Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.204
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731802

RESUMO

5-azacytidine (AZA), a representative DNA-demethylating drug, has been widely used to treat myelodysplastic syndromes (MDS). However, it remains unclear whether AZA's DNA demethylation of any specific gene is correlated with clinical responses to AZA. In this study, we investigated genes that could contribute to the development of evidence-based epigenetic therapeutics with AZA. A DNA microarray identified that AZA specifically upregulated the expression of 438 genes in AZA-sensitive MDS-L cells but not in AZA-resistant counterpart MDS-L/CDA cells. Of these 438 genes, the ALOX12 gene was hypermethylated in MDS-L cells but not in MDS-L/CDA cells. In addition, we further found that (1) the ALOX12 gene was hypermethylated in patients with MDS compared to healthy controls; (2) MDS classes with excess blasts showed a relatively lower expression of ALOX12 than other classes; (3) a lower expression of ALOX12 correlated with higher bone marrow blasts and a shorter survival in patients with MDS; and (4) an increased ALOX12 expression after AZA treatment was associated with a favorable response to AZA treatment. Taking these factors together, an enhanced expression of the ALOX12 gene may predict favorable therapeutic responses to AZA therapy in MDS.


Assuntos
Araquidonato 12-Lipoxigenase , Azacitidina , Metilação de DNA , Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Azacitidina/uso terapêutico , Azacitidina/farmacologia , Masculino , Feminino , Metilação de DNA/efeitos dos fármacos , Idoso , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Adulto
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641013

RESUMO

Ferroptosis is a programmed form of cell death regulated by iron and has been linked to the development of asthma. However, the precise mechanisms driving ferroptosis in asthma remain elusive. To gain deeper insights, we conducted an analysis of nasal epithelial and sputum samples from the GEO database using three machine learning methods. Our investigation identified a pivotal gene, Arachidonate 15-lipoxygenase (ALOX15), associated with ferroptosis in asthma. Through both in vitro and in vivo experiments, we further confirmed the significant role of ALOX15 in ferroptosis in asthma. Our results demonstrate that ferroptosis manifests in an HDM/LPS-induced allergic airway inflammation (AAI) mouse model, mimicking human asthma, and in HDM/LPS-stimulated 16HBE cells. Moreover, we observed an up-regulation of ALOX15 expression in HDM/LPS-induced mice and cells. Notably, silencing ALOX15 markedly decreased HDM/LPS-induced ferroptosis in 16HBE cells. These findings indicate that ferroptosis may be implicated in the onset and progression of asthma, with ALOX15-induced lipid peroxidation raising the susceptibility to ferroptosis in asthmatic epithelial cells.


Assuntos
Araquidonato 15-Lipoxigenase , Asma , Células Epiteliais , Ferroptose , Peroxidação de Lipídeos , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Animais , Asma/patologia , Asma/metabolismo , Asma/genética , Humanos , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Modelos Animais de Doenças , Linhagem Celular , Feminino , Araquidonato 12-Lipoxigenase
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653359

RESUMO

OBJECTIVE: This work aimed to investigate the role of rhythm gene PER1 in mediating granulosa cell ferroptosis and lipid metabolism of polycystic ovary syndrome (PCOS). METHODS: We injected dehydroepiandrosterone and Ferrostatin-1 (Fer-1) into mice to explore the mechanism of ferroptosis in PCOS. The effect of PER1 on ferroptosis-like changes in granulosa cells was explored by overexpression of PER1 plasmid transfection and Fer-1 treatment. RESULTS: We found that Fer-1 ameliorated the characteristic polycystic ovary morphology, suppressed ferroptosis in the PCOS mice. PER1 and ALOX15 were highly expressed in PCOS, whereas SREBF2 was lowly expressed. Overexpression of PER1 decreased granulosa cell viability and inhibited proliferation. Meanwhile, overexpression of PER1 increased lipid reactive oxygen species, 4-Hydroxynonenal (4-HNE), Malondialdehyde (MDA), total Fe, and Fe2+ levels in granulosa cells and decreased Glutathione (GSH) content. Fer-1, SREBF2 overexpression, or ALOX15 silencing treatment reversed the effects of PER1 overexpression on granulosa cells. PER1 binds to the SREBF2 promoter and represses SREBF2 transcription. SREBF2 binds to the ALOX15 promoter and represses ALOX15 transcription. Correlation analysis of clinical trials showed that PER1 was positively correlated with total cholesterol, low-density lipoprotein cholesterol, luteinizing hormone, testosterone, 4-HNE, MDA, total Fe, Fe2+, and ALOX15. In contrast, PER1 was negatively correlated with SREBF2, high-density lipoprotein cholesterol, follicle-stimulating hormone, progesterone, and GSH. CONCLUSION: This study demonstrates that the rhythm gene PER1 promotes ferroptosis and dysfunctional lipid metabolism in granulosa cells in PCOS by inhibiting SREBF2/ALOX15 signaling.


Assuntos
Ferroptose , Células da Granulosa , Metabolismo dos Lipídeos , Síndrome do Ovário Policístico , Ferroptose/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Feminino , Animais , Metabolismo dos Lipídeos/genética , Camundongos , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Humanos , Fenilenodiaminas/farmacologia , Cicloexilaminas/farmacologia , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Desidroepiandrosterona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Araquidonato 12-Lipoxigenase
4.
BMJ Case Rep ; 17(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514164

RESUMO

Autosomal recessive congenital ichthyosis is a type of inherited ichthyosis which is a rare cluster of genetic disorders leading to defective keratinisation. The combined prevalence for lamellar ichthyosis and congenital ichthyosiform erythroderma is almost 1 per 200 000-300 000 people. Among all the mutations in this gene, missense and frameshift mutations are most common which account for 80% of the cases. Our patient had a mutation in R-type arachidonate 12-lipoxygenase gene (ALOX12B, OMIM*603741).


Assuntos
Eritrodermia Ictiosiforme Congênita , Ictiose Lamelar , Ictiose , Lactente , Humanos , Ictiose Lamelar/genética , Colódio , Araquidonato 12-Lipoxigenase/genética , Eritrodermia Ictiosiforme Congênita/genética , Mutação , Genes Recessivos
5.
Ren Fail ; 46(1): 2313182, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38345057

RESUMO

Diabetic kidney disease (DKD) is one of the major causes of end-stage renal disease and one of the significant complications of diabetes. This study aims to identify the main differentially expressed genes in DKD from transcriptome sequencing results and analyze their diagnostic value. The present study sequenced db/m mouse and db/db mouse to determine the ALOX12 genetic changes related to DKD. After preliminary validation, ALOX12 levels were significantly elevated in the blood of DKD patients, but not during disease progression. Moreover, urine ALOX12 was increased only in macroalbuminuria patients. Therefore, to visualize the diagnostic efficacy of ALOX12 on the onset and progression of renal injury in DKD, we collected kidney tissue from patients for immunohistochemical staining. ALOX12 was increased in the kidneys of patients with DKD and was more elevated in macroalbuminuria patients. Clinical chemical and pathological data analysis indicated a correlation between ALOX12 protein expression and renal tubule injury. Further immunofluorescence double staining showed that ALOX12 was expressed in both proximal tubules and distal tubules. Finally, the diagnostic value of the identified gene in the progression of DKD was assessed using receiver operating characteristic (ROC) curve analysis. The area under the curve (AUC) value for ALOX12 in the diagnosis of DKD entering the macroalbuminuria stage was 0.736, suggesting that ALOX12 has good diagnostic efficacy. During the development of DKD, the expression levels of ALOX12 in renal tubules were significantly increased and can be used as one of the predictors of the progression to macroalbuminuria in patients with DKD.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Falência Renal Crônica , Humanos , Animais , Camundongos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Rim , Falência Renal Crônica/complicações , Túbulos Renais Proximais/metabolismo , Diabetes Mellitus Tipo 2/complicações , Progressão da Doença , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo
6.
Arch Biochem Biophys ; 752: 109874, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38145834

RESUMO

The X-ray crystal structures of soybean lipoxygenase (LOX) and rabbit 15-LOX were reported in the 1990s. Subsequent 3D structures demonstrated a conserved U-like shape of the substrate cavities as reviewed here. The 8-LOX:arachidonic acid (AA) complex showed AA bound to the substrate cavity carboxylate-out with C10 at 3.4 Å from the iron metal center. A recent cryo-electron microscopy (EM) analysis of the 12-LOX:AA complex illustrated AA in the same position as in the 8-LOX:AA complex. The 15- and 12-LOX complexes with isoenzyme-specific inhibitors/substrate mimics confirmed the U-fold. 5-LOX oxidizes AA to leukotriene A4, the first step in biosynthesis of mediators of asthma. The X-ray structure showed that the entrance to the substrate cavity was closed to AA by Phe and Tyr residues of a partly unfolded α2-helix. Recent X-ray analysis revealed that soaking with inhibitors shifted the short α2-helix to a long and continuous, which opened the substrate cavity. The α2-helix also adopted two conformations in 15-LOX. 12-LOX dimers consisted of one closed and one open subunit with an elongated α2-helix. 13C-ENDOR-MD computations of the 9-MnLOX:linoleate complex showed carboxylate-out position with C11 placed 3.4 ± 0.1 Å from the catalytic water. 3D structures have provided a solid ground for future research.


Assuntos
Lipoxigenase , Lipoxigenases , Animais , Coelhos , Lipoxigenases/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/química , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Araquidonato 12-Lipoxigenase
7.
Arch Dermatol Res ; 316(1): 24, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060040

RESUMO

BACKGROUND: Hereditary ichthyosis is a clinically and genetically heterogeneous disorder associated with more than 50 genes with TGM1, ALOX12B, and ALOXE3 being the most prevalent. Establishing an accurate diagnosis is important for effective genetic counseling and optimal patient management. OBJECTIVE: We studied the diagnostic value of whole exome sequencing (WES) in a small case series with hereditary ichthyosis. METHODS: During a 1-year period, index cases of 5 unrelated families clinically diagnosed with hereditary ichthyosis went through WES, followed by extensive segregation analysis. Prenatal diagnosis (PND) was conducted where indicated. RESULTS: We identified 4 homozygous variants-2 in TGM1 (c.655A > G and c.797A > G) and 2 in ALOX12B (c.527 + 2 T > G and c.1654G > T)-alongside a heterozygous variant in TGM1 (c.428G > A) in 5 families. The variants were all pathogenic/likely pathogenic according to the ACMG classification and segregation analysis, except for c.797A > G in TGM1 which remained a variant of unknown clinical significance. Four variants were novel. All families were referred either during pregnancy or before reproductive planning; 4 benefited from WES as it identified the mutation in the probands and enabled carrier detection in at-risk relatives; PND was conducted in 2 families. CONCLUSION: Our findings further support WES is a powerful tool for the comprehensive, accurate, and rapid molecular diagnosis of hereditary ichthyosis and can offer opportunities for reproductive planning, carrier screening and prenatal diagnosis to at-risk families.


Assuntos
Ictiose Lamelar , Ictiose , Humanos , Araquidonato 12-Lipoxigenase/genética , Sequenciamento do Exoma , Aconselhamento Genético , Ictiose/diagnóstico , Ictiose Lamelar/diagnóstico , Ictiose Lamelar/genética , Mutação
8.
Cell Mol Biol Lett ; 28(1): 97, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030974

RESUMO

Arachidonic acid 15-lipoxygenases (ALOX15) play a role in mammalian erythropoiesis but they have also been implicated in inflammatory processes. Seven intact Alox genes have been detected in the mouse reference genome and the mouse Alox15 gene is structurally similar to the orthologous genes of other mammals. However, mouse and human ALOX15 orthologs have different functional characteristics. Human ALOX15 converts C20 polyenoic fatty acids like arachidonic acid mainly to the n-6 hydroperoxide. In contrast, the n-9 hydroperoxide is the major oxygenation product formed by mouse Alox15. Previous experiments indicated that Leu353Phe exchange in recombinant mouse Alox15 humanized the catalytic properties of the enzyme. To investigate whether this functional humanization might also work in vivo and to characterize the functional consequences of mouse Alox15 humanization we generated Alox15 knock-in mice (Alox15-KI), in which the Alox15 gene was modified in such a way that the animals express the arachidonic acid 15-lipoxygenating Leu353Phe mutant instead of the arachidonic acid 12-lipoxygenating wildtype enzyme. These mice develop normally, they are fully fertile but display modified plasma oxylipidomes. In young individuals, the basic hematological parameters were not different when Alox15-KI mice and outbred wildtype controls were compared. However, when growing older male Alox15-KI mice develop signs of dysfunctional erythropoiesis such as reduced hematocrit, lower erythrocyte counts and attenuated hemoglobin concentration. These differences were paralleled by an improved ex vivo osmotic resistance of the peripheral red blood cells. Interestingly, such differences were not observed in female individuals suggesting gender specific effects. In summary, these data indicated that functional humanization of mouse Alox15 induces defective erythropoiesis in aged male individuals.


Assuntos
Araquidonato 15-Lipoxigenase , Peróxido de Hidrogênio , Animais , Feminino , Humanos , Masculino , Camundongos , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Ácido Araquidônico , Mamíferos
9.
Arterioscler Thromb Vasc Biol ; 43(10): 1990-2007, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650322

RESUMO

BACKGROUND: Platelets for transfusion are stored for 5 to 7 days. Previous studies have shown that HETE levels in the storage bag negatively correlate with platelet performance in vivo, suggesting that the dysregulation of bioactive lipid mediators may contribute to the storage lesion. In the current study, we sought to understand how genetic deletion and pharmacological inhibition of 12-LOX (12-lipoxygenase) affects platelets during storage and after transfusion. METHODS: Platelets from 12-LOX+/+ (wild-type [WT]) and 12-LOX-/- mice were stored for 24 and 48 hours and profiled using liquid chromatography-tandem mass spectrometry-multiple reaction monitoring or transfused into thrombocytopenic hIL4R (human interleukin 4 receptor)-transgenic mice. Platelet function was assessed by flow cytometry and in vivo thrombosis and hemostasis models. To test the role of the COX-1 (cyclooxygenase-1) pathway, donor mice were treated with acetylsalicylic acid. Human platelets were treated with the 12-LOX inhibitor, VLX-1005, or vehicle, stored, and transfused to NOD/SCID (nonobese diabetic/severe combined immunodeficiency) mice. RESULTS: Polyunsaturated fatty acids increased significantly in stored platelets from 12-LOX-/- mice, whereas oxylipin concentrations were significantly higher in WT platelets. After transfusion to thrombocytopenic mice, we observed significantly more baseline αIIbß3 integrin activation in 12-LOX-/- platelets than in WT platelets. Stored platelets from 12-LOX-/- mice occluded vessels significantly faster than stored WT platelets. In hemostasis models, significantly more stored 12-LOX-/- than WT platelets accumulated at the site of venous injury leading to reduced blood loss. Inhibition of COX-1 abrogated both increased integrin activation and thromboxane generation in stored 12-LOX-/- platelets, highlighting the critical role of this pathway for improved post-transfusion function. Consistent with our mouse studies, human platelets stored with VLX-1005, showed increased integrin activation compared with vehicle-treated platelets after transfusion. CONCLUSIONS: Deleting 12-LOX improves the post-transfusion function of stored murine platelets by increasing thromboxane generation through COX-1-dependent arachidonic acid metabolism. Future studies should determine the feasibility and safety of 12-LOX-inhibited platelets transfused to humans.


Assuntos
Araquidonato 12-Lipoxigenase , Plaquetas , Humanos , Camundongos , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Plaquetas/metabolismo , Camundongos Transgênicos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Tromboxanos/metabolismo
10.
Blood ; 142(14): 1233-1242, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37506345

RESUMO

Human 12-lipoxygenase (12-LOX) is a key enzyme involved in platelet activation, and the regulation of its activity has been targeted for the treatment of heparin-induced thrombocytopenia. Despite the clinical importance of 12-LOX, the exact mechanisms by which it affects platelet activation are not fully understood, and the lack of structural information has limited drug discovery efforts. In this study, we used single-particle cryo-electron microscopy to determine high-resolution structures (1.7-2.8 Å) of human 12-LOX. Our results showed that 12-LOX can exist in multiple oligomeric states, from monomer to hexamer, which may affect its catalytic activity and membrane association. We also identified different conformations within the 12-LOX dimer, which likely represent different time points in its catalytic cycle. Furthermore, we identified small molecules bound to 12-LOX. The active site of the 12-LOX tetramer was occupied by an endogenous 12-LOX inhibitor, a long-chain acyl coenzyme A. In addition, we found that the 12-LOX hexamer can simultaneously bind to arachidonic acid and ML355, a selective 12-LOX inhibitor that has passed a phase 1 clinical trial for the treatment of heparin-induced thrombocytopenia and received a fast-track designation by the Food and Drug Administration. Overall, our findings provide novel insights into the assembly of 12-LOX oligomers, their catalytic mechanism, and small molecule binding, paving the way for further drug development targeting the 12-LOX enzyme.


Assuntos
Ativação Plaquetária , Trombocitopenia , Estados Unidos , Humanos , Microscopia Crioeletrônica , Ácido Araquidônico/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo
11.
Int Immunopharmacol ; 121: 110419, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295028

RESUMO

The inflammatory response is an essential process for the host defence against pathogens. Lipid mediators are important in coordinating the pro-inflammatory and pro-resolution phases of the inflammatory process. However, unregulated production of these mediators has been associated with chronic inflammatory diseases such as arthritis, asthma, cardiovascular diseases, and several types of cancer. Therefore, it is not surprising that enzymes implicated in the production of these lipid mediators have been targeted for potential therapeutic approaches. Amongst these inflammatory molecules, the 12-hydroxyeicosatetraenoic acid (12(S)-HETE) is abundantly produced in several diseases and is primarily biosynthesized via the platelet's 12-lipoxygenase (12-LO) pathway. To this day, very few compounds selectively inhibit the 12-LO pathway, and most importantly, none are currently used in the clinical settings. In this study, we investigated a series of polyphenol analogues of natural polyphenols that inhibit the 12-LO pathway in human platelets without affecting other normal functions of the cell. Using an ex vivo approach, we found one compound that selectively inhibited the 12-LO pathway, with IC50 values as low as 0.11 µM, with minimal inhibition of other lipoxygenase or cyclooxygenase pathways. More importantly, our data show that none of the compounds tested induced significant off-target effects on either the platelet's activation or its viability. In the continuous search for specific and better inhibitors targeting the regulation of inflammation, we characterized two novel inhibitors of the 12-LO pathway that could be promising for subsequent in vivo studies.


Assuntos
Araquidonato 12-Lipoxigenase , Araquidonato 5-Lipoxigenase , Humanos , Araquidonato 5-Lipoxigenase/metabolismo , Ácidos Cafeicos/farmacologia , Lipídeos , Inibidores de Lipoxigenase/farmacologia
12.
Bioorg Chem ; 138: 106606, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37210826

RESUMO

The 12R-lipoxygenase (12R-LOX), a (non-heme) iron-containing metalloenzyme belonging to the lipoxygenase (LOX) family catalyzes the conversion of arachidonic acid (AA) to its key metabolites. Studies suggested that 12R-LOX plays a critical role in immune modulation for the maintenance of skin homeostasis and therefore can be considered as a potential drug target for psoriasis and other skin related inflammatory diseases. However, unlike 12-LOX (or 12S-LOX) the enzyme 12R-LOX did not receive much attention till date. In our effort, the 2-aryl quinoline derivatives were designed, synthesized and evaluated for the identification of potential inhibitors of 12R-hLOX. The merit of selection of 2-aryl quinolines was assessed by in silico docking studies of a representative compound (4a) using the homology model of 12R-LOX. Indeed, in addition to participating in H-bonding with THR628 and LEU635 the molecule formed a hydrophobic interaction with VAL631. The desired 2-aryl quinolines were synthesized either via the Claisen-Schmidt condensation followed by one-pot reduction-cyclization or via the AlCl3 induced heteroarylation or via the O-alkylation approach in good to high (82-95%) yield. When screened against human 12R-LOX (12R-hLOX) in vitro four compounds (e.g. 4a, 4d, 4e and 7b) showed encouraging (>45%) inhibition at 100 µM among which 7b and 4a emerged as the initial hits. Both the compounds showed selectivity towards 12R-hLOX over 12S-hLOX, 15-hLOX and 15-hLOXB and concentration dependent inhibition of 12R-hLOX with IC50 = 12.48 ± 2.06 and 28.25 ± 1.63 µM, respectively. The selectivity of 4a and 7b towards 12R-LOX over 12S-LOX was rationalized with the help of molecular dynamics simulations. The SAR (Structure-Activity Relationship) within the present series of compounds suggested the need of a o-hydroxyl group on the C-2 phenyl ring for the activity. The compound 4a and 7b (at 10 and 20 µM) reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes in a concentration dependent manner. Further, both compounds decreased the protein levels of Ki67 and the mRNA expression of IL-17A in the IMQ-induced psoriatic-like keratinocytes. Notably, 4a but not 7b inhibited the production of IL-6 and TNF-α in the keratinocyte cells. In the preliminary toxicity studies (i.e. teratogenicity, hepatotoxicity and heart rate assays) in zebrafish both the compounds showed low safety (<30 µM) margin. Overall, being the first identified inhibitors of 12R-LOX both 4a and 7b deserve further investigations.


Assuntos
Quinolinas , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Pele/metabolismo , Quinolinas/farmacologia , Relação Estrutura-Atividade , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular
13.
Chem Biol Interact ; 379: 110513, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116854

RESUMO

We investigated the effect of inhibition of 5-lipoxigenase (LOX) and 12-LOX pathways on the regeneration of skeletal muscle fibers after injury induced by a myotoxin (MTX) phospholipase A2 from snake venom in an in vivo experimental model. Gastrocnemius muscles of mice injected with MTX presented an increase in 5-LOX protein expression, while 12-LOX was found to be a constitutive protein of skeletal muscle. Animals that received oral treatments with 5-LOX inhibitor MK886 or 12-LOX inhibitor baicalein 30 min and 48 h after MTX-induced muscle injury showed a reduction in the inflammatory process characterized by a significant decrease of cell influx and injured fibers in the degenerative phase (6 and 24 h after injury). In the beginning of the regeneration process (3 days), mice that received MK886 showed fewer new basophilic fibers, suggesting fewer proliferative events and myogenic cell fusion. Furthermore, in the progression of tissue regeneration (14-21 days), the mice treated with 5-LOX inhibitor presented a lower quantity of central nucleus fibers and small-caliber fibers, culminating in a muscle that is more resistant to the stimulus of fatigue during muscle regeneration with a predominance of slow fibers. In contrast, animals early treated with the 12-LOX inhibitor presented functional fibers with higher diameters, less resistant to fatigue and predominance of fast heavy-chain myosin fibers as observed in control animals. These effects were accompanied by an earlier expression of myogenic factor MyoD. Our results suggest that both 5-LOX and 12-LOX pathways represent potential therapeutic targets for muscle regeneration. It appears that inhibition of the 5-LOX pathway represses only the degenerative process by reducing tissue inflammation levels. Meanwhile, inhibition of the 12-LOX pathway also favors the anticipation of maturation and earlier recovery of muscle fiber activity function after injury.


Assuntos
Araquidonato 12-Lipoxigenase , Doenças Musculares , Camundongos , Animais , Araquidonato 12-Lipoxigenase/farmacologia , Araquidonato 5-Lipoxigenase/farmacologia , Fibras Musculares Esqueléticas , Músculo Esquelético
14.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047037

RESUMO

Human lipoxygenase 12 (hALOX12) catalyzes the conversion of docosahexaenoic acid (DHA) into mainly 14S-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid (14S-H(p)DHA). This hydroperoxidation reaction is followed by an epoxidation and hydrolysis process that finally leads to maresin 1 (MaR1), a potent bioactive specialized pro-resolving mediator (SPM) in chronic inflammation resolution. By combining docking, molecular dynamics simulations, and quantum mechanics/molecular mechanics calculations, we have computed the potential energy profile of DHA hydroperoxidation in the active site of hALOX12. Our results describe the structural evolution of the molecular system at each step of this catalytic reaction pathway. Noteworthy, the required stereospecificity of the reaction leading to MaR1 is explained by the configurations adopted by DHA bound to hALOX12, along with the stereochemistry of the pentadienyl radical formed after the first step of the mechanism. In pig lipoxygenase 15 (pigALOX15-mini-LOX), our calculations suggest that 14S-H(p)DHA can be formed, but with a stereochemistry that is inadequate for MaR1 biosynthesis.


Assuntos
Ácidos Docosa-Hexaenoicos , Fagocitose , Animais , Humanos , Araquidonato 12-Lipoxigenase/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Inflamação/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Suínos , Araquidonato 15-Lipoxigenase
15.
Dermatol Online J ; 29(1)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37040911

RESUMO

Collodion baby is usually a manifestation of autosomal recessive congenital ichthyosis, a heterogeneous group of congenital hyperkeratotic genodermatoses with highly variable severity and genetic background. Herein, we report a case of self-improving collodion ichthyosis, a rare subtype of autosomal recessive congenital ichthyosis, characterized by an almost-complete spontaneous resolution of symptoms.


Assuntos
Ictiose Lamelar , Ictiose , Lactente , Humanos , Colódio , Ictiose Lamelar/diagnóstico , Ictiose/genética , Araquidonato 12-Lipoxigenase/genética
16.
Cell Death Dis ; 14(3): 185, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882395

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by eczema-like skin lesions, dry skin, severe itching, and recurrent recurrence. The whey acidic protein four-disulfide core domain gene WFDC12 is highly expressed in skin tissue and up-regulated in the skin lesions of AD patients, but its role and relevant mechanism in AD pathogenesis have not been studied yet. In this study, we found that the expression of WFDC12 was closely related to clinical symptoms of AD and the severity of AD-like lesions induced by DNFB in transgenic mice. WFDC12-overexpressing in the epidermis might promote the migration of skin-presenting cells to lymph nodes and increase Th cell infiltration. Meanwhile, the number and ratio of immune cells and mRNA levels of cytokines were significantly upregulated in transgenic mice. In addition, we found that ALOX12/15 gene expression was upregulated in the arachidonic acid metabolism pathway, and the corresponding metabolite accumulation was increased. The activity of epidermal serine hydrolase decreased and the accumulation of platelet-activating factor (PAF) increased in the epidermis of transgenic mice. Collectively, our data demonstrate that WFDC12 may contribute to the exacerbation of AD-like symptoms in DNFB-induced mouse model by enhancing arachidonic acid metabolism and PAF accumulation and that WFDC12 may be a potential therapeutic target for human atopic dermatitis.


Assuntos
Dermatite Atópica , Animais , Camundongos , Humanos , Dermatite Atópica/genética , Fator de Ativação de Plaquetas , Ácido Araquidônico , Dinitrofluorbenzeno , Pele , Proteínas , Araquidonato 12-Lipoxigenase/genética
17.
Clin Exp Hypertens ; 45(1): 2180019, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36860117

RESUMO

OBJECTIVES: The present study aimed to investigate the effect and mechanism of angiotensin II-induced ferroptosis in vascular endothelial cells. METHODS: In vitro, HUVECs were treated with AngII, AT1/2 R antagonist, P53 inhibitor, or their combinations. MDA and intracellular iron content were evaluated using an ELISA assay. The expression of ALOX12, P53, P21, and SLC7A11 were determined by western blotting in HUVECs and then confirmed through RT-PCR. RESULTS: As the concentration of Ang II (0, 0.1,1,10,100, and 1000uM for 48 h) increased, the level of MDA and intracellular iron content increased in HUVECs. Compared with the single AngII group, ALOX12, p53, MDA, and intracellular iron content in AT1/2R antagonist group decreased significantly. In pifithrin-α hydrobromide-treated, ALOX12, P21,MDA, and intracellular iron content decreased significantly as compared to the single AngII group. Similarly, the effect of combined use of blockers is stronger than that of blockers alone. CONCLUSIONS: AngII can induce ferroptosis of vascular endothelial cells. The mechanism of AngII-induced ferroptosis may be regulated through the signal axis of p53-ALOX12.


Assuntos
Araquidonato 12-Lipoxigenase , Ferroptose , Células Endoteliais da Veia Umbilical Humana , Proteína Supressora de Tumor p53 , Angiotensina II , Células Endoteliais , Ferro , Humanos
18.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902243

RESUMO

Arachidonic acid lipoxygenases (ALOX) have been implicated in the pathogenesis of inflammatory, hyperproliferative, neurodegenerative, and metabolic diseases, but the physiological function of ALOX15 still remains a matter of discussion. To contribute to this discussion, we created transgenic mice (aP2-ALOX15 mice) expressing human ALOX15 under the control of the aP2 (adipocyte fatty acid binding protein 2) promoter, which directs expression of the transgene to mesenchymal cells. Fluorescence in situ hybridization and whole-genome sequencing indicated transgene insertion into the E1-2 region of chromosome 2. The transgene was highly expressed in adipocytes, bone marrow cells, and peritoneal macrophages, and ex vivo activity assays proved the catalytic activity of the transgenic enzyme. LC-MS/MS-based plasma oxylipidome analyses of the aP2-ALOX15 mice suggested in vivo activity of the transgenic enzyme. The aP2-ALOX15 mice were viable, could reproduce normally, and did not show major phenotypic alterations when compared with wildtype control animals. However, they exhibited gender-specific differences with wildtype controls when their body-weight kinetics were evaluated during adolescence and early adulthood. The aP2-ALOX15 mice characterized here can now be used for gain-of-function studies evaluating the biological role of ALOX15 in adipose tissue and hematopoietic cells.


Assuntos
Araquidonato 15-Lipoxigenase , Expressão Gênica , Espectrometria de Massas em Tandem , Adulto , Animais , Humanos , Camundongos , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Cromatografia Líquida , Hibridização in Situ Fluorescente , Camundongos Transgênicos
19.
Circulation ; 147(19): 1444-1460, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36987924

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion (I/R) injury causes cardiac dysfunction to myocardial cell loss and fibrosis. Prevention of cell death is important to protect cardiac function after I/R injury. The process of reperfusion can lead to multiple types of cardiomyocyte death, including necrosis, apoptosis, autophagy, and ferroptosis. However, the time point at which the various modes of cell death occur after reperfusion injury and the mechanisms underlying ferroptosis regulation in cardiomyocytes are still unclear. METHODS: Using a left anterior descending coronary artery ligation mouse model, we sought to investigate the time point at which the various modes of cell death occur after reperfusion injury. To discover the key molecules involved in cardiomyocyte ferroptosis, we performed a metabolomics study. Loss/gain-of-function approaches were used to understand the role of 15-lipoxygenase (Alox15) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α) in myocardial I/R injury. RESULTS: We found that apoptosis and necrosis occurred in the early phase of I/R injury, and that ferroptosis was the predominant form of cell death during the prolonged reperfusion. Metabolomic profiling of eicosanoids revealed that Alox15 metabolites accumulated in ferroptotic cardiomyocytes. We demonstrated that Alox15 expression was specifically increased in the injured area of the left ventricle below the suture and colocalized with cardiomyocytes. Furthermore, myocardial-specific knockout of Alox15 in mice alleviated I/R injury and restored cardiac function. 15-Hydroperoxyeicosatetraenoic acid (15-HpETE), an intermediate metabolite derived from arachidonic acid by Alox15, was identified as a trigger for cardiomyocyte ferroptosis. We explored the mechanism underlying its effects and found that 15-HpETE promoted the binding of Pgc1α to the ubiquitin ligase ring finger protein 34, leading to its ubiquitin-dependent degradation. Consequently, attenuated mitochondrial biogenesis and abnormal mitochondrial morphology were observed. ML351, a specific inhibitor of Alox15, increased the protein level of Pgc1α, inhibited cardiomyocyte ferroptosis, protected the injured myocardium, and caused cardiac function recovery. CONCLUSIONS: Together, our results established that Alox15/15-HpETE-mediated cardiomyocyte ferroptosis plays an important role in prolonged I/R injury.


Assuntos
Araquidonato 15-Lipoxigenase , Ferroptose , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Apoptose , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 12-Lipoxigenase/farmacologia , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/farmacologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Necrose/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia
20.
Nature ; 614(7948): 530-538, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599368

RESUMO

Resident-tissue macrophages (RTMs) arise from embryonic precursors1,2, yet the developmental signals that shape their longevity remain largely unknown. Here we demonstrate in mice genetically deficient in 12-lipoxygenase and 15-lipoxygenase (Alox15-/- mice) that neonatal neutrophil-derived 12-HETE is required for self-renewal and maintenance of alveolar macrophages (AMs) during lung development. Although the seeding and differentiation of AM progenitors remained intact, the absence of 12-HETE led to a significant reduction in AMs in adult lungs and enhanced senescence owing to increased prostaglandin E2 production. A compromised AM compartment resulted in increased susceptibility to acute lung injury induced by lipopolysaccharide and to pulmonary infections with influenza A virus or SARS-CoV-2. Our results highlight the complexity of prenatal RTM programming and reveal their dependency on in trans eicosanoid production by neutrophils for lifelong self-renewal.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Autorrenovação Celular , Macrófagos Alveolares , Neutrófilos , Animais , Camundongos , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Lesão Pulmonar Aguda , Animais Recém-Nascidos , Araquidonato 12-Lipoxigenase/deficiência , Araquidonato 15-Lipoxigenase/deficiência , COVID-19 , Vírus da Influenza A , Lipopolissacarídeos , Pulmão/citologia , Pulmão/virologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Infecções por Orthomyxoviridae , Prostaglandinas E , SARS-CoV-2 , Suscetibilidade a Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...