Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Methods Mol Biol ; 2827: 85-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985264

RESUMO

The method of plant micropropagation is widely used to obtain genetically homogeneous and infection-free plants for the needs of various industries and agriculture. Optimization of plant growth and development conditions plays a key role in economically successful micropropagation. Computer technologies have provided researchers with new approaches for modeling and a better understanding of the role of the factors involved in plant growth in vitro. To develop new models for optimizing growth conditions, we used plants with a high speed of vegetative in vitro reproduction, such as duckweed (Wolffia arrhiza and Lemna minor). Using the development of the optimal modeling of the biological processes, we have obtained the prescriptions for an individually balanced culture medium that enabled us to obtain 1.5-2.0 times more duckweed biomass with a 1.5 times higher protein concentration in the dry mass. Thus, we have demonstrated that the method of optimization modeling of the biological processes based on solving multinomial tasks from the series of quadratic equations can be used for the optimization of trophic needs of plants, specifically for micropropagation of duckweeds in vitro.


Assuntos
Araceae , Biomassa , Araceae/crescimento & desenvolvimento , Araceae/genética , Meios de Cultura/química , Modelos Teóricos , Modelos Biológicos
2.
J Environ Manage ; 366: 121721, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018836

RESUMO

Nature-based solutions have been proven in recent decades as a reliable and cost-effective technology for the treatment of wastewaters. Different plant species have been studied for this purpose, but particular attention has been given to duckweeds, the smallest flowering plant in the world. Duckweed-based systems for simultaneous wastewater treatment and nutrient recovery have the potential to provide sustainable and cost-effective solutions to reduce water pollution and increase nutrient efficiency at catchment level. However, despite being considered a seemingly simple technology, the performance of wastewater treatment systems using duckweed depends on environmental and operational conditions not very well understood. For that reason, careful consideration must be given to such environmental factors controlling duckweed biomass growth but the evidence in published literature is scare and dispersed. This study employs a systematic review approach to conduct a meta-analysis of the effect of environmental conditions on duckweed growth by means of standardised IQ-scores. The results suggest that duckweed biomass growth rates reach a maximum within specific ranges for temperature (11.4-32.3 °C), daily light integral (DLI) (5-20 mol m-2), and nitrogen (>5 mg N L-1) and phosphorus (>1 mg P L-1) concentrations; DLI was found to be a better parameter to assess the overall effect of light (photoperiod and intensity) on duckweed growth and that the effect of nitrogen and phosphorus supply should consider the nitrogen species available for plant growth and its ratio to phosphorus concentrations (recommended N:P ratio = 15:1). By establishing the optimal range of culture conditions for duckweed, this study provides important insights for optimizing engineered wastewater treatment systems that rely on duckweed for nutrient control and recovery, which is primarily mediated by duckweed growth.


Assuntos
Biomassa , Luz , Nutrientes , Fósforo , Temperatura , Fósforo/análise , Nitrogênio , Araceae/crescimento & desenvolvimento , Águas Residuárias
3.
Environ Res ; 258: 119409, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38871272

RESUMO

Meropenem is a potent carbapenem antibiotic frequently used in medical settings. Several studies have confirmed the pervasive presence of these antibiotics in wastewater treatment plants and aquatic environments. However, the effects of these substances on non-target organisms, such as plants, have not been adequately monitored. Thus, this study aimed to assess the short-term impact of meropenem on the growth, photosynthesis, chlorophyll content, and enzyme activity of the macrophyte plant Lemna minor. The methods involved exposing the plant to meropenem under controlled conditions and assessing physiological and biochemical parameters to determine the impact on photosynthetic activity and oxidative stress. These analyses included growth rate, antioxidant enzyme activity, and photosynthetic capacity. The findings suggest that the growth rate of Lemna minor remained unaffected by meropenem at concentrations <200000 µgL-1. However, plants exposed to concentrations >20 µgL-1showed physiological alterations, such as decreased net photosynthesis rate (17%) and chlorophyll concentration (57%), compared to the control group. For acute toxicity assays, the calculated EC50 7-day and EC20 7-day were 1135 µgL-1and 33 µgL-1, respectively. In addition, in most treatments tested, meropenem caused an increase in the superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity as a defense mechanism against oxidative stress. Our results suggest that meropenem affects photosynthetic processes and induces oxidative stress in the macrophyte plant Lemna minor. Further studies are needed to assess the physiological and metabolic interactions between antibiotics and primary producers at different long-term trophic levels.


Assuntos
Antibacterianos , Araceae , Meropeném , Estresse Oxidativo , Fotossíntese , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Araceae/efeitos dos fármacos , Araceae/crescimento & desenvolvimento , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Clorofila/metabolismo
4.
mBio ; 15(7): e0097224, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38904411

RESUMO

Microbiomes often benefit plants, conferring resistance to pathogens, improving stress tolerance, or promoting plant growth. As potential plant mutualists, however, microbiomes are not a single organism but a community of species with complex interactions among microbial taxa and between microbes and their shared host. The nature of ecological interactions among microbes in the microbiome can have important consequences for the net effects of microbiomes on hosts. Here, we compared the effects of individual microbial strains and 10-strain synthetic communities on microbial productivity and host growth using the common duckweed Lemna minor and a synthetic, simplified version of its native microbiome. Except for Pseudomonas protegens, which was a mutualist when tested alone, all of the single strains we tested were commensals on hosts, benefiting from plant presence but not increasing host growth relative to uninoculated controls. However, 10-strain synthetic microbial communities increased both microbial productivity and duckweed growth more than the average single-strain inoculation and uninoculated controls, meaning that host-microbiome mutualisms can emerge from community interactions among microbes on hosts. The effects of community inoculation were sub-additive, suggesting at least some competition among microbes in the duckweed microbiome. We also investigated the relationship between L. minor fitness and that of its microbes, providing some of the first empirical estimates of broad fitness alignment between plants and members of their microbiomes; hosts grew faster with more productive microbes or microbiomes. IMPORTANCE: There is currently substantial interest in engineering synthetic microbiomes for health or agricultural applications. One key question is how multi-strain microbial communities differ from single microbial strains in their productivity and effects on hosts. We tested 20 single bacterial strains and 2 distinct 10-strain synthetic communities on plant hosts and found that 10-strain communities led to faster host growth and greater microbial productivity than the average, but not the best, single strain. Furthermore, the microbial strains or communities that achieved the greatest cell densities were also the most beneficial to their hosts, showing that both specific single strains and multi-strain synthetic communities can engage in high-quality mutualisms with their hosts. Our results suggest that ~5% of single strains, as well as multi-strain synthetic communities comprised largely of commensal microbes, can benefit hosts and result in effective host-microbe mutualisms.


Assuntos
Araceae , Microbiota , Simbiose , Araceae/microbiologia , Araceae/crescimento & desenvolvimento , Pseudomonas/genética , Pseudomonas/fisiologia , Interações entre Hospedeiro e Microrganismos , Interações Microbianas
5.
BMC Plant Biol ; 24(1): 545, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872089

RESUMO

The accumulation of arsenic (As) in rice (Oryza sativa L.) grain poses a significant health concern in Bangladesh. To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BC0.1: 0.1%, BC0.28: 0.28%, BC0.55: 0.55%, BC0.82: 0.82% and BC1.0: 1.0%, w/w), vermicompost (VC; VC1.0: 1.0%, VC1.8: 1.8%, VC3.0: 3.0%, VC4.2: 4.2% and VC5.0: 5.0%, w/w), and floating duckweed (DW; DW100: 100, DW160: 160, DW250: 250, DW340: 340 and DW400: 400 g m- 2) on O. sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC, and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a combination of moderate BC-DW and high VC (BC0.55VC5DW250) increased grain yield by 44.4% compared to the control (BC0VC0DW0). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa leaves. However, treatment BC0.82VC4.2DW340 significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC0.28VC1.8DW160) increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities. Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues. Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m- 2) could maximize grain yield (32.96 g pot- 1, 44% higher than control) and minimize G-As content (0.189 mg kg- 1, 54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-affected regions.


Assuntos
Arsênio , Biodegradação Ambiental , Carvão Vegetal , Oryza , Poluentes do Solo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Arsênio/metabolismo , Poluentes do Solo/metabolismo , Compostagem/métodos , Araceae/metabolismo , Araceae/efeitos dos fármacos , Araceae/crescimento & desenvolvimento , Solo/química
6.
PeerJ ; 12: e17322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903884

RESUMO

Dissolved oxygen is fundamental for chemical and biochemical processes occurring in natural waters and critical for the life of aquatic organisms. Many organisms are responsible for altering organic matter and oxygen transfers across ecosystem or habitat boundaries and, thus, engineering the oxygen balance of the system. Due to such Lemna features as small size, simple structure, vegetative reproduction and rapid growth, as well as frequent mass occurrence in the form of thick mats, they make them very effective in oxygenating water. The research was undertaken to assess the impact of various species of duckweed (L. minor and L. trisulca) on dissolved oxygen content and detritus production in water and the role of ecological factors (light, atmospheric pressure, conductivity, and temperature) in this process. For this purpose, experiments were carried out with combinations of L. minor and L. trisulca. On this basis, the content of oxygen dissolved in water was determined depending on the growth of duckweed. Linear regression models were developed to assess the dynamics of changes in oxygen content and, consequently, organic matter produced by the Lemna. The research showed that the presence of L. trisulca causes an increase in dissolved oxygen content in water. It was also shown that an increase in atmospheric pressure had a positive effect on the ability of duckweed to produce oxygen, regardless of its type. The negative correlation between conductivity and water oxygenation, obtained in conditions of limited light access, allows us to assume that higher water conductivity limits oxygen production by all combinations of duckweeds when the light supply is low. Based on the developed models, it was shown that the highest increase in organic matter would be observed in the case of mixed duckweed and the lowest in the presence of the L. minor species, regardless of light conditions. Moreover, it was shown that pleustophytes have different heat capacities, and L. trisulca has the highest ability to accumulate heat in water for the tested duckweed combinations. The provided knowledge may help determine the good habitat conditions of duckweed, indicating its role in purifying water reservoirs as an effect of producing organic matter and shaping oxygen conditions with the participation of various Lemna species.


Assuntos
Araceae , Oxigênio , Araceae/metabolismo , Araceae/crescimento & desenvolvimento , Oxigênio/metabolismo , Ecossistema , Temperatura , Água/metabolismo , Pressão Atmosférica , Luz
7.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792197

RESUMO

The impact of fluorine on plants remains poorly understood. We examined duckweed growth in extracts of soil contaminated with fluorine leached from chicken manure. Additionally, fluorine levels were analyzed in fresh manure, outdoor-stored manure, and soil samples at varying distances from the manure pile. Fresh manure contained 37-48 mg F- × kg-1, while soil extracts contained 2.1 to 4.9 mg F- × kg-1. We evaluated the physiological effects of fluorine on duckweed cultured on soil extracts or in 50% Murashige-Skoog (MS) medium supplemented with fluorine concentrations matching those in soil samples (2.1 to 4.9 mg F- × L-1), as well as at 0, 4, and 210 mg × L-1. Duckweed exposed to fluorine displayed similar toxicity symptoms whether in soil extracts or supplemented medium. Fluoride at concentrations of 2.1 to 4.9 mg F- × L-1 reduced the intact chlorophyll content, binding the porphyrin ring at position 32 without affecting Mg2+. This reaction resulted in chlorophyll a absorption peak shifted towards shorter wavelengths and formation of a new band of the F--chlorophyll a complex at λ = 421 nm. Moreover, plants exposed to low concentrations of fluorine exhibited increased activities of aminolevulinic acid dehydratase and chlorophyllase, whereas the activities of both enzymes sharply declined when the fluoride concentration exceeded 4.9 mg × L-1. Consequently, fluorine damages chlorophyll a, disrupts the activity of chlorophyll-metabolizing enzymes, and diminishes the plant growth rate, even when the effects of these disruptions are too subtle to be discerned by the naked human eye.


Assuntos
Araceae , Clorofila , Fluoretos , Araceae/metabolismo , Araceae/efeitos dos fármacos , Araceae/crescimento & desenvolvimento , Clorofila/metabolismo , Fluoretos/análise , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Solo/química , Esterco/análise , Poluição Ambiental/análise
8.
Food Chem ; 453: 139647, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788644

RESUMO

This study aimed to increase the protein content of duckweed, a promising alternative to animal proteins and a sustainable source of plant protein cultivated via soilless agriculture, by manipulating the culture medium conditions (Hoagland solution). The contribution percentages of KH2PO4 and Ca(NO3)2, pivotal macro-elements in Hoagland solution affecting duckweed protein content, were determined using Plackett-Burman factorial design as 33.06 % and 36.61 %, respectively. Additionally, optimization was conducted employing response surface methodology, incorporating pH alongside KH2PO4 and Ca(NO3)2. Under optimal conditions of 3.92 mM KH2PO4, 7.95 mM Ca(NO3)2, and 7.22 pH, the protein content of duckweed increased significantly, reaching 51.09 % from 39.81 %. The duckweed cultivated in modified Hoagland solution exhibited protein content of 41.74 %, while duckweed grown in commercial Hoagland solution displayed protein content of 33.01 %. This study showed protein content of duckweed could significantly increase according to the growth medium and showcasing its potential as a sustainable source of plant protein.


Assuntos
Araceae , Meios de Cultura , Proteínas de Plantas , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Araceae/química , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Concentração de Íons de Hidrogênio
9.
Plant Cell Physiol ; 65(6): 986-998, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38590126

RESUMO

Isotope labeling coupled with mass spectrometry imaging (MSI) presents a potent strategy for elucidating the dynamics of metabolism at cellular resolution, yet its application to plant systems is scarce. It has the potential to reveal the spatio-temporal dynamics of lipid biosynthesis during plant development. In this study, we explore its application to galactolipid biosynthesis of an aquatic plant, Lemna minor, with D2O labeling. Specifically, matrix-assisted laser desorption/ionization-MSI data of two major galactolipids in L. minor, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, were studied after growing in 50% D2O media over a 15-day time period. When they were partially labeled after 5 d, three distinct binomial isotopologue distributions were observed corresponding to the labeling of partial structural moieties: galactose only, galactose and a fatty acyl chain and the entire molecule. The temporal change in the relative abundance of these distributions follows the expected linear pathway of galactolipid biosynthesis. Notably, their mass spectrometry images revealed the localization of each isotopologue group to the old parent frond, the intermediate tissues and the newly grown daughter fronds. Besides, two additional labeling experiments, (i) 13CO2 labeling and (ii) backward labeling of completely 50% D2O-labeled L. minor in H2O media, confirm the observations in forward labeling. Furthermore, these experiments unveiled hidden isotopologue distributions indicative of membrane lipid restructuring. This study suggests the potential of isotope labeling using MSI to provide spatio-temporal details in lipid biosynthesis in plant development.


Assuntos
Araceae , Galactolipídeos , Marcação por Isótopo , Galactolipídeos/metabolismo , Galactolipídeos/biossíntese , Marcação por Isótopo/métodos , Araceae/metabolismo , Araceae/crescimento & desenvolvimento , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Óxido de Deutério/metabolismo
10.
Environ Toxicol Pharmacol ; 108: 104437, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609060

RESUMO

Oxybenzone is an ultraviolet filter frequently used in Personal Care Products, plastics, furniture, etc. and is listed as an Emerging Contaminant. This report studied the acute toxicity of Oxybenzone to Lemna minor after exposure to graded concentrations of Oxybenzone for 7 days. IC50 for growth was found to be 8.53 mg L-1. The hormesis effect was reported at lower concentrations, while growth and pigments reduced from 2.5 to 12.5 mg L-1 in a concentration-related manner. The impact of Oxybenzone on protein and antioxidant enzymes- Catalase and Guaiacol Peroxidase revealed less stress up to 2.5 mg L-1 than control, increasing further from 5 to 10 mg L-1. Enzyme activity decreased over-time but always remained higher than control over a period of 7 days. Thus, our findings reveal that indiscriminate discharge of Oxybenzone could be potentially toxic to the aquatic primary producers at higher concentrations, causing an ecological imbalance in aquatic ecosystems.


Assuntos
Araceae , Benzofenonas , Catalase , Peroxidase , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Benzofenonas/toxicidade , Catalase/metabolismo , Araceae/efeitos dos fármacos , Araceae/crescimento & desenvolvimento , Peroxidase/metabolismo , Testes de Toxicidade Aguda , Protetores Solares/toxicidade , Clorofila/metabolismo
11.
Plant Physiol ; 195(4): 2694-2711, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38527800

RESUMO

Airspace or aerenchyma is crucial for plant development and acclimation to stresses such as hypoxia, drought, and nutritional deficiency. Although ethylene-mediated signaling cascades are known to regulate aerenchyma formation in stems and roots under hypoxic conditions, the precise mechanisms remain unclear. Moreover, the cellular dynamics underlying airspace formation in shoots are poorly understood. We investigated the stage-dependent structural dynamics of shoot aerenchyma in greater duckweed (Spirodela polyrhiza), a fast-growing aquatic herb with well-developed aerenchyma in its floating fronds. Using X-ray micro-computed tomography and histological analysis, we showed that the spatial framework of aerenchyma is established before frond volume increases, driven by cell division and expansion. The substomatal cavity connecting aerenchyma to stomata formed via programmed cell death (PCD) and was closely associated with guard cell development. Additionally, transcriptome analysis and pharmacological studies revealed that the organization of aerenchyma in greater duckweed is determined by the interplay between PCD and proliferation. This balance is governed by spatiotemporal regulation of phytohormone signaling involving ethylene, abscisic acid, and salicylic acid. Overall, our study reveals the structural dynamics and phytohormonal regulation underlying aerenchyma development in duckweed, improving our understanding of how plants establish distinct architectural arrangements. These insights hold the potential for wide-ranging application, not only in comprehending aerenchyma formation across various plant species but also in understanding how airspaces are formed within the leaves of terrestrial plants.


Assuntos
Araceae , Reguladores de Crescimento de Plantas , Brotos de Planta , Reguladores de Crescimento de Plantas/metabolismo , Araceae/genética , Araceae/crescimento & desenvolvimento , Araceae/fisiologia , Araceae/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia
12.
J Plant Res ; 137(3): 359-376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38349478

RESUMO

Lemna aequinoctialis Welw. is a widely spread species that has diverse physiological and molecular properties. Flower characteristics are important factors in deducing taxonomical status; however, owing to the rarity of flowering observations in Lemna, studying them has been a prolonged challenge. In this study, physiological and morphological analyses were conducted by inducing flowering, and molecular analysis was done based on the two chloroplast DNA loci (matK, atpF-atpH intergeneric spacer) of L. aequinoctialis sensu Landolt (1986) from 70 strains found in 70 localities in Japan, Korea, Thailand, and the US. In total, 752 flowering fronds from 13 strains were observed based on axenic conditions. Two different trends in flower organ development-protogyny and adichogamy-were detected in these strains. Their physiological traits were divided into two groups, showing different morphological features based on frond thickness, root cap, and anther sizes. Molecular analysis showed two lineages corresponding to two physiological groups. These were identified as L. aequinoctialis sensu Beppu et al. (1985) and L. aoukikusa Beppu et Murata based on the description of the nomenclature of L. aoukikusa. These were concluded as independent taxa and can be treated as different species. Furthermore, the distribution of L. aoukikusa is not only limited to Japan.


Assuntos
Araceae , Flores , Filogenia , Araceae/genética , Araceae/fisiologia , Araceae/anatomia & histologia , Araceae/crescimento & desenvolvimento , Flores/anatomia & histologia , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , DNA de Cloroplastos/genética , Japão , DNA de Plantas/genética
13.
PLoS One ; 17(1): e0254265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990448

RESUMO

Plant regeneration is important for vegetative propagation, detoxification and the obtain of transgenic plant. We found that duckweed regeneration could be enhanced by regenerating callus. However, very little is known about the molecular mechanism and the release of volatile organic compounds (VOCs). To gain a global view of genes differently expression profiles in callus and regenerating callus, genetic transcript regulation has been studied. Auxin related genes have been significantly down-regulated in regenerating callus. Cytokinin signal pathway genes have been up-regulated in regenerating callus. This result suggests the modify of auxin and cytokinin balance determines the regenerating callus. Volatile organic compounds release has been analysised by gas chromatography/ mass spectrum during the stage of plant regeneration, and 11 kinds of unique volatile organic compounds in the regenerating callus were increased. Cyclohexane treatment enhanced duckweed regeneration by initiating root. Moreover, Auxin signal pathway genes were down-regulated in callus treated by cyclohexane. All together, these results indicated that cyclohexane released by regenerating callus promoted duckweed regeneration. Our results provide novel mechanistic insights into how regenerating callus promotes regeneration.


Assuntos
Araceae/crescimento & desenvolvimento , Cicloexanos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regeneração , Fatores de Transcrição/metabolismo , Araceae/química , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Transcriptoma
14.
PLoS One ; 16(12): e0261364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890418

RESUMO

Anthurium andraeanum (Hort.) is an important ornamental in the tropical cut-flower industry. However, there is currently insufficient information to establish a clear connection between the genetic model(s) proposed and the putative genes involved in the differentiation between colors. In this study, 18 cDNA libraries related to the spathe color and developmental stages of A. andraeanum were characterized by transcriptome sequencing (RNA-seq). For the de novo transcriptome, a total of 114,334,082 primary sequence reads were obtained from the Illumina sequencer and were assembled into 151,652 unigenes. Approximately 58,476 transcripts were generated and used for comparative transcriptome analysis between three cultivars that differ in spathe color ('Sasha' (white), 'Honduras' (red), and 'Rapido' (purple)). A large number of differentially expressed genes (8,324), potentially involved in multiple biological and metabolic pathways, were identified, including genes in the flavonoid and anthocyanin biosynthetic pathways. Our results showed that the chalcone isomerase (CHI) gene presented the strongest evidence for an association with differences in color and the highest correlation with other key genes (flavanone 3-hydroxylase (F3H), flavonoid 3'5' hydroxylase (F3'5'H)/ flavonoid 3'-hydroxylase (F3'H), and leucoanthocyanidin dioxygenase (LDOX)) in the anthocyanin pathway. We also identified a differentially expressed cytochrome P450 gene in the late developmental stage of the purple spathe that appeared to determine the difference between the red- and purple-colored spathes. Furthermore, transcription factors related to putative MYB-domain protein that may control anthocyanin pathway were identified through a weighted gene co-expression network analysis (WGCNA). The results provided basic sequence information for future research on spathe color, which have important implications for this ornamental breeding strategies.


Assuntos
Araceae/metabolismo , Flores/metabolismo , Proteínas de Plantas/metabolismo , Araceae/genética , Araceae/crescimento & desenvolvimento , Cor , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Filogenia , Pigmentação , Proteínas de Plantas/genética , Transcriptoma
15.
PLoS One ; 16(10): e0258253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34634063

RESUMO

Current knowledge on responses of aquatic clonal plants to resource availability is largely based on studies manipulating limited resource levels, which may have failed to capture the "big picture" for aquatic clonal plants in response to resource availability. In a greenhouse experiment, we grew the floating clonal plant Spirodela polyrhiza under ten nutrient levels (i.e., 1/64×, 1/32×, 1/16×, 1/8×, 1/4×, 1/2×, 1×, 2×, 4× and 8×full-strength Hoagland solution) and examined their responses in terms of clonal growth, morphology and biomass allocations. The responses of total biomass and number of ramets to nutrient availability were unimodal. A similar pattern was found for frond mass, frond length and frond width, even though area per frond and specific frond area fluctuated greatly in response to nutrient availability. In contrast, the responses of root mass and root length to nutrient availability were U-shaped. Moreover, S. polyrhiza invested more to roots under lower nutrient concentrations. These results suggest that nutrient availability may have distinct influences on roots and fronds of the aquatic clonal plant S. polyrhiza, resulting in a great influence on the whole S. polyrhiza population.


Assuntos
Araceae/fisiologia , Nutrientes/farmacologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Araceae/anatomia & histologia , Araceae/efeitos dos fármacos , Araceae/crescimento & desenvolvimento , Biomassa , Células Clonais , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/anatomia & histologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia
16.
Cells ; 10(6)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204703

RESUMO

This study addresses the unique functional features of duckweed via comparison of Lemna gibba grown under controlled conditions of 50 versus 1000 µmol photons m-2 s-1 and of a L. minor population in a local pond with a nearby population of the biennial weed Malva neglecta. Principal component analysis of foliar pigment composition revealed that Malva was similar to fast-growing annuals, while Lemna was similar to slow-growing evergreens. Overall, Lemna exhibited traits reminiscent of those of its close relatives in the family Araceae, with a remarkable ability to acclimate to both deep shade and full sunlight. Specific features contributing to duckweed's shade tolerance included a foliar pigment composition indicative of large peripheral light-harvesting complexes. Conversely, features contributing to duckweed's tolerance of high light included the ability to convert a large fraction of the xanthophyll cycle pool to zeaxanthin and dissipate a large fraction of absorbed light non-photochemically. Overall, duckweed exhibited a combination of traits of fast-growing annuals and slow-growing evergreens with foliar pigment features that represented an exaggerated version of that of terrestrial perennials combined with an unusually high growth rate. Duckweed's ability to thrive under a wide range of light intensities can support success in a dynamic light environment with periodic cycles of rapid expansion.


Assuntos
Aclimatação/fisiologia , Araceae/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/metabolismo , Araceae/metabolismo , Luz , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo
17.
Sci Rep ; 11(1): 10889, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035402

RESUMO

With growing human culture and industrialization, many pollutants are being introduced into aquatic ecosystems. In recent years, dyes have become a major water pollutant used in the manufacture of paints and other production purposes. In this research, the potential of duckweed (Lemna gibba) plant was investigated spectrophotometrically as an obvious bioagent for the biological decolorization of the organic dye C.I. Basic Green 4 (Malachite Green, BG4). Photosynthetic efficiency analysis showed that the photosynthetic apparatus of L. gibba is very tolerant to BG4. Significant induction of reactive oxygen species (ROS) scavenging enzymes was observed after 24h of biodecolorization process in L. gibba treated with 15 and 30 mg/l BG4. The experimental results showed that L. gibba has a strong ability to extract BG4 from contaminated water and the best results were obtained at 25-30°C and pH 8.0. We conclude that duckweed L. gibba can be used as a potent decolorization organism for BG4.


Assuntos
Araceae/crescimento & desenvolvimento , Corantes de Rosanilina/análise , Poluentes Químicos da Água/análise , Araceae/metabolismo , Biodegradação Ambiental , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria
18.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800476

RESUMO

Plants in the family Lemnaceae are aquatic monocots and the smallest, simplest, and fastest growing angiosperms. Their small size, the smallest family member is 0.5 mm and the largest is 2.0 cm, as well as their diverse morphologies make these plants ideal for laboratory studies. Their rapid growth rate is partially due to the family's neotenous lifestyle, where instead of maturing and producing flowers, the plants remain in a juvenile state and continuously bud asexually. Maturation and flowering in the wild are rare in most family members. To promote further research on these unique plants, we have optimized laboratory flowering protocols for 3 of the 5 genera: Spirodela; Lemna; and Wolffia in the Lemnaceae. Duckweeds were widely used in the past for research on flowering, hormone and amino acid biosynthesis, the photosynthetic apparatus, and phytoremediation due to their aqueous lifestyle and ease of aseptic culture. There is a recent renaissance in interest in growing these plants as non-lignified biomass sources for fuel production, and as a resource-efficient complete protein source. The genome sequences of several Lemnaceae family members have become available, providing a foundation for genetic improvement of these plants as crops. The protocols for maximizing flowering described herein are based on screens testing daylength, a variety of media, supplementation with salicylic acid or ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA), as well as various culture vessels for effects on flowering of verified Lemnaceae strains available from the Rutgers Duckweed Stock Cooperative.


Assuntos
Araceae , Etilenodiaminas/farmacologia , Flores , Filogenia , Sementes , Araceae/genética , Araceae/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
19.
Biomed Res Int ; 2021: 3123476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748267

RESUMO

BACKGROUND: Clausena excavata Burum. f. has long been applied in ethnomedicine for the treatment of various disorders like rhinitis, headache, cough, wound healing, fever, and detoxification. This study is aimed at investigating the antibacterial activity against Enterococcus faecalis ATCC 49532 using AlamarBlue assay and atomic force microscopy (AFM) as well as the cytotoxicity, anticancer, and phytotoxicity of C. excavata. METHOD: Bacterial cell viability was performed by using microplate AlamarBlue assay. Atomic force microscopy was used to determine morphological changes in the surface of bacterial cells. Cytotoxicity and phytotoxicity were determined by brine shrimp lethality and Lemna minor bioassay. Caco-2 (colorectal adenocarcinoma) cell line was used for the evaluation of the anticancer effects. RESULT: Among the fractions tested, ethyl acetate (EA) fraction was found to be active with minimum inhibitory concentration (MIC) of 750 µg/mL against E. faecalis, but other fractions were found to be insensitive to bacterial growth. Microscopically, the EA fraction-treated bacteria showed highly damaged cells with their cytoplasmic content scattered all over. The LC50 value of the EA fraction against brine shrimp was more than 1000 µg/mL showing the nontoxic nature of this fraction. Chloroform (CH), EA, and methanol (MOH) fractions of C. excavata were highly herbicidal at the concentration of 1000 µg/mL. EA inhibited Caco-2 cell line with an IC50 of 20 µg/mL. CONCLUSIONS: This study is the first to reveal anti-E. faecalis property of EA fraction of C. excavata leaves, natural herbicidal, and anticancer agents thus highlight the potential compound present in its leaf which needs to be isolated and tested against multidrug-resistant E. faecalis.


Assuntos
Antibacterianos , Antineoplásicos Fitogênicos , Araceae/crescimento & desenvolvimento , Clausena/química , Citotoxinas , Enterococcus faecalis/crescimento & desenvolvimento , Herbicidas , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Artemia/crescimento & desenvolvimento , Células CACO-2 , Citotoxinas/química , Citotoxinas/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Humanos , Extratos Vegetais/química
20.
Environ Toxicol Pharmacol ; 85: 103635, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33716093

RESUMO

Lumefantrine is used to treat uncomplicated malaria caused by pure or mixed Plasmodium falciparum infections and as a prophylactic against recrudescence following artemether therapy. However, the pharmaceutical is released into the aquatic environment from industrial effluents, hospital discharges, and human excretion. This study assessed the effects of lumefantrine on the growth and physiological responses of the microalgae Chlorella vulgaris and Raphidocelis subcapitata (formerly known as Selenastrum capricornutum and Pseudokirchneriella subcapitata) and the aquatic macrophyte Lemna minor. The microalgae and macrophyte were exposed to 200-10000 µg l-1 and 16-10000 µg l-1 lumefantrine, respectively. Lumefantrine had a variable effect on the growth of the aquatic plants investigated. There was a decline in the growth of R. subcapitata and L. minor post-exposure to the drug. Contrarily, there was stimulation in the growth of Chlorella vulgaris. All experimental plants had a significant increase in lipid peroxidation, which was accompanied by an increase in malondialdehyde content. Peroxidase activity of L. minor increased only at low lumefantrine concentrations, while the opposite occurred at higher levels of the drug. Incubation in lumefantrine contaminated medium significantly up-regulated the activity of R. subcapitata cultures. Glutathione S-transferase of L. minor exposed to lumefantrine treatments had substantially higher activities than the controls. Our findings suggest lumefantrine could have adverse but variable effects on the growth and physiology of the studied aquatic plants.


Assuntos
Antimaláricos/toxicidade , Araceae/efeitos dos fármacos , Chlorella vulgaris/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Lumefantrina/toxicidade , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Chlorella vulgaris/metabolismo , Clorofila/metabolismo , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA