility of the choline-cultured L. dumoffii to apoLp-III was also accompanied by alterations in the cell surface topography and nanomechanical properties. A detailed analysis of the interaction of apoLp-III with components of the L. dumoffii cells was carried out using both purified lipopolysaccharide (LPS) and liposomes composed of L. dumoffii phospholipids and LPS. A single micelle of L. dumoffii LPS was formed from 12 to 29 monomeric LPS molecules and one L. dumoffii LPS micelle bound two molecules of apoLp-III. ApoLp-III exhibited the strongest interactions with liposomes with incorporated LPS formed of phospholipids isolated from bacteria cultured on exogenous choline. These results indicated that the differences in the phospholipid content in the cell membrane, especially PC, and LPS affected the interactions of apoLp-III with bacterial cells and suggested that these differences contributed to the increased susceptibility of the choline-cultured L. dumoffii to G. mellonella apoLp-III.


Assuntos
Apolipoproteínas/farmacologia , Colina/farmacologia , Suplementos Nutricionais , Legionella/efeitos dos fármacos , Mariposas/microbiologia , Animais , Membrana Celular/efeitos dos fármacos , Ácidos Graxos/análise , Fluorescência , Corantes Fluorescentes/metabolismo , Legionella/ultraestrutura , Lipopolissacarídeos/farmacologia , Lipossomos , Microscopia de Força Atômica , Açúcares/análise
20.
Front Immunol ; 11: 1751, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849624

RESUMO

Apolipoprotein (APO) genes represent a large family of genes encoding various binding proteins associated with plasma lipid transport. Due to the long divergence history, it remains to be confirmed whether these genes evolved from a common ancestor through gene duplication and original function, and how this evolution occurred. In this study, based on the phylogenetic tree, sequence alignment, motifs, and evolutionary analysis of gene synteny and collinearity, APOA, APOC, and APOE in higher vertebrates may have a common ancestor, lamprey serum apolipoprotein LAL1 or LAL2, which traces back to 360 million years ago. Moreover, the results of immunofluorescence, immunohistochemistry, and flow cytometry show that LAL2 is primarily distributed in the liver, kidney, and blood leukocytes of lampreys, and specifically localized in the cytoplasm of liver cells and leukocytes, as well as secreted into sera. Surface plasmon resonance technology demonstrates that LAL2 colocalizes to breast adenocarcinoma cells (MCF-7) or chronic myeloid leukemia cells (K562) associated with lamprey immune protein (LIP) and further enhances the killing effect of LIP on tumor cells. In addition, using quantitative real-time PCR (Q-PCR) and western blot methods, we found that the relative mRNA and protein expression of lal2 in lamprey leukocytes and sera increased significantly at different times after stimulating with Staphylococcus aureus, Vibrio anguillarum, and Polyinosinic-polycytidylic acid (Poly I:C). Moreover, LAL2 was found to recognize and bind to gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and gram-negative bacteria (Escherichia coli) and play an important role in the antibacterial process. All in all, our data reveals a long, complex evolutionary history for apolipoprotein genes under different selection pressures, confirms the immune effect of LAL2 in lamprey sera against pathogens, and lays the foundation for further research regarding biological functions of lamprey immune systems.


Assuntos
Apolipoproteínas/genética , Evolução Molecular , Proteínas de Peixes/genética , Lampreias/genética , Família Multigênica , Animais , Antineoplásicos/farmacologia , Apolipoproteínas/sangue , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Bacillus cereus/imunologia , Bacillus cereus/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Sinergismo Farmacológico , Escherichia coli/imunologia , Escherichia coli/metabolismo , Feminino , Proteínas de Peixes/sangue , Proteínas de Peixes/metabolismo , Proteínas de Peixes/farmacologia , Interações Hospedeiro-Patógeno , Humanos , Células K562 , Lampreias/sangue , Lampreias/imunologia , Lampreias/microbiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células MCF-7 , Filogenia , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...