Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(3): 603-621, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38212942

RESUMO

Aquaporin-4 (AQP4) is a water channel protein found primarily in the central nervous system (CNS) that helps to regulate water-ion homeostasis. AQP4 exists in two major isoforms: M1 and M23. While both isoforms have a homotetrameric quaternary structure and are functionally identical when transporting water, the M23 isoform forms large protein aggregates known as orthogonal arrays of particles (OAPs). In contrast, the M1 isoform creates a peripheral layer around the outside of these OAPs, suggesting a thermodynamically stable interaction between the two. Structurally, the M1 isoform has an N-terminal tail that is 22 amino acids longer than the M23 isoform and contains two solvent-accessible cysteines available for S-palmitoylation at cysteine-13 (Cys-13) and cysteine-17 (Cys-17) in the amino acid sequence. Earlier work suggests that the palmitoylation of these cysteines might aid in regulating AQP4 assemblies. This work discusses the thermodynamic driving forces for M1 protein-protein interactions and how the palmitoylation state of M1 affects them. Using temperature-dependent single-particle tracking, the standard state free energies, enthalpies, and entropies were measured for these interactions. Furthermore, we present a binding model based on measured thermodynamics and a structural modeling study. The results of this study demonstrate that the M1 isoform will associate with itself according to the following expressions: 2[AQP4-M1]4 ↔ [[AQP4-M1]4]2 when palmitoylated and 3[AQP4-M1]4 ↔ [AQP4-M1]4 + [[AQP4-M1]4]2 ↔ [[AQP4-M1]4]3 when depalmitoylated. This is primarily due to a conformational change induced by adding the palmitic acid groups at Cys-13 and Cys-17 in the N-terminal tails of the homotetramers. In addition, a statistical mechanical model was developed to estimate the Gibbs free energy, enthalpy, and entropy for forming dimers and trimers. These results were in good agreement with experimental values.


Assuntos
Cisteína , Lipoilação , Humanos , Cisteína/metabolismo , Aquaporina 4/química , Aquaporina 4/metabolismo , Isoformas de Proteínas/química , Termodinâmica , Água/metabolismo
2.
Int J Biol Macromol ; 253(Pt 8): 127568, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866582

RESUMO

Aquaporin 4 (AQP4) facilitates the transport of reactive oxygen species (ROS). Both cancer cells and the ionizing radiation microenvironment can induce posttranslational modifications (PTMs) in AQP4, which may affect its permeability to ROS. Because this ROS diffusion process is rapid, microscopic, and instantaneous within and outside cells, conventional experimental methods are inadequate for elucidating the molecular mechanisms involved. In this study, computational methods were employed to investigate the permeability of exogenous ROS mediated by radiation in AQP4 at a molecular scale. We constructed a simulation system incorporating AQP4 and AQP4-Cysp13 in a complex lipid environment with ROS. Long-timescale molecular dynamics simulations were conducted to assess the structural stability of both AQP4 and AQP4-Cysp13. Free energy calculations were utilized to determine the ROS transport capability of the two AQP4 proteins. Computational electrophysiology and channel structural analysis quantitatively evaluated changes in ROS transport capacity under various radiation-induced transmembrane voltage microenvironments. Our findings demonstrate the distinct transport capabilities of AQP4 channels for water molecules and various types of ROS and reveal a decrease in transport efficiency when AQP4 undergoes palmitoylation modification. In addition, we have simulated the radiation-induced alteration of cell membrane voltage, which significantly affected the ROS transport capacity. We propose that this research will enhance the understanding of the molecular mechanisms governing the transport of exogenous ROS by AQP4 and elucidate the influence of palmitoylation on ROS transport. This study will also help clarify how different structural features of AQP4 affect the transport of exogenous ROS mediated by radiotherapy, thereby providing a theoretical molecular basis for the development of new treatment strategies that combine with radiotherapy.


Assuntos
Aquaporina 4 , Lipoilação , Aquaporina 4/química , Aquaporina 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Permeabilidade , Água/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163040

RESUMO

There is an urgent need to better understand the mechanisms involved in scar formation in the brain. It is well known that astrocytes are critically engaged in this process. Here, we analyze incipient scar formation one week after a discrete ischemic insult to the cerebral cortex. We show that the infarct border zone is characterized by pronounced changes in the organization and subcellular localization of the major astrocytic protein AQP4. Specifically, there is a loss of AQP4 from astrocytic endfoot membranes that anchor astrocytes to pericapillary basal laminae and a disassembly of the supramolecular AQP4 complexes that normally abound in these membranes. This disassembly may be mechanistically coupled to a downregulation of the newly discovered AQP4 isoform AQP4ex. AQP4 has adhesive properties and is assumed to facilitate astrocyte mobility by permitting rapid volume changes at the leading edges of migrating astrocytes. Thus, the present findings provide new insight in the molecular basis of incipient scar formation.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Cicatriz/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Aquaporina 4/química , Membrana Basal/metabolismo , Cicatriz/etiologia , Modelos Animais de Doenças , Regulação para Baixo , Camundongos , Multimerização Proteica , Estabilidade Proteica , Acidente Vascular Cerebral/etiologia
4.
Biochim Biophys Acta Biomembr ; 1864(2): 183837, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890582

RESUMO

Aquaporin 4 (AQP4) is a water transporting, transmembrane channel protein that has important regulatory roles in maintaining cellular water homeostasis. Several other AQP proteins exhibit calmodulin (CaM)-binding properties, and CaM has recently been implicated in the cell surface localization of AQP4. The objective of the present study was to assess the CaM-binding properties of AQP4 in detail. Inspection of AQP4 revealed two putative CaM-binding domains (CBDs) in the cytoplasmic N- and C-terminal regions, respectively. The Ca2+-dependent CaM-binding properties of AQP4 CBD peptides were assessed using fluorescence spectroscopy, isothermal titration calorimetry, and two-dimensional 1H, 15N-HSQC NMR with 15N-labeled CaM. The N-terminal CBD of AQP4 predominantly interacted with the N-lobe of CaM with a 1:1 binding ratio and a Kd of 3.4 µM. The C-terminal AQP4 peptide interacted with both the C- and N-lobes of CaM (2:1 binding ratio; Kd1: 3.6 µM, Kd2: 113.6 µM, respectively). A recombinant AQP4 protein domain (recAQP4CT, containing the entire cytosolic C-terminal sequence) bound CaM in a 1:1 binding mode with a Kd of 6.1 µM. A ternary bridging complex could be generated with the N- and C-lobes of CaM interacting simultaneously with the N- and C-terminal CBD peptides. These data support a unique adapter protein binding mode for CaM with AQP4.


Assuntos
Aquaporina 4/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Sequência de Aminoácidos , Aquaporina 4/química , Sítios de Ligação , Calmodulina/química , Humanos , Ligação Proteica , Conformação Proteica , Domínios Proteicos
5.
Sci Rep ; 11(1): 24334, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934080

RESUMO

The neurovascular unit (NVU) consists of cells intrinsic to the vessel wall, the endothelial cells and pericytes, and astrocyte endfeet that surround the vessel but are separated from it by basement membrane. Endothelial cells are primarily responsible for creating and maintaining blood-brain-barrier (BBB) tightness, but astrocytes contribute to the barrier through paracrine signaling to the endothelial cells and by forming the glia limitans. Gap junctions (GJs) between astrocyte endfeet are composed of connexin 43 (Cx43) and Cx30, which form plaques between cells. GJ plaques formed of Cx43 do not diffuse laterally in the plasma membrane and thus potentially provide stable organizational features to the endfoot domain, whereas GJ plaques formed of other connexins and of Cx43 lacking a large portion of its cytoplasmic carboxyl terminus are quite mobile. In order to examine the organizational features that immobile GJs impose on the endfoot, we have used super-resolution confocal microscopy to map number and sizes of GJ plaques and aquaporin (AQP)-4 channel clusters in the perivascular endfeet of mice in which astrocyte GJs (Cx30, Cx43) were deleted or the carboxyl terminus of Cx43 was truncated. To determine if BBB integrity was compromised in these transgenic mice, we conducted perfusion studies under elevated hydrostatic pressure using horseradish peroxide as a molecular probe enabling detection of micro-hemorrhages in brain sections. These studies revealed that microhemorrhages were more numerous in mice lacking Cx43 or its carboxyl terminus. In perivascular domains of cerebral vessels, we found that density of Cx43 GJs was higher in the truncation mutant, while GJ size was smaller. Density of perivascular particles formed by AQP4 and its extended isoform AQP4ex was inversely related to the presence of full length Cx43, whereas the ratio of sizes of the particles of the AQP4ex isoform to total AQP4 was directly related to the presence of full length Cx43. Confocal analysis showed that Cx43 and Cx30 were substantially colocalized in astrocyte domains near vasculature of truncation mutant mice. These results showing altered distribution of some astrocyte nexus components (AQP4 and Cx30) in Cx43 null mice and in a truncation mutant, together with leakier cerebral vasculature, support the hypothesis that localization and mobility of gap junction proteins and their binding partners influences organization of astrocyte endfeet which in turn impacts BBB integrity of the NVU.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade da Membrana Celular , Conexina 43/fisiologia , Conexinas/metabolismo , Endotélio Vascular/metabolismo , Animais , Aquaporina 4/química , Aquaporina 4/genética , Conexinas/química , Conexinas/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína alfa-5 de Junções Comunicantes
6.
Genes Cells ; 26(3): 152-164, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33474763

RESUMO

Aquaporin-4 is a transmembrane water channel protein, the C-terminal domain of which is facing the cytosol. In the process of investigating the role of the C-terminal domain of aquaporin-4 with regard to intracellular trafficking, we observed that a derivative of aquaporin-4, in which the C-terminal 53 amino acids had been removed (Δ271-323), was localized to intracellular compartments, including the endoplasmic reticulum, but was not expressed on the plasma membranes. This was determined by immunofluorescence staining and labeling of the cells with monoclonal antibody specifically recognizing the extracellular domain of aquaporin-4, followed by confocal microscopy and flow cytometry. Deletion of additional amino acids in the C-terminal domain of aquaporin-4 led to its redistribution to the plasma membrane. This suggests that the effect of the 53-amino acid deletion on the subcellular localization of aquaporin-4 could be attributed to the formation of a signal at the C terminus that retained aquaporin-4 in intracellular compartments, rather than the loss of a signal required for plasma membrane targeting. Substitution of the lysine at position 268 with alanine could rescue the Δ271-323-associated retention in the cytosol, suggesting that the C-terminal sequence of the mutant served as a signal similar to a di-lysine motif.


Assuntos
Aquaporina 4/química , Aquaporina 4/metabolismo , Membrana Celular/metabolismo , Lisina/química , Deleção de Sequência , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biomarcadores/metabolismo , Compartimento Celular , Permeabilidade da Membrana Celular , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Domínios Proteicos , Transporte Proteico , Água
7.
BioDrugs ; 35(1): 7-17, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33301078

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune, inflammatory disorder of the central nervous system that typically presents with recurrent episodes of optic neuritis, longitudinally extensive myelitis, brainstem, diencephalic, and cerebral syndromes. Up to 80% of NMOSD patients have a circulating pathogenic autoantibody that targets the water channel aquaporin-4 (AQP4-IgG). The discovery of AQP4-IgG transformed our understanding of the pathogenesis of the disease and its possible treatment targets. Monoclonal antibodies targeting terminal complement (eculizumab), CD19 (inebilizumab), and the interleukin-6 receptor (satralizumab) have demonstrated efficacy in NMOSD attack prevention in recent phase 3 trials and have gained subsequent regulatory approval in the USA and other countries. We aim to review the evidence supporting the efficacy of these new drugs.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais/imunologia , Neuromielite Óptica , Aquaporina 4/química , Aquaporina 4/imunologia , Autoanticorpos/metabolismo , Humanos , Neuromielite Óptica/tratamento farmacológico
8.
Cells ; 9(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297299

RESUMO

Aquaporin 4 (AQP4) is the most abundant water channel in the central nervous system (CNS). Its expression is confined to non-neuronal glial cells, predominantly to astrocytes that represent a heterogeneous glial cell type in the CNS. The membrane of astrocyte processes, which align brain capillaries and pia, is particularly rich in AQP4. Several isoforms of AQP4 have been described; however, only some (AQP4a (M1), AQP4 c (M23), AQP4e, and AQP4ex) have been identified in the plasma membrane assemblies of astrocytes termed orthogonal arrays of particles (OAPs). Intracellular splicing isoforms (AQP4b, AQP4d, AQP4f, AQP4-Δ4) have been documented, and most of them are postulated to have a role in the cell surface distribution of the plasma membrane isoforms and in the formation of OAPs in murine and human astrocytes. Although OAPs have been proposed to play various roles in the functioning of astrocytes and CNS tissue as a whole, many of these still need to be described. OAPs are studied primarily from the perspective of understanding water permeability regulation through the plasma membrane and of their involvement in cell adhesion and in the dynamics of astrocytic processes. This review describes the cellular distribution of various AQP4 isoforms and their implications in OAP assembly, which is regulated by several intracellular and extracellular proteins.


Assuntos
Aquaporina 4/química , Aquaporina 4/fisiologia , Astrócitos/metabolismo , Membrana Celular/metabolismo , Agrina/metabolismo , Processamento Alternativo , Animais , Arginina Vasopressina/metabolismo , Astrócitos/citologia , Neoplasias Encefálicas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Adesão Celular , Movimento Celular , Distroglicanas/metabolismo , Estradiol/metabolismo , Matriz Extracelular/metabolismo , Glioma/metabolismo , Humanos , Laminina/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Musculares/metabolismo , Neuroglia/metabolismo , Permeabilidade , Progesterona/metabolismo , Isoformas de Proteínas , Ratos , Água/química
9.
Cancer Res ; 79(9): 2182-2194, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877104

RESUMO

The glial water channel protein aquaporin-4 (AQP4) forms heterotetramers in the plasma membrane made of the M23-AQP4 and M1-AQP4 isoforms. The isoform ratio controls AQP4 aggregation into supramolecular structures called orthogonal arrays of particles (AQP4-OAP). The role of AQP4 aggregation into OAP in malignant gliomas is still unclear. In this study, we demonstrate that AQP4 aggregation/disaggregation into OAP influences the biology of glioma cells. Selective expression of the OAP-forming isoform M23-AQP4 (AQP4-OAP) triggered cell shape changes in glioma cells associated with alterations to the F-actin cytoskeleton that affected apoptosis. By contrast, expression of M1-AQP4 (AQP4-tetramers), which is unable to aggregate into OAP, ameliorated glioma cell invasiveness, improved cell migration, and increased methalloproteinase-9 activity. Two prolines (254 and 296) at the C-terminus tail were shown to be important in mediating the relationship between the actin cytoskeleton and AQP4-OAP and AQP4-tetramers. In conclusion, this study demonstrates that AQP4 aggregation state might be an important determinant in orienting glioma cells to persist or perish. AQP4 disaggregation may potentiate invasiveness potential, whereas AQP4 aggregation may activate the apoptotic path. This study shows a new perspective on the role of AQP4 in brain tumors not necessarily associated with edema formation but with AQP4 aggregation/disaggregation dynamics and their link with the actin cytoskeleton. SIGNIFICANCE: This study demonstrates how AQP4 aggregation influences plasma membrane dynamics to alter cell proliferation, invasiveness, migration, and apoptotic potential in glioma cells.


Assuntos
Aquaporina 4/química , Membrana Celular/metabolismo , Forma Celular , Glioma/patologia , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Proliferação de Células , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Camundongos Knockout , Conformação Proteica , Multimerização Proteica , Ratos , Células Tumorais Cultivadas
10.
Cells ; 8(2)2019 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-30717425

RESUMO

The CNS plasma-membrane water channel aquaporin-4 (AQP4) is expressed as two major isoforms able to aggregate into supramolecular assemblies known as 'orthogonal arrays of particles' (OAPs). OAP subnanometric features are largely unknown mainly because a method for the expression, isolation, and crystallization of integral human OAPs has not been developed. Here, the human OAP-forming isoform M23-AQP4 was expressed in insect and mammalian cell lines and AQP4 and OAP features evaluated. Native size exclusion chromatography was employed to isolate and analyze authentically folded OAPs, and neuromyelitis optica (NMO)-specific sandwich ELISA was developed to test OAP-integrity. The results demonstrate that in insect cells most AQP4 remains intracellular and unfolded and that OAPs are largely disassembled after the detergent extraction step. In mammalian cells, AQP4 showed regular plasma membrane targeting and OAPs exhibited strong post-extraction stability. Starting from the mammalian cell expression system, we isolated authentically folded OAPs. Together these data suggest a new strategy for expressing and isolating integral recombinant human OAPs and providing new insights into the cell-type dependent OAP-assembly and post-extraction stability, potentially useful to design new approaches for structural and functional studies of OAP and for other plasma membrane proteins organized into supramolecular structures.


Assuntos
Aquaporina 4/química , Aquaporina 4/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Imunoglobulina G/metabolismo , Insetos , Mamíferos , Ligação Proteica , Transporte Proteico , Ratos , Relação Estrutura-Atividade
11.
Phys Chem Chem Phys ; 21(6): 3339-3346, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30688325

RESUMO

Electroporation is a matter of intensive ongoing research interest, and a much-neglected topic in trans-membrane proteins, particularly in view of such promising potential applications in medicine and biotechnology. In particular, selected such novel and exciting applications are predicated on controlling ionic conductivity through electro-pores. Here, we scrutinise the mechanisms of ions' electric conductivity, by means of structural rearrangements, through quasi-stable electro-pores through human-AQP4 as a well-representative prototype of trans-membrane ionic conduction, achieving exquisite control over ionic permeability manipulated by the application of intense static electric fields.


Assuntos
Aquaporina 4/química , Simulação de Dinâmica Molecular , Aquaporina 4/metabolismo , Condutividade Elétrica , Humanos , Íons/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Permeabilidade
12.
Curr Comput Aided Drug Des ; 14(4): 385-390, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29756582

RESUMO

BACKGROUND: Polypharmacology is a design or use of pharmaceutical agents in which single drug is used to treat multiple diseases. Aquaporin proteins are identified to treat migraine with aura and brain edema. This study focuses on Aquaporin-1 and Aquaporin-4. AQP-1 is expressed in small afferent sensory nerve fibers. Over-expression of peripheral nervous system causes migraine. METHODS: AQP-4 is an abundant channel water protein in brain that regulates water transport to prevent homeostasis. Over-expression of AQP-4 contributes to water imbalance in ischemic pathology resulting in cerebral edema. Purpose of this study is to identify a potent inhibitor for the treatment of migraine with aura and brain edema. RESULTS: As in the recent studies, no conventional methodologies have been focused through the approach of polypharmacology. Structures of AQP-1 and AQP- 4 proteins were retrieved from PDB (Protein Data Bank). PyRx software was used to perform molecular docking. CONCLUSION: Analogues of ligands were analyzed which contained significant similarities of associated proteins to get efficient inhibitor. Toxicity of lead compound was measured through admetSAR. A lead compound was predicted to treat these diseases.


Assuntos
Aquaporina 1/antagonistas & inibidores , Aquaporina 4/antagonistas & inibidores , Edema Encefálico/tratamento farmacológico , Descoberta de Drogas/métodos , Enxaqueca com Aura/tratamento farmacológico , Polifarmacologia , Aquaporina 1/química , Aquaporina 1/metabolismo , Aquaporina 4/química , Aquaporina 4/metabolismo , Edema Encefálico/metabolismo , Humanos , Ligantes , Enxaqueca com Aura/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular
13.
J Chem Phys ; 149(24): 245102, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30599740

RESUMO

Human aquaporin 4 has been studied using non-equilibrium molecular dynamics simulations in the absence and presence of pulses of external electric fields. The pulses were 100 ns in duration and 0.005-0.015 V/Å in intensity acting along the pores' axes. Water diffusivity and the dipolar response of various residues of interest within the pores have been studied. Results show relatively little change in levels of water permeability per se within aquaporin channels during axially oriented field impulses, although care must be taken with regard to statistical certainty. However, the spatial variation of water permeability vis-à-vis electric-field intensity within the milieu of the channels, as revealed by heterogeneity in diffusivity-map gradients, indicates the possibility of somewhat enhanced diffusivity, owing to several residues being affected substantially by external fields, particularly for HIS 201 and 95 and ILE 93. This has the effect of increasing slightly intra-pore water diffusivity in the "pore-mouths" locale, albeit rendering it more spatially uniform overall vis-à-vis zero-field conditions (via manipulation of the selectivity filter).


Assuntos
Aquaporina 4/química , Simulação de Dinâmica Molecular , Eletricidade , Humanos , Permeabilidade , Água/química
14.
J Cell Mol Med ; 22(2): 1236-1246, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29055082

RESUMO

Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by autoantibodies (NMO-IgG) against the water channel aquaporin-4 (AQP4). Though AQP4 is also expressed outside the CNS, for example in skeletal muscle, patients with NMO generally do not show clinical/diagnostic evidence of skeletal muscle damage. Here, we have evaluated whether AQP4 supramolecular organization is at the basis of the different tissue susceptibility. Using immunofluorescence we found that while the sera of our cohort of patients with NMO gave typical perivascular staining in the CNS, they were largely negative in the skeletal muscle. This conclusion was obtained using human, rat and mouse skeletal muscle including the AQP4-KO mouse. A biochemical analysis using a new size exclusion chromatography approach for AQP4 suprastructure fractionation revealed substantial differences in supramolecular AQP4 assemblies and isoform abundance between brain and skeletal muscle matching a lower binding affinity of NMO-IgG to muscle compared to the brain. Super-resolution microscopy analysis with g-STED revealed different AQP4 organization in native tissues, while in the brain perivascular astrocyte endfoot membrane AQP4 was mainly organized in large interconnected and raft-like clusters, in the sarcolemma of fast-twitch fibres AQP4 aggregates often appeared as small, relatively isolated linear entities. In conclusion, our results provide evidence that AQP4 supramolecular structure is different in brain and skeletal muscle, which is likely to result in different tissues susceptibility to the NMO disease.


Assuntos
Aquaporina 4/química , Aquaporina 4/metabolismo , Encéfalo/metabolismo , Músculos/metabolismo , Neuromielite Óptica/metabolismo , Agregados Proteicos , Animais , Cromatografia em Gel , Humanos , Imunoglobulina G/metabolismo , Ligação Proteica , Ratos Wistar
15.
Biochim Biophys Acta Biomembr ; 1859(8): 1326-1334, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28477975

RESUMO

Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system in which most patients have serum autoantibodies (called NMO-IgG) that bind to astrocyte water channel aquaporin-4 (AQP4). A potential therapeutic strategy in NMO is to block the interaction of NMO-IgG with AQP4. Building on recent observation that some single-point and compound mutations of the AQP4 extracellular loop C prevent NMO-IgG binding, we carried out comparative Molecular Dynamics (MD) investigations on three AQP4 mutants, TP137-138AA, N153Q and V150G, whose 295-ns long trajectories were compared to that of wild type human AQP4. A robust conclusion of our modeling is that loop C mutations affect the conformation of neighboring extracellular loop A, thereby interfering with NMO-IgG binding. Analysis of individual mutations suggested specific hydrogen bonding and other molecular interactions involved in AQP4-IgG binding to AQP4.


Assuntos
Aquaporina 4/química , Autoanticorpos/química , Epitopos/química , Imunoglobulina G/química , Simulação de Dinâmica Molecular , Motivos de Aminoácidos , Aquaporina 4/imunologia , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Modelos Moleculares , Mutação , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Neuromielite Óptica/patologia , Fosfatidilcolinas/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Termodinâmica
16.
Biophys J ; 112(8): 1692-1702, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445760

RESUMO

Determining the spatial relationship of individual proteins in dense assemblies remains a challenge for superresolution nanoscopy. The organization of aquaporin-4 (AQP4) into large plasma membrane assemblies provides an opportunity to image membrane-bound AQP4 antibodies (AQP4-IgG) and evaluate changes in their spatial distribution due to alterations in AQP4 isoform expression and AQP4-IgG epitope specificity. Using stimulated emission depletion nanoscopy, we imaged secondary antibody labeling of monoclonal AQP4-IgGs with differing epitope specificity bound to isolated tetramers (M1-AQP4) and large orthogonal arrays of AQP4 (M23-AQP4). Imaging secondary antibodies bound to M1-AQP4 allowed us to infer the size of individual AQP4-IgG binding events. This information was used to model the assembly of larger AQP4-IgG complexes on M23-AQP4 arrays. A scoring algorithm was generated from these models to characterize the spatial arrangement of bound AQP4-IgG antibodies, yielding multiple epitope-specific patterns of bound antibodies on M23-AQP4 arrays. Our results delineate an approach to infer spatial relationships within protein arrays using stimulated emission depletion nanoscopy, offering insight into how information on single antibody fluorescence events can be used to extract information from dense protein assemblies under a biologic context.


Assuntos
Aquaporina 4/imunologia , Autoanticorpos/metabolismo , Membrana Celular/metabolismo , Algoritmos , Animais , Aquaporina 4/química , Aquaporina 4/ultraestrutura , Autoanticorpos/química , Autoanticorpos/ultraestrutura , Células CHO , Simulação por Computador , Cricetulus , Epitopos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Imunoglobulina G/ultraestrutura , Análise dos Mínimos Quadrados , Microscopia Confocal , Microscopia de Fluorescência/métodos , Modelos Moleculares , Neuromielite Óptica/imunologia , Isoformas de Proteínas , Análise Espacial
17.
Biochim Biophys Acta Biomembr ; 1859(8): 1310-1316, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28455098

RESUMO

Measuring or computing the single-channel permeability of aquaporins/aquaglyceroporins (AQPs) has long been a challenge. The measured values scatter over an order of magnitude but the corresponding Arrhenius activation energies converge in the current literature. Osmotic flux through an AQP was simulated as water current forced through the channel by kilobar hydraulic pressure or theoretically approximated as single-file diffusion. In this paper, we report large scale simulations of osmotic current under sub M gradient through three AQPs (water channels AQP4 and AQP5 and glycerol-water channel GlpF) using the mature particle mesh Ewald technique (PME) for which the established force fields have been optimized with known accuracy. These simulations were implemented with hybrid periodic boundary conditions devised to avoid the artifactitious mixing across the membrane in a regular PME simulation. The computed single-channel permeabilities at 5°C and 25°C are in agreement with recently refined experiments on GlpF. The Arrhenius activation energies extracted from our simulations for all the three AQPs agree with the in vitro measurements. The single-file diffusion approximations from our large-scale simulations are consistent with the current literature on smaller systems. From these unambiguous agreements among the in vitro and in silico studies, we observe the quantitative accuracy of the all-atom force fields of the current literature for water-channel biology. We also observe that AQP4, that is particularly rich in the central nervous system, is more efficient in water conduction and more temperature-sensitive than other water-only channels (excluding glycerol channels that also conduct water when not inhibited by glycerol).


Assuntos
Aquaporina 4/química , Aquaporina 5/química , Aquaporinas/química , Proteínas de Escherichia coli/química , Água/química , Difusão , Escherichia coli/química , Humanos , Cinética , Simulação de Dinâmica Molecular , Concentração Osmolar , Permeabilidade , Temperatura , Termodinâmica
18.
J Mol Neurosci ; 62(1): 17-27, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28341892

RESUMO

The water channel aquaporin 4 (AQP4) is abundantly expressed in astrocytes and provides a mechanism by which water permeability of the plasma membrane can be regulated. Evidence suggests that AQP4 is associated with glutamate transporter-1 (GLT-1) for glutamate clearance and contributes to morphine dependence. Previous studies show that AQP4 deficiency changed the mu opioid receptor expression and opioid receptors' characteristics as well. In this study, we focused on whether AQP4 could form macromolecular complex with GLT-1 and mu opioid receptor (MOR) and participates in morphine dependence. By using immunofluorescence staining, fluorescence resonance energy transfer, and co-immunoprecipitation, we demonstrated that AQP4 forms protein complexes with GLT-1 and MOR in both brain tissue and primary cultured astrocytes. We then showed that the C-terminus of AQP4 containing the amino acid residues 252 to 323 is the site of interaction with GLT-1. Protein kinase C, activated by morphine, played an important role in regulating the expression of these proteins. These findings may help to reveal the mechanism that AQP4, GLT-1, and MOR form protein complex and participate in morphine dependence, and deeply understand the reason that AQP4 deficiency maintains extracellular glutamate homeostasis and attenuates morphine dependence, moreover emphasizes the function of astrocyte in morphine dependence.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Dependência de Morfina/metabolismo , Receptores Opioides mu/metabolismo , Animais , Aquaporina 4/química , Sítios de Ligação , Encéfalo/metabolismo , Células Cultivadas , Masculino , Ligação Proteica , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Nano Lett ; 17(1): 476-485, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28073257

RESUMO

Proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein-material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film to match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic-inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.


Assuntos
Aquaporina 4/química , Bicamadas Lipídicas/química , Nanoestruturas/química , Dióxido de Silício/química , Humanos , Tamanho da Partícula , Porosidade
20.
Int J Mol Sci ; 17(7)2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27420052

RESUMO

Among the different aquaporins (AQPs), human aquaporin-4 (hAQP4) has attracted the greatest interest in recent years as a new promising therapeutic target. Such a membrane protein is, in fact, involved in a multiple sclerosis-like immunopathology called Neuromyelitis Optica (NMO) and in several disorders resulting from imbalanced water homeostasis such as deafness and cerebral edema. The gap of knowledge in its functioning and dynamics at the atomistic level of detail has hindered the development of rational strategies for designing hAQP4 modulators. The application, lately, of molecular modeling has proved able to fill this gap providing a breeding ground to rationally address compounds targeting hAQP4. In this review, we give an overview of the important advances obtained in this field through the application of Molecular Dynamics (MD) and other complementary modeling techniques. The case studies presented herein are discussed with the aim of providing important clues for computational chemists and biophysicists interested in this field and looking for new challenges.


Assuntos
Aquaporina 4/química , Aquaporina 4/história , Aquaporina 4/metabolismo , História do Século XXI , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Modelos Moleculares , Neuromielite Óptica/metabolismo , Neuromielite Óptica/patologia , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...