Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
FEBS Lett ; 598(8): 902-914, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38529702

RESUMO

Apolipoprotein E (apoE) is a regulator of lipid metabolism, cholesterol transport, and the clearance and aggregation of amyloid ß in the brain. The three human apoE isoforms apoE2, apoE3, and apoE4 only differ in one or two residues. Nevertheless, the functions highly depend on the isoform types and lipidated states. Here, we generated novel anti-apoE monoclonal antibodies (mAbs) and obtained an apoE4-selective mAb whose epitope is within residues 110-117. ELISA and bio-layer interferometry measurements demonstrated that the dissociation constants of mAbs are within the nanomolar range. Using the generated antibodies, we successfully constructed sandwich ELISA systems, which can detect all apoE isoforms or selectively detect apoE4. These results suggest the usability of the generated anti-apoE mAbs for selective detection of apoE isoforms.


Assuntos
Anticorpos Monoclonais , Apolipoproteínas E , Isoformas de Proteínas , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Humanos , Isoformas de Proteínas/imunologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/química , Apolipoproteínas E/imunologia , Animais , Epitopos/imunologia , Epitopos/química , Ensaio de Imunoadsorção Enzimática/métodos , Camundongos , Apolipoproteína E4/genética , Apolipoproteína E4/imunologia , Apolipoproteína E4/metabolismo , Camundongos Endogâmicos BALB C , Apolipoproteína E3/imunologia , Apolipoproteína E3/genética , Apolipoproteína E3/química , Apolipoproteína E3/metabolismo
2.
Front Immunol ; 13: 964138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091018

RESUMO

Macrophages and microglia play important roles in chronic neuroinflammation following spinal cord injury (SCI). Although macrophages and microglia have similar functions, their phagocytic and homeostatic abilities differ. It is difficult to distinguish between these two populations in vivo, but single-cell analysis can improve our understanding of their identity and heterogeneity. We conducted bioinformatics analysis of the single-cell RNA sequencing dataset GSE159638, identifying apolipoprotein E (APOE) as a hub gene in both macrophages and microglia in the subacute and chronic phases of SCI. We then validated these transcriptomic changes in a mouse model of cervical spinal cord hemi-contusion and observed myelin uptake, lipid droplets, and lysosome accumulation in macrophages and microglia following SCI. Finally, we observed that knocking out APOE aggravated neurological dysfunction, increased neuroinflammation, and exacerbated the loss of white matter. Targeting APOE and the related cholesterol efflux represents a promising strategy for reducing neuroinflammation and promoting recovery following SCI.


Assuntos
Apolipoproteínas E , Macrófagos , Microglia , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/imunologia , Biologia Computacional , Macrófagos/imunologia , Camundongos , Microglia/imunologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/imunologia
3.
Sci Rep ; 11(1): 21856, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750487

RESUMO

Hepatitis C is a major threat to public health for which an effective treatment is available, but a prophylactic vaccine is still needed to control this disease. We designed a vaccine based on chimeric HBV-HCV envelope proteins forming subviral particles (SVPs) that induce neutralizing antibodies against HCV in vitro. Here, we aimed to increase the neutralizing potential of those antibodies, by using HBV-HCV SVPs bearing apolipoprotein E (apoE). These particles were produced by cultured stable mammalian cell clones, purified and characterized. We found that apoE was able to interact with both chimeric HBV-HCV (E1-S and E2-S) proteins, and with the wild-type HBV S protein. ApoE was also detected on the surface of purified SVPs and improved the folding of HCV envelope proteins, but its presence lowered the incorporation of E2-S protein. Immunization of New Zealand rabbits resulted in similar anti-S responses for all rabbits, whereas anti-E1/-E2 antibody titers varied according to the presence or absence of apoE. Regarding the neutralizing potential of these anti-E1/-E2 antibodies, it was higher in rabbits immunized with apoE-bearing particles. In conclusion, the association of apoE with HCV envelope proteins may be a good strategy for improving HCV vaccines based on viral envelope proteins.


Assuntos
Apolipoproteínas E/administração & dosagem , Apolipoproteínas E/imunologia , Hepacivirus/imunologia , Vírus da Hepatite B/imunologia , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/sangue , Apresentação de Antígeno/imunologia , Linhagem Celular , Feminino , Hepatite C/imunologia , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C/biossíntese , Anticorpos Anti-Hepatite C/sangue , Humanos , Evasão da Resposta Imune , Coelhos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/imunologia
4.
PLoS One ; 15(12): e0242543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33326419

RESUMO

Clinical studies using a range of omega-3 supplements have yielded conflicting results on their efficacy to control inflammation. Omega-3 fatty acids are substrate for the formation of potent immune-protective mediators, termed as specialized pro-resolving mediators (SPM). Herein, we investigated whether observed differences in the potencies of distinct omega-3 supplements were linked with their ability to upregulate SPM formation. Using lipid mediator profiling we found that four commercially available supplements conferred a unique SPM signature profile to human macrophages, with the overall increases in SPM concentrations being different between the four supplements. These increases in SPM concentrations were linked with an upregulation of macrophage phagocytosis and a decreased uptake of oxidized low-density lipoproteins. Pharmacological inhibition of two key SPM biosynthetic enzymes 5-Lipoxygenase or 15-Lipoxygenase reversed the macrophage-directed actions of each of the omega-3 supplements. Furthermore, administration of the two supplements that most potently upregulated macrophage SPM formation and reprogrammed their responses in vitro, to APOE-/- mice fed a western diet, increased plasma SPM concentrations and reduced vascular inflammation. Together these findings support the utility of SPM as potential prognostic markers in determining the utility of a given supplement to regulate macrophage responses and inflammation.


Assuntos
Aterosclerose/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Leucotrienos/biossíntese , Lipoxinas/biossíntese , Macrófagos/efeitos dos fármacos , Prostaglandinas/biossíntese , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/imunologia , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/imunologia , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/imunologia , Aterosclerose/etiologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Dieta Ocidental/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Feminino , Expressão Gênica , Humanos , Leucotrienos/imunologia , Lipoproteínas LDL/antagonistas & inibidores , Lipoproteínas LDL/farmacologia , Lipoxinas/imunologia , Inibidores de Lipoxigenase/farmacologia , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout para ApoE , Fagocitose/efeitos dos fármacos , Cultura Primária de Células , Análise de Componente Principal , Prostaglandinas/imunologia
5.
J Food Sci ; 85(11): 4018-4024, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32990381

RESUMO

Eucommia leaf extract (ELE) is a traditional Chinese herbal medicine. We investigated the effect of ELE on the development of atherosclerosis and changes in peritoneal macrophage function in apolipoprotein E knockout (ApoE-/- ) mice. At 8 weeks of age, ApoE-/- mice were randomly divided into three groups that were fed a high-fat diet blended with 0% (control), 5% or 10% ELE for a period of 7 weeks. The 10% ELE dose caused an approximately 36% reduction in atherosclerotic lesions, as estimated by oil red O staining. Real-time PCR analysis showed that the 1-week treatment with ELE reduced mRNA levels of Tnf-alpha, Il-1, and Mif in peritoneal macrophages isolated from the ApoE-/- mice. Furthermore, a 1-week treatment with the 10% ELE diet significantly reduced migration and adhesion functions in peritoneal macrophages. These results suggest that a 10% ELE diet reduces atherosclerotic lesions and modulates macrophage function by reducing cytokine expression. PRACTICAL APPLICATION: Eucommia leaf extract (ELE) is a traditional Chinese herbal medicine that reduces atherosclerotic lesions and suppresses inflammatory cytokines expression.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Eucommiaceae/química , Macrófagos/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Substâncias Protetoras/administração & dosagem , Administração Oral , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/imunologia , Aterosclerose/genética , Aterosclerose/imunologia , Dieta Hiperlipídica/efeitos adversos , Humanos , Macrófagos/imunologia , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE
6.
Int J Immunogenet ; 47(5): 397-405, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32333488

RESUMO

CD33 rs3865444:C>A single nucleotide polymorphism (SNP) has been previously associated with the risk of late-onset Alzheimer's disease (LOAD); however, the results have been inconsistent across different populations. CD33 is a transmembrane receptor that plays an important role in AD pathogenesis by inhibiting amyloid ß42 uptake by microglial cells. In this study, we aimed to validate the association between rs3865444 and LOAD risk in the Slovak population and to evaluate whether it was affected by the carrier status of the major LOAD risk allele apolipoprotein (APOE) ε4. CD33 rs3865444 and APOE variants were genotyped in 206 LOAD patients and 487 control subjects using the polymerase chain reaction-restriction fragment length polymorphism method and direct sequencing, respectively. Logistic regression analysis revealed a significant association of rs3865444 A allele with a reduced LOAD risk that was only present in APOE ε4 allele carriers (AA + CA versus CC: p = .0085; OR = 0.45; 95% CI = 0.25-0.82). On the other hand, no such association was found in subjects without the APOE ε4 (p = .75; OR = 0.93; 95% CI = 0.61-1.42). Moreover, regression analysis detected a significant interaction between CD33 rs3865444 A and APOE ε4 alleles (p = .021 for APOE ε4 allele dosage and p = .051 for APOE ε4 carriage status), with synergy factor (SF) value of 0.49 indicating an antagonistic effect between the two alleles in LOAD risk. In conclusion, our results suggest that CD33 rs3865444:C˃A substitution may reduce the risk of LOAD in Slovaks by antagonizing the effect conferred by the major susceptibility allele APOE ε4.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Idoso , Alelos , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Apolipoproteína E4/imunologia , Apolipoproteínas E/imunologia , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Eslováquia
7.
Prog Mol Biol Transl Sci ; 168: 223-241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31699317

RESUMO

There are growing genetic, transcriptomic and proteomic data pointing to the complexity of Alzheimer's disease (AD) pathogenesis. Unbiased "omics" approaches are essential for the future development of effective AD research, which will need to be combined and personalized, given that multiple distinct pathways can drive AD pathology. It is essential to gain a better understanding of the AD pathogenesis subtype variety and to develop several distinct therapeutic approaches tailored to address this diversity, as well as the common presence of mixed pathologies. These nonmutually exclusive therapeutic approaches include the targeting of multiple toxic oligomeric species concurrently, targeting the apolipoprotein E/amyloid ß interaction and the modulation of innate immunity, as well as more "out of the box" ideas such as targeting infectious agents that may play a role in AD.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Imunidade Inata/imunologia , Imunoterapia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Apolipoproteínas E/imunologia , Humanos
8.
J Exp Med ; 216(11): 2546-2561, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31601677

RESUMO

Chronic activation of brain innate immunity is a prominent feature of Alzheimer's disease (AD) and primary tauopathies. However, to what degree innate immunity contributes to neurodegeneration as compared with pathological protein-induced neurotoxicity, and the requirement of a particular glial cell type in neurodegeneration, are still unclear. Here we demonstrate that microglia-mediated damage, rather than pathological tau-induced direct neurotoxicity, is the leading force driving neurodegeneration in a tauopathy mouse model. Importantly, the progression of ptau pathology is also driven by microglia. In addition, we found that APOE, the strongest genetic risk factor for AD, regulates neurodegeneration predominantly by modulating microglial activation, although a minor role of apoE in regulating ptau and insoluble tau formation independent of its immunomodulatory function was also identified. Our results suggest that therapeutic strategies targeting microglia may represent an effective approach to prevent disease progression in the setting of tauopathy.


Assuntos
Apolipoproteínas E/imunologia , Modelos Animais de Doenças , Microglia/imunologia , Doenças Neurodegenerativas/imunologia , Tauopatias/imunologia , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Aminopiridinas/administração & dosagem , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Suplementos Nutricionais , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/citologia , Microglia/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Pirróis/administração & dosagem , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/imunologia , Proteínas tau/metabolismo
9.
J Interferon Cytokine Res ; 39(9): 564-571, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31264927

RESUMO

The aim of this study is to detect the dynamic expression of interleukin-23 (IL-23) in ApoE-/- mice at different ages and to further examine the effects of anti-IL-23 therapy on atherosclerosis development. The levels of IL-23 in the sera, aortas, and lymph nodes of ApoE-/- mice were significantly increased compared with those of age-matched controls at 8, 12, 16, 20, and 24 weeks of age. Then, 12-week-old ApoE-/- mice were intraperitoneally injected with anti-IL-23p19 neutralizing antibodies, isotype controls, and phosphate-buffered saline for 8 weeks. The proinflammatory and anti-inflammatory mediators in atherosclerotic aortas, plaque areas, plaque necrotic cores, and the contents of major inflammatory cells in plaques were subsequently determined. The results showed that anti-IL-23p19 treatment significantly decreased the expression of IL-17A, IL-6, and TNF-α in the aortas of ApoE-/- mice, but had no obvious effect on the plaque area, plaque necrotic core, or content of major inflammatory cells in atherosclerotic plaques. Although anti-IL-23p19 therapy reduces the expression of several proinflammatory cytokines, it does not significantly suppress the progression of atherosclerosis in ApoE-/- mice.


Assuntos
Anticorpos/farmacologia , Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Subunidade p19 da Interleucina-23/antagonistas & inibidores , Animais , Anticorpos/imunologia , Apolipoproteínas E/imunologia , Aterosclerose/imunologia , Peso Corporal/efeitos dos fármacos , Subunidade p19 da Interleucina-23/imunologia , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
J Mol Cell Cardiol ; 132: 154-163, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31121182

RESUMO

The CC chemokine 1 (CCL1, also called I-309 or TCA3) is a potent chemoattractant for leukocytes that plays an important role in inflammatory processes and diseases through binding to its receptor CCR8. Here, we investigated the role of the CCL1-CCR8 axis in atherosclerosis. We found increased expression of CCL1 in the aortas of atherosclerosis-prone fat-fed apolipoprotein E (Apoe)-null mice; moreover, in vitro flow chamber assays and in vivo intravital microscopy demonstrated an essential role for CCL1 in leukocyte recruitment. Mice doubly deficient for CCL1 and Apoe exhibited enhanced atherosclerosis in aorta, which was associated with reduced plasma levels of the anti-inflammatory interleukin 10, an increased splenocyte Th1/Th2 ratio, and a reduced regulatory T cell (Treg) content in aorta and spleen. Reduced Treg recruitment and aggravated atherosclerosis were also detected in the aortas of fat-fed low-density lipoprotein receptor-null mice treated with CCR8 blocking antibodies. These findings demonstrate that disruption of the CCL1-CCR8 axis promotes atherosclerosis by inhibiting interleukin 10 production and Treg recruitment and function.


Assuntos
Aterosclerose/imunologia , Quimiocina CCL1/imunologia , Receptores CCR8/imunologia , Linfócitos T Reguladores/imunologia , Animais , Apolipoproteínas E/imunologia , Citocinas/imunologia , Inflamação/imunologia , Interleucina-10/imunologia , Leucócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/imunologia , Células Th2/imunologia
11.
J Allergy Clin Immunol ; 144(2): 426-441.e3, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30872118

RESUMO

BACKGROUND: House dust mite (HDM)-challenged Apoe-/- mice display enhanced airway hyperreactivity and mucous cell metaplasia. OBJECTIVE: We sought to characterize the pathways that induce apolipoprotein E (APOE) expression by bronchoalveolar lavage fluid (BALF) macrophages from asthmatic subjects and identify how APOE regulates IL-1ß secretion. METHODS: Macrophages were isolated from asthmatic BALF and derived from THP-1 cells and human monocytes. RESULTS: HDM-derived cysteine and serine proteases induced APOE secretion from BALF macrophages through protease-activated receptor 2. APOE at concentrations of less than 2.5 nmol/L, which are similar to levels found in epithelial lining fluid from healthy adults, did not induce IL-1ß release from BALF macrophages. In contrast, APOE at concentrations of 25 nmol/L or greater induced nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein (NLRP) 3 and pro-IL-1ß expression by BALF macrophages, as well as the caspase-1-mediated generation of mature IL-1ß secreted from cells. HDM acted synergistically with APOE to both prime and activate the NLRP3 inflammasome. In a murine model of neutrophilic airway inflammation induced by HDM and polyinosinic-polycytidylic acid, APOE reached a concentration of 32 nmol/L in epithelial lining fluid, with associated increases in BALF IL-1ß levels. APOE-dependent NLRP3 inflammasome activation in macrophages was primarily mediated through a potassium efflux-dependent mechanism. CONCLUSION: APOE can function as an endogenous, concentration-dependent pulmonary danger signal that primes and activates the NLPR3 inflammasome in BALF macrophages from asthmatic subjects to secrete IL-1ß. This might represent a mechanism through which APOE amplifies pulmonary inflammatory responses when concentrations in the lung are increased to greater than normal levels, which can occur during viral exacerbations of HDM-induced asthma characterized by neutrophilic airway inflammation.


Assuntos
Apolipoproteínas E/imunologia , Asma/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Transdução de Sinais/imunologia , Animais , Asma/patologia , Feminino , Humanos , Macrófagos/patologia , Masculino , Camundongos , Células THP-1
12.
Nat Med ; 25(3): 496-506, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30692699

RESUMO

Apolipoprotein-E (ApoE) has been implicated in Alzheimer's disease, atherosclerosis, and other unresolvable inflammatory conditions but a common mechanism of action remains elusive. We found in ApoE-deficient mice that oxidized lipids activated the classical complement cascade (CCC), resulting in leukocyte infiltration of the choroid plexus (ChP). All human ApoE isoforms attenuated CCC activity via high-affinity binding to the activated CCC-initiating C1q protein (KD~140-580 pM) in vitro, and C1q-ApoE complexes emerged as markers for ongoing complement activity of diseased ChPs, Aß plaques, and atherosclerosis in vivo. C1q-ApoE complexes in human ChPs, Aß plaques, and arteries correlated with cognitive decline and atherosclerosis, respectively. Treatment with small interfering RNA (siRNA) against C5, which is formed by all complement pathways, attenuated murine ChP inflammation, Aß-associated microglia accumulation, and atherosclerosis. Thus, ApoE is a direct checkpoint inhibitor of unresolvable inflammation, and reducing C5 attenuates disease burden.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Apolipoproteínas E/imunologia , Doenças das Artérias Carótidas/imunologia , Plexo Corióideo/imunologia , Disfunção Cognitiva/imunologia , Complemento C1q/imunologia , Via Clássica do Complemento/imunologia , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/imunologia , Animais , Aorta/imunologia , Aorta/patologia , Aterosclerose/imunologia , Aterosclerose/patologia , Encéfalo/imunologia , Encéfalo/patologia , Artérias Carótidas/imunologia , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/patologia , Plexo Corióideo/patologia , Disfunção Cognitiva/patologia , Complemento C5 , Feminino , Humanos , Leucócitos , Masculino , Camundongos Knockout para ApoE , Microscopia de Fluorescência , Pessoa de Meia-Idade , Placa Amiloide/imunologia , Placa Amiloide/patologia , Isoformas de Proteínas/imunologia , RNA Interferente Pequeno
13.
Front Immunol ; 10: 3046, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998318

RESUMO

Interaction between B and CD4 T cells is crucial for their optimal responses in adaptive immunity. Immune responses augmented by their partnership promote chronic inflammation. Here we report that interaction between B and CD4 T cells augments their atherogenicity to promote lipid-induced atherosclerosis. Genetic deletion of the gene encoding immunoglobulin mu (µ) heavy chain (µMT) in ApoE-/- mice resulted in global loss of B cells including those in atherosclerotic plaques, undetectable immunoglobulins and impaired germinal center formation. Despite unaffected numbers in the circulation and peripheral lymph nodes, CD4 T cells were also reduced in spleens as were activated and memory CD4 T cells. In hyperlipidemic µMT-/- ApoE-/- mice, B cell deficiency decreased atherosclerotic lesions, accompanied by absence of immunoglobulins and reduced CD4 T cell accumulation in lesions. Adoptive transfer of B cells deficient in either MHCII or co-stimulatory molecule CD40, molecules required for B and CD4 T cell interaction, into B cell-deficient µMT-/- ApoE-/- mice failed to increase atherosclerosis. In contrast, wildtype B cells transferred into µMT-/- ApoE-/- mice increased atherosclerosis and increased CD4 T cells in lesions including activated and memory CD4 T cells. Transferred B cells also increased their expression of atherogenic cytokines IL-1ß, TGF-ß, MCP-1, M-CSF, and MIF, with partial restoration of germinal centers and plasma immunoglobulins. Our study demonstrates that interaction between B and CD4 T cells utilizing MHCII and CD40 is essential to augment their function to increase atherosclerosis in hyperlipidemic mice. These findings suggest that targeting B cell and CD4 T cell interaction may be a therapeutic strategy to limit atherosclerosis progression.


Assuntos
Aterosclerose/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Animais , Apolipoproteínas E/imunologia , Citocinas/imunologia , Imunoglobulinas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/imunologia
14.
Front Immunol ; 9: 2701, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519244

RESUMO

The alternative pathway (AP) of complement is constantly active in plasma and can easily be activated on self surfaces and trigger local inflammation. Host cells are protected from AP attack by Factor H (FH), the main AP regulator in plasma. Although complement is known to play a role in atherosclerosis, the mechanisms of its contribution are not fully understood. Since FH via its domains 5-7 binds apoliporotein E (apoE) and macrophages produce apoE we examined how FH could be involved in the antiatherogenic effects of apoE. We used blood peripheral monocytes and THP-1 monocyte/macrophage cells which were also loaded with acetylated low-density lipoprotein (LDL) to form foam cells. Binding of FH and apoE on these cells was analyzed by flow cytometry. High-density lipoprotein (HDL)-mediated cholesterol efflux of activated THP-1 cells was measured and transcriptomes of THP-1 cells using mRNA sequencing were determined. We found that binding of FH to human blood monocytes and cholesterol-loaded THP-1 macrophages increased apoE binding to these cells. Preincubation of fluorescent cholesterol labeled THP-1 macrophages in the presence of FH increased cholesterol efflux and cholesterol-loaded macrophages displayed reduced transcription of proinflammatory/proatherogenic factors and increased transcription of anti-inflammatory/anti-atherogenic factors. Further incubation of THP-1 cells with serum reduced C3b/iC3b deposition. Overall, our data indicate that apoE and FH interact with monocytic cells in a concerted action and this interaction reduces complement activation and inflammation in the atherosclerotic lesions. By this way FH may participate in mediating the beneficial effects of apoE in suppressing atherosclerotic lesion progression.


Assuntos
Apolipoproteínas E/imunologia , Aterosclerose/imunologia , Fator H do Complemento/imunologia , Células Espumosas/imunologia , Monócitos/imunologia , Aterosclerose/patologia , Complemento C3b/imunologia , Células Espumosas/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Lipoproteínas HDL/imunologia , Monócitos/patologia , Células THP-1 , Transcrição Gênica/imunologia
15.
Bull Exp Biol Med ; 166(2): 297-300, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30488199

RESUMO

Predictive models of comorbidity, dyslipidemic disorders and essential arterial hypertension, in Russian adolescents aged 12 to 18 years (mean 15.48±1.53) were formulated with consideration for biochemical (lipid profiles) and genetic parameters (carrier state of gene polymorphic variants of apolipoprotein genes ApoA1 (-75G/A and +83C/T), ApoB (Ins/Del), ApoC3 (S1/S2), and ApoE (ε2/ε3/ε4). Significant prognostic risk factors for the mentioned comorbid pathologies were lipid metabolism parameters HDL-Ch, LDL-Ch, VLDL-Ch and carrier state of the +83T allele of the ApoA1 gene and Del allele of the ApoB gene. The obtained mathematical model is characterized by high predictive accuracy: the percentage of correct classification or the rate of correct assignment of each participant to the proper group was 96.33%.


Assuntos
Apolipoproteína A-I/genética , Apolipoproteína B-100/genética , Dislipidemias/diagnóstico , Hipertensão Essencial/diagnóstico , Predisposição Genética para Doença , Modelos Estatísticos , Polimorfismo Genético , Adolescente , Alelos , Apolipoproteína A-I/imunologia , Apolipoproteína B-100/imunologia , Apolipoproteína C-III/genética , Apolipoproteína C-III/imunologia , Apolipoproteínas E/genética , Apolipoproteínas E/imunologia , Portador Sadio , Criança , HDL-Colesterol/sangue , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Análise Discriminante , Dislipidemias/sangue , Dislipidemias/genética , Dislipidemias/imunologia , Hipertensão Essencial/sangue , Hipertensão Essencial/genética , Hipertensão Essencial/imunologia , Feminino , Expressão Gênica , Frequência do Gene , Humanos , Masculino , Prognóstico , Fatores de Risco , Federação Russa , Triglicerídeos/sangue
16.
Thromb Res ; 171: 55-61, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253270

RESUMO

BACKGROUND: Atherosclerosis occurs as a result of a chronic inflammatory response in the arterial wall associated with an increased uptake of low-density lipoprotein by macrophages and the subsequent transformation of this lipoprotein into foam cells. It has been found that miR-188-3p can suppress autophagy and myocardial infarction. Therefore, we conducted the present study with determining the suppressive role played by miR-188-3p in atherosclerosis. METHODS: The atherosclerosis model was established using ApoE knockout mice. The healthy C57BL/6J wide-type mice were used as control, while miR-188-3p mimics or inhibitors were applied for the elevation or the depletion of the miR-188-3p expression in mice. The macrophage content was observed in atherosclerotic plaque. Once the miR-188-3p expression was determined, the effects of the over-expression of miR-188-3p on the lipid accumulation and macrophage inflammatory response were accessed. The plasma levels of pro-inflammatory factors and serum RANTES level, as well as OLR1, iNOS, ABCA1 and KLF2 expression were determined in order to evaluate the potential anti-inflammatory and antioxidative activities of miR-188-3p. RESULTS: ApoE knockout mice with atherosclerosis presented with increased lipid accumulation and macrophage content. MiR-188-3p was found to reduce intravascular lipid accumulation in atherosclerotic mice. In addition to the alleviation of macrophage inflammatory response, the upregulation of miR-188-3p also leads to the suppression of oxidation with reduced macrophage accumulation, plasma expression of pro-inflammatory factors and serum RANTES level, OLR1 and iNOS, while it increases ABCA1 and KLF2. CONCLUSIONS: In conclusion, the findings from our study found a new potential therapy for atherosclerosis by investigating the inhibitory effects of miR-188-3p on macrophage inflammatory response and oxidation.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Macrófagos/patologia , MicroRNAs/genética , Placa Aterosclerótica/genética , Regulação para Cima , Animais , Apolipoproteínas E/imunologia , Aterosclerose/imunologia , Aterosclerose/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/imunologia , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/patologia
17.
J Exp Med ; 215(9): 2235-2245, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30082275

RESUMO

Alzheimer's disease (AD) is an age-associated neurodegenerative disease characterized by amyloidosis, tauopathy, and activation of microglia, the brain resident innate immune cells. We show that a RiboTag translational profiling approach can bypass biases due to cellular enrichment/cell sorting. Using this approach in models of amyloidosis, tauopathy, and aging, we revealed a common set of alterations and identified a central APOE-driven network that converged on CCL3 and CCL4 across all conditions. Notably, aged females demonstrated a significant exacerbation of many of these shared transcripts in this APOE network, revealing a potential mechanism for increased AD susceptibility in females. This study has broad implications for microglial transcriptomic approaches and provides new insights into microglial pathways associated with different pathological aspects of aging and AD.


Assuntos
Envelhecimento/imunologia , Doença de Alzheimer/imunologia , Amiloide/imunologia , Apolipoproteínas E/imunologia , Microglia/imunologia , Proteínas tau/imunologia , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/genética , Amiloidose/genética , Amiloidose/imunologia , Amiloidose/patologia , Animais , Apolipoproteínas E/genética , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CCL4/genética , Quimiocina CCL4/imunologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Microglia/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteínas tau/genética
18.
Arterioscler Thromb Vasc Biol ; 38(8): e145-e158, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880490

RESUMO

Objective- Dyslipidemia is a component of the metabolic syndrome, an established risk factor for atherosclerotic cardiovascular disease, and is also observed in various autoimmune and chronic inflammatory conditions. However, there are limited opportunities to study the impact of acquired dyslipidemia on cardiovascular and immune pathology. Approach and Results- We designed a model system that allows for the conversion to a state of acute hyperlipidemia in adult life, so that the consequences of such a transition could be observed, through conditionally deleting APOE (apolipoprotein E) in the adult mouse. The transition to hypercholesterolemia was accompanied by adaptive immune responses, including the expansion of T lymphocyte helper cell 1, T follicular helper cell, and T regulatory subsets and the formation of germinal centers. Unlike steady-state Apoe-/- mice, abrupt loss of APOE induced rapid production of antibodies recognizing rheumatoid disease autoantigens. Genetic ablation of the germinal center reduced both autoimmunity and atherosclerosis, indicating that the immune response that follows loss of APOE is independent of atherosclerosis but nevertheless promotes plaque development. Conclusions- Our findings suggest that immune activation in response to hyperlipidemia could contribute to a wide range of inflammatory autoimmune diseases, including atherosclerosis.


Assuntos
Imunidade Adaptativa , Aorta/imunologia , Doenças da Aorta/imunologia , Apolipoproteínas E/imunologia , Aterosclerose/imunologia , Autoimunidade , Dislipidemias/imunologia , Inflamação/imunologia , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Dislipidemias/genética , Dislipidemias/metabolismo , Dislipidemias/patologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunidade Humoral , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo
19.
J Immunol ; 200(11): 3697-3710, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669783

RESUMO

Vasoactive intestinal peptide (VIP) is a neuropeptide that exerts various vascular and cardioprotective functions and regulates immune function and inflammatory response at multiple levels. However, its role in inflammatory cardiovascular disorders is largely unknown. Myocarditis and atherosclerosis are two inflammatory and autoimmune cardiovascular diseases that cause important adverse circulatory events. In this study, we investigate the therapeutic effects of VIP in various well-established preclinical models of experimental autoimmune myocarditis and atherosclerosis. Intraperitoneal injection of VIP during the effector phase of experimental autoimmune myocarditis in susceptible BALB/c mice significantly reduced its prevalence, ameliorated signs of heart hypertrophy and injury, attenuated myocardial inflammatory infiltration, and avoided subsequent profibrotic cardiac remodeling. This effect was accompanied by a reduction of Th17-driven cardiomyogenic responses in peripheral lymphoid organs and in the levels of myocardial autoantibodies. In contrast, acute and chronic atherosclerosis was induced in apolipoprotein E-deficient mice fed a hyperlipidemic diet and subjected to partial carotid ligation. Systemic VIP treatment reduced the number and size of atherosclerotic plaques in carotid, aorta, and sinus in hypercholesterolemic mice. VIP reduced Th1-driven inflammatory responses and increased regulatory T cells in atherosclerotic arteries and their draining lymph nodes. VIP also regulated cholesterol efflux in macrophages and reduced the formation of foam cells and their presence in atherosclerotic plaques. Finally, VIP inhibited proliferation and migration of smooth muscle cells and neointima formation in a mouse model of complete carotid ligation. These findings encourage further studies aimed to assess whether VIP can be used as a pharmaceutical agent to treat heart inflammation and atherosclerosis.


Assuntos
Aterosclerose/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Inflamação/imunologia , Miocardite/imunologia , Peptídeo Intestinal Vasoativo/imunologia , Animais , Apolipoproteínas E/imunologia , Autoanticorpos/imunologia , Modelos Animais de Doenças , Feminino , Linfonodos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculo Liso/imunologia , Miocárdio/imunologia , Neuropeptídeos/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
20.
J Exp Med ; 215(4): 1047-1058, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29483128

RESUMO

One of the hallmarks of Alzheimer's disease is the presence of extracellular diffuse and fibrillar plaques predominantly consisting of the amyloid-ß (Aß) peptide. Apolipoprotein E (ApoE) influences the deposition of amyloid pathology through affecting the clearance and aggregation of monomeric Aß in the brain. In addition to influencing Aß metabolism, increasing evidence suggests that apoE influences microglial function in neurodegenerative diseases. Here, we characterize the impact that apoE has on amyloid pathology and the innate immune response in APPPS1ΔE9 and APPPS1-21 transgenic mice. We report that Apoe deficiency reduced fibrillar plaque deposition, consistent with previous studies. However, fibrillar plaques in Apoe-deficient mice exhibited a striking reduction in plaque compaction. Hyperspectral fluorescent imaging using luminescent conjugated oligothiophenes identified distinct Aß morphotypes in Apoe-deficient mice. We also observed a significant reduction in fibrillar plaque-associated microgliosis and activated microglial gene expression in Apoe-deficient mice, along with significant increases in dystrophic neurites around fibrillar plaques. Our results suggest that apoE is critical in stimulating the innate immune response to amyloid pathology.


Assuntos
Amiloide/metabolismo , Apolipoproteínas E/metabolismo , Microglia/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/imunologia , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/imunologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteínas E/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Transgênicos , Microglia/imunologia , Microglia/patologia , Placa Amiloide/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...