Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.855
Filtrar
1.
J Environ Sci (China) ; 144: 87-99, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802241

RESUMO

There is a lack of understanding about the bacterial, fungal and archaeal communities' composition of solid-phase denitrification (SPD) systems. We investigated four SPD systems with different carbon sources by analyzing microbial gene sequences based on operational taxonomic unit (OTU) and amplicon sequence variant (ASV). The results showed that the corncob-polyvinyl alcohol sodium alginate-polycaprolactone (CPSP, 0.86±0.04 mg NO3--N/(g·day)) and corncob (0.85±0.06 mg NO3--N/(g·day)) had better denitrification efficiency than polycaprolactone (PCL, 0.29±0.11 mg NO3--N/(g·day)) and polyvinyl alcohol-sodium alginate (PVA-SA, 0.24±0.07 mg NO3--N/(g·day)). The bacterial, fungal and archaeal microbial composition was significantly different among carbon source types such as Proteobacteria in PCL (OTU: 83.72%, ASV: 82.49%) and Rozellomycota in PVA-SA (OTU: 71.99%, ASV: 81.30%). ASV methods can read more microbial units than that of OTU and exhibit higher alpha diversity and classify some species that had not been identified by OTU such as Nanoarchaeota phylum, unclassified_ f_ Xanthobacteraceae genus, etc., indicating ASV may be more conducive to understand SPD microbial communities. The co-occurring network showed some correlation between the bacteria fungi and archaea species, indicating different species may collaborate in SPD systems. Similar KEGG function prediction results were obtained in two bioinformatic methods generally and some fungi and archaea functions should not be ignored in SPD systems. These results may be beneficial for understanding microbial communities in SPD systems.


Assuntos
Bactérias , Carbono , Desnitrificação , Microbiota , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Carbono/metabolismo , Archaea/genética , Archaea/metabolismo , Fungos/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 347, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805033

RESUMO

Crop roots selectively recruit certain microbial taxa that are essential for supporting their growth. Within the recruited microbes, some taxa are consistently enriched in the rhizosphere across various locations and crop genotypes, while others are unique to specific planting sites or genotypes. Whether these differentially enriched taxa are different in community composition and how they interact with nutrient cycling need further investigation. Here, we sampled bulk soil and the rhizosphere soil of five soybean varieties grown in Shijiazhuang and Xuzhou, categorized the rhizosphere-enriched microbes into shared, site-specific, and variety-specific taxa, and analyzed their correlation with the diazotrophic communities and microbial genes involved in nitrogen (N) cycling. The shared taxa were dominated by Actinobacteria and Thaumarchaeota, the site-specific taxa were dominated by Actinobacteria in Shijiazhuang and by Nitrospirae in Xuzhou, while the variety-specific taxa were more evenly distributed in several phyla and contained many rare operational taxonomic units (OTUs). The rhizosphere-enriched taxa correlated with most diazotroph orders negatively but with eight orders including Rhizobiales positively. Each group within the shared, site-specific, and variety-specific taxa negatively correlated with bacterial amoA and narG in Shijiazhuang and positively correlated with archaeal amoA in Xuzhou. These results revealed that the shared, site-specific, and variety-specific taxa are distinct in community compositions but similar in associations with rhizosphere N-cycling functions. They exhibited potential in regulating the soybean roots' selection for high-efficiency diazotrophs and the ammonia-oxidizing and denitrification processes. This study provides new insights into soybean rhizosphere-enriched microbes and their association with N cycling. KEY POINTS: • Soybean rhizosphere affected diazotroph community and enriched nifH, amoA, and nosZ. • Shared and site- and variety-specific taxa were dominated by different phyla. • Rhizosphere-enriched taxa were similarly associated with N-cycle functions.


Assuntos
Bactérias , Glycine max , Rizosfera , Microbiologia do Solo , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Raízes de Plantas/microbiologia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Fixação de Nitrogênio , Oxirredutases/genética , Microbiota
3.
BMC Microbiol ; 24(1): 153, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704527

RESUMO

BACKGROUND: Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS: Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION: The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.


Assuntos
Archaea , Lagos , Salinidade , Lagos/microbiologia , Lagos/química , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Tibet , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Biodiversidade , Ecossistema , RNA Ribossômico 16S/genética , Nitrogênio/metabolismo , Nitrogênio/análise , DNA Arqueal/genética
4.
BMC Genomics ; 25(1): 432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693486

RESUMO

BACKGROUND: The folate cycle of one-carbon (C1) metabolism, which plays a central role in the biosynthesis of nucleotides and amino acids, demonstrates the significance of metabolic adaptation. We investigated the evolutionary history of the methylenetetrahydrofolate dehydrogenase (mTHF) gene family, one of the main drivers of the folate cycle, across life. RESULTS: Through comparative genomic and phylogenetic analyses, we found that several lineages of Archaea lacked domains vital for folate cycle function such as the mTHF catalytic and NAD(P)-binding domains of FolD. Within eukaryotes, the mTHF gene family diversified rapidly. For example, several duplications have been observed in lineages including the Amoebozoa, Opisthokonta, and Viridiplantae. In a common ancestor of Opisthokonta, FolD and FTHFS underwent fusion giving rise to the gene MTHFD1, possessing the domains of both genes. CONCLUSIONS: Our evolutionary reconstruction of the mTHF gene family associated with a primary metabolic pathway reveals dynamic evolution, including gene birth-and-death, gene fusion, and potential horizontal gene transfer events and/or amino acid convergence.


Assuntos
Evolução Molecular , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Família Multigênica , Filogenia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Archaea/genética , Archaea/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Redes e Vias Metabólicas/genética , Transferência Genética Horizontal
5.
Geobiology ; 22(3): e12594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700397

RESUMO

Lehman Caves is an extensively decorated high desert cave that represents one of the main tourist attractions in Great Basin National Park, Nevada. Although traditionally considered a water table cave, recent studies identified abundant speleogenetic features consistent with a hypogenic and, potentially, sulfuric acid origin. Here, we characterized white mineral deposits in the Gypsum Annex (GA) passage to determine whether these secondary deposits represent biogenic minerals formed during sulfuric acid corrosion and explored microbial communities associated with these and other mineral deposits throughout the cave. Powder X-ray diffraction (pXRD), scanning electron microscopy with electron dispersive spectroscopy (SEM-EDS), and electron microprobe analyses (EPMA) showed that, while most white mineral deposits from the GA contain gypsum, they also contain abundant calcite, silica, and other phases. Gypsum and carbonate-associated sulfate isotopic values of these deposits are variable, with δ34SV-CDT between +9.7‰ and +26.1‰, and do not reflect depleted values typically associated with replacement gypsum formed during sulfuric acid speleogenesis. Petrographic observations show that the sulfates likely co-precipitated with carbonate and SiO2 phases. Taken together, these data suggest that the deposits resulted from later-stage meteoric events and not during an initial episode of sulfuric acid speleogenesis. Most sedimentary and mineral deposits in Lehman Caves have very low microbial biomass, with the exception of select areas along the main tour route that have been impacted by tourist traffic. High-throughput 16S rRNA gene amplicon sequencing showed that microbial communities in GA sediments are distinct from those in other parts of the cave. The microbial communities that inhabit these oligotrophic secondary mineral deposits include OTUs related to known ammonia-oxidizing Nitrosococcales and Thaumarchaeota, as well as common soil taxa such as Acidobacteriota and Proteobacteria. This study reveals microbial and mineralogical diversity in a previously understudied cave and expands our understanding of the geomicrobiology of desert hypogene cave systems.


Assuntos
Bactérias , Cavernas , Minerais , Cavernas/microbiologia , Minerais/análise , Bactérias/classificação , Bactérias/metabolismo , Nevada , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Parques Recreativos , RNA Ribossômico 16S/genética , Ácidos Sulfúricos , Filogenia , Microbiota , Sulfato de Cálcio/química , Microscopia Eletrônica de Varredura
6.
Arch Microbiol ; 206(6): 263, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753104

RESUMO

Coal seam microbes, as endogenous drivers of secondary biogenic gas production in coal seams, might be related to methane production in coal seams. In this study, we carried out anaerobic indoor culture experiments of microorganisms from three different depths of bituminous coal seams in Huainan mining area, and revealed the secondary biogas generation mechanism of bituminous coal seams by using the combined analysis of macro-genome and metabolism multi-omics. The results showed that the cumulative mass molar concentrations (Molality) of biomethane production increased with the increase of the coal seam depth in two consecutive cycles. At the genus level, there were significant differences in the bacterial and archaeal community structures corresponding to the three coal seams 1#, 6#, and 9#(p < 0.05). The volatile matter of air-dry basis (Vad) of coal was significantly correlated with differences in genus-level composition of bacteria and archaea, with correlations of R bacterial = 0.368 and R archaeal = 0.463, respectively. Functional gene analysis showed that the relative abundance of methanogenesis increased by 42% before and after anaerobic fermentation cultivation. Meanwhile, a total of 11 classes of carbon metabolism homologues closely related to methanogenesis were detected in the liquid metabolites of coal bed microbes after 60 days of incubation. Finally, the fatty acid, amino acid and carbohydrate synergistic methanogenic metabolic pathway was reconstructed based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The expression level of mcrA gene within the metabolic pathway of the 1# deep coal sample was significantly higher than that of the other two groups (p < 0.05 for significance), and the efficient expression of mcrA gene at the end of the methanogenic pathway promoted the conversion of bituminous coal organic matter to methane. Therefore, coal matrix compositions may be the key factors causing diversity in microbial community and metabolic function, which might be related to the different methane content in different coal seams.


Assuntos
Archaea , Bactérias , Carvão Mineral , Metano , Metano/metabolismo , Archaea/metabolismo , Archaea/genética , Archaea/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Anaerobiose , Biocombustíveis , Fermentação , Minas de Carvão , Multiômica
7.
Sci Total Environ ; 931: 172922, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701927

RESUMO

The performance of hydrogen consumption by various inocula derived from mesophilic anaerobic digestion plants was evaluated under ex situ biomethanation. A panel of 11 mesophilic inocula was operated at a concentration of 15 gVS.L-1 at a temperature of 35 °C in batch system with two successive injections of H2:CO2 (4:1 mol:mol). Hydrogen consumption and methane production rates were monitored from 44 h to 72 h. Hydrogen consumption kinetics varies significantly based on the inoculum origin, with no accumulation of volatile fatty acids. Microbial community analyses revealed that microbial indicators such as the increase in Methanosarcina sp. abundance and the increase of the Archaea/Bacteria ratio were associated to high initial hydrogen consumption rates. The improvement in the hydrogen consumption rate between the two injections was correlated with the enrichment in hydrogenotrophic methanogens. This work provides new insights into the early response of microbial communities to hydrogen injection and on the microbial structures that may favor their adaptation to the biomethanation process.


Assuntos
Archaea , Hidrogênio , Metano , Metano/metabolismo , Archaea/metabolismo , Hidrogênio/metabolismo , Reatores Biológicos/microbiologia , Microbiota , Anaerobiose
8.
Appl Microbiol Biotechnol ; 108(1): 342, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789552

RESUMO

Chemoautotrophic canonical ammonia oxidizers (ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB)) and complete ammonia oxidizers (comammox Nitrospira) are accountable for ammonia oxidation, which is a fundamental process of nitrification in terrestrial ecosystems. However, the relationship between autotrophic nitrification and the active nitrifying populations during 15N-urea incubation has not been totally clarified. The 15N-labeled DNA stable isotope probing (DNA-SIP) technique was utilized in order to study the response from the soil nitrification process and the active nitrifying populations, in both acidic and neutral paddy soils, to the application of urea. The presence of C2H2 almost completely inhibited NO3--N production, indicating that autotrophic ammonia oxidation was dominant in both paddy soils. 15N-DNA-SIP technology could effectively distinguish active nitrifying populations in both soils. The active ammonia oxidation groups in both soils were significantly different, AOA (NS (Nitrososphaerales)-Alpha, NS-Gamma, NS-Beta, NS-Delta, NS-Zeta and NT (Ca. Nitrosotaleales)-Alpha), and AOB (Nitrosospira) were functionally active in the acidic paddy soil, whereas comammox Nitrospira clade A and Nitrosospira AOB were functionally active in the neutral paddy soil. This study highlights the effective discriminative effect of 15N-DNA-SIP and niche differentiation of nitrifying populations in these paddy soils. KEY POINTS: • 15N-DNA-SIP technology could effectively distinguish active ammonia oxidizers. • Comammox Nitrospira clade A plays a lesser role than canonical ammonia oxidizers. • The active groups in the acidic and neutral paddy soils were significantly different.


Assuntos
Amônia , Archaea , Bactérias , Nitrificação , Isótopos de Nitrogênio , Oxirredução , Microbiologia do Solo , Amônia/metabolismo , Archaea/metabolismo , Archaea/classificação , Archaea/genética , Isótopos de Nitrogênio/metabolismo , Isótopos de Nitrogênio/análise , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Solo/química , Ureia/metabolismo , Filogenia
9.
Bioresour Technol ; 402: 130771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701981

RESUMO

A full-scale high-rate cascade anaerobic digestion (CAD) system was evaluated for its ability to enhance enzymatic sludge hydrolysis. The system included a newly built digester, innovatively divided into three pie-shaped compartments (500 m3 each), followed by an existing, larger digester (1500 m3). The system treated a mixture of waste activated sludge and primary sludge, achieving a stable total chemical oxygen demand reduction efficiency (56.1 ± 6.8 %), and enhanced sludge hydrolytic enzyme activities at a 14.5-day total solids retention time (SRT). High-throughput sequencing data revealed a consistent microbial community across reactors, dominated by consortia that govern hydrolysis and acidogenesis. Despite relatively short SRTs in the initial reactors of the CAD system, acetoclastic methanogens belonging to Methanosaeta became the most abundant archaea. ‬‬‬‬‬‬‬‬‬‬‬‬‬ This study proves that the CAD system achieves stable sludge reduction, accelerates enzymatic hydrolysis at full-scale, and paves the way for its industrialization in municipal waste sewage sludge treatment.


Assuntos
Reatores Biológicos , Esgotos , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Hidrólise , Análise da Demanda Biológica de Oxigênio , Anaerobiose , Archaea/metabolismo , Archaea/genética
11.
Sci Total Environ ; 932: 173134, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734096

RESUMO

Methane (CH4) is a potent greenhouse gas, with lake ecosystems significantly contributing to its global emissions. Denitrifying anaerobic methane oxidation (DAMO) process, mediated by NC10 bacteria and ANME-2d archaea, links global carbon and nitrogen cycles. However, their potential roles in mitigating methane emissions and removing nitrogen from lake ecosystems remain unclear. This study explored the spatial variations in activities of nitrite- and nitrate-DAMO and their functional microbes in Changdanghu Lake sediments (Jiangsu Province, China). The results showed that although the average abundance of ANME-2d archaea (5.0 × 106 copies g-1) was significantly higher than that of NC10 bacteria (2.1 × 106 copies g-1), the average potential rates of nitrite-DAMO (4.59 nmol 13CO2 g-1 d-1) and nitrate-DAMO (5.01 nmol 13CO2 g-1 d-1) showed no significant difference across all sampling sites. It is estimated that nitrite- and nitrate-DAMO consumed approximately 6.46 and 7.05 mg CH4 m-2 d-1, respectively, which accordingly achieved 15.07-24.95 mg m-2 d-1 nitrogen removal from the studied lake sediments. Statistical analyses found that nitrite- and nitrate-DAMO activities were both significantly related to sediment nitrate contents and ANME-2d archaeal abundance. In addition, NC10 bacterial and ANME-2d archaeal community compositions showed significant correlations with sediment organic carbon content and water depth. Overall, this study underscores the dual roles of nitrite- and nitrate-DAMO processes in CH4 mitigation and nitrogen elimination and their key environmental impact factors (sediment organic carbon and inorganic nitrogen contents, and water depth) in shallow lake, enhancing the understanding of carbon and nitrogen cycles in freshwater aquatic ecosystems.


Assuntos
Desnitrificação , Sedimentos Geológicos , Lagos , Metano , Nitrogênio , Oxirredução , Metano/metabolismo , Metano/análise , Lagos/química , Lagos/microbiologia , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , China , Nitrogênio/análise , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Poluentes Químicos da Água/análise
12.
Arch Microbiol ; 206(6): 247, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713374

RESUMO

Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.


Assuntos
Archaea , Bactérias , Biotecnologia , Ambientes Extremos , Extremófilos , Extremófilos/metabolismo , Archaea/metabolismo , Archaea/genética , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação
13.
Environ Sci Technol ; 58(21): 9261-9271, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38739716

RESUMO

Methane, a greenhouse gas, plays a pivotal role in the global carbon cycle, influencing the Earth's climate. Only a limited number of microorganisms control the flux of biologically produced methane in nature, including methane-oxidizing bacteria, anaerobic methanotrophic archaea, and methanogenic archaea. Although previous studies have revealed the spatial and temporal distribution characteristics of methane-metabolizing microorganisms in local regions by using the marker genes pmoA or mcrA, their biogeographical patterns and environmental drivers remain largely unknown at a global scale. Here, we used 3419 metagenomes generated from georeferenced soil samples to examine the global patterns of methane metabolism marker gene abundances in soil, which generally represent the global distribution of methane-metabolizing microorganisms. The resulting maps revealed notable latitudinal trends in the abundances of methane-metabolizing microorganisms across global soils, with higher abundances in the sub-Arctic, sub-Antarctic, and tropical rainforest regions than in temperate regions. The variations in global abundances of methane-metabolizing microorganisms were primarily governed by vegetation cover. Our high-resolution global maps of methane-metabolizing microorganisms will provide valuable information for the prediction of biogenic methane emissions under current and future climate scenarios.


Assuntos
Metano , Microbiologia do Solo , Solo , Metano/metabolismo , Solo/química , Archaea/genética , Archaea/metabolismo , Bactérias/metabolismo , Bactérias/genética , Metagenoma
14.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38742714

RESUMO

Soil ammonia-oxidizing archaea (AOA) play a crucial role in converting ammonia to nitrite, thereby mobilizing reactive nitrogen species into their soluble form, with a significant impact on nitrogen losses from terrestrial soils. Yet, our knowledge regarding their diversity and functions remains limited. In this study, we reconstructed 97 high-quality AOA metagenome-assembled genomes (MAGs) from 180 soil samples collected in Central Germany during 2014-2019 summers. These MAGs were affiliated with the order Nitrososphaerales and clustered into four family-level clades (NS-α/γ/δ/ε). Among these MAGs, 75 belonged to the most abundant but least understood δ-clade. Within the δ-clade, the amoA genes in three MAGs from neutral soils showed a 99.5% similarity to the fosmid clone 54d9, which has served as representative of the δ-clade for the past two decades since even today no cultivated representatives are available. Seventy-two MAGs constituted a distinct δ sub-clade, and their abundance and expression activity were more than twice that of other MAGs in slightly acidic soils. Unlike the less abundant clades (α, γ, and ε), the δ-MAGs possessed multiple highly expressed intracellular and extracellular carbohydrate-active enzymes responsible for carbohydrate binding (CBM32) and degradation (GH5), along with highly expressed genes involved in ammonia oxidation. Together, these results suggest metabolic versatility of uncultured soil AOA and a potential mixotrophic or chemolithoheterotrophic lifestyle among 54d9-like AOA.


Assuntos
Amônia , Archaea , Oxirredução , Microbiologia do Solo , Archaea/metabolismo , Archaea/genética , Archaea/classificação , Amônia/metabolismo , Alemanha , Metagenoma , Filogenia , Genoma Arqueal , Solo/química
15.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38632040

RESUMO

Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.


Assuntos
Archaea , Sedimentos Geológicos , Metano , Oxirredução , Lagoas , Metano/metabolismo , Lagoas/microbiologia , Anaerobiose , Sedimentos Geológicos/microbiologia , Archaea/metabolismo , Archaea/genética , Ferro/metabolismo , Bactérias/metabolismo , Bactérias/genética , Eutrofização , RNA Ribossômico 16S/genética , Compostos Ferrosos/metabolismo
16.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38632042

RESUMO

Dissolved inorganic carbon has been hypothesized to stimulate microbial chemoautotrophic activity as a biological sink in the carbon cycle of deep subsurface environments. Here, we tested this hypothesis using quantitative DNA stable isotope probing of metagenome-assembled genomes (MAGs) at multiple 13C-labeled bicarbonate concentrations in hydrothermal fluids from a 750-m deep subsurface aquifer in the Biga Peninsula (Turkey). The diversity of microbial populations assimilating 13C-labeled bicarbonate was significantly different at higher bicarbonate concentrations, and could be linked to four separate carbon-fixation pathways encoded within 13C-labeled MAGs. Microbial populations encoding the Calvin-Benson-Bassham cycle had the highest contribution to carbon fixation across all bicarbonate concentrations tested, spanning 1-10 mM. However, out of all the active carbon-fixation pathways detected, MAGs affiliated with the phylum Aquificae encoding the reverse tricarboxylic acid (rTCA) pathway were the only microbial populations that exhibited an increased 13C-bicarbonate assimilation under increasing bicarbonate concentrations. Our study provides the first experimental data supporting predictions that increased bicarbonate concentrations may promote chemoautotrophy via the rTCA cycle and its biological sink for deep subsurface inorganic carbon.


Assuntos
Bicarbonatos , Ciclo do Carbono , Isótopos de Carbono , Metagenoma , Microbiota , Bicarbonatos/metabolismo , Isótopos de Carbono/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Carbono/metabolismo , Fontes Hidrotermais/microbiologia , Água Subterrânea/microbiologia , Crescimento Quimioautotrófico , Archaea/genética , Archaea/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(16): e2311390121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593075

RESUMO

Many organisms that utilize the Calvin-Benson-Bassham (CBB) cycle for autotrophic growth harbor metabolic pathways to remove and/or salvage 2-phosphoglycolate, the product of the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). It has been presumed that the occurrence of 2-phosphoglycolate salvage is linked to the CBB cycle, and in particular, the C2 pathway to the CBB cycle and oxygenic photosynthesis. Here, we examined 2-phosphoglycolate salvage in the hyperthermophilic archaeon Thermococcus kodakarensis, an obligate anaerobe that harbors a Rubisco that functions in the pentose bisphosphate pathway. T. kodakarensis harbors enzymes that have the potential to convert 2-phosphoglycolate to glycine and serine, and their genes were identified by biochemical and/or genetic analyses. 2-phosphoglycolate phosphatase activity increased 1.6-fold when cells were grown under microaerobic conditions compared to anaerobic conditions. Among two candidates, TK1734 encoded a phosphatase specific for 2-phosphoglycolate, and the enzyme was responsible for 80% of the 2-phosphoglycolate phosphatase activity in T. kodakarensis cells. The TK1734 disruption strain displayed growth impairment under microaerobic conditions, which was relieved upon addition of sodium sulfide. In addition, glycolate was detected in the medium when T. kodakarensis was grown under microaerobic conditions. The results suggest that T. kodakarensis removes 2-phosphoglycolate via a phosphatase reaction followed by secretion of glycolate to the medium. As the Rubisco in T. kodakarensis functions in the pentose bisphosphate pathway and not in the CBB cycle, mechanisms to remove 2-phosphoglycolate in this archaeon emerged independent of the CBB cycle.


Assuntos
Archaea , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Archaea/metabolismo , Fotossíntese , Glicolatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Oxigenases/metabolismo , Pentoses
18.
J Hazard Mater ; 471: 134343, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640671

RESUMO

Microplastics are a growing concern in mangrove ecosystems; however, their effects on archaeal communities and related ecological processes remain unclear. We conducted in situ biofilm-enrichment experiments to investigate the ecological influence of polyethylene (PE) and polypropylene microplastics on archaeal communities in the sediments of mangrove ecosystems. The archaeal community present on microplastics was distinct from that of the surrounding sediments at an early stage but became increasingly similar over time. Bathyarchaeota, Thaumarchaeota, Euryarchaeota, and Asgardaeota were the most abundant phyla. Methanolobus, an archaeal biomarker, was enriched in PE biofilms, and significantly controlled by homogeneous selection in the plastisphere, indicating an increased potential risk of methane emission. The dominant archaeal assembly process in the sediments was deterministic (58.85%-70.47%), while that of the PE biofilm changed from stochastic to deterministic during the experiment. The network of PE plastispheres showed less complexity and competitive links, and higher modularity and stability than that of sediments. Functional prediction showed an increase in aerobic ammonia oxidation during the experiment, whereas methanogenesis and chemoheterotrophy were significantly higher in the plastisphere. This study provides novel insights into the impact of microplastic pollution on archaeal communities and their mediating ecological functions in mangrove ecosystems.


Assuntos
Archaea , Biofilmes , Sedimentos Geológicos , Microplásticos , Polietileno , Polipropilenos , Áreas Alagadas , Archaea/efeitos dos fármacos , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Microplásticos/toxicidade , Biofilmes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Ecossistema
19.
Sci Adv ; 10(17): eadl2281, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669328

RESUMO

In deep-sea cold seeps, microbial communities thrive on the geological seepage of hydrocarbons and inorganic compounds, differing from photosynthetically driven ecosystems. However, their biosynthetic capabilities remain largely unexplored. Here, we analyzed 81 metagenomes, 33 metatranscriptomes, and 7 metabolomes derived from nine different cold seep areas to investigate their secondary metabolites. Cold seep microbiomes encode diverse and abundant biosynthetic gene clusters (BGCs). Most BGCs are affiliated with understudied bacteria and archaea, including key mediators of methane and sulfur cycling. The BGCs encode diverse antimicrobial compounds that potentially shape community dynamics and various metabolites predicted to influence biogeochemical cycling. BGCs from key players are widely distributed and highly expressed, with their abundance and expression levels varying with sediment depth. Sediment metabolomics reveals unique natural products, highlighting uncharted chemical potential and confirming BGC activity in these sediments. Overall, these results demonstrate that cold seep sediments serve as a reservoir of hidden natural products and sheds light on microbial adaptation in chemosynthetically driven ecosystems.


Assuntos
Sedimentos Geológicos , Metagenoma , Microbiota , Sedimentos Geológicos/microbiologia , Bactérias/metabolismo , Bactérias/genética , Metaboloma , Ecossistema , Metabolismo Secundário , Archaea/metabolismo , Archaea/genética , Família Multigênica , Temperatura Baixa , Metabolômica/métodos , Filogenia , Metagenômica/métodos
20.
Arch Microbiol ; 206(5): 234, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664262

RESUMO

Exploration and marketable exploitation of coalbed methane (CBM) as cleaner fuel has been started globally. In addition, incidence of methane in coal basins is an imperative fraction of global carbon cycle. Significantly, subsurface coal ecosystem contains methane forming archaea. There is a rising attention in optimizing microbial coal gasification to exploit the abundant or inexpensive coal reserves worldwide. Therefore, it is essential to understand the coalbeds in geo-microbial perspective. Current review provides an in-depth analysis of recent advances in our understanding of how methanoarchaea are distributed in coal deposits globally. Specially, we highlight the findings on coal-associated methanoarchaeal existence, abundance, diversity, metabolic activity, and biogeography in diverse coal basins worldwide. Growing evidences indicates that we have arrived an exciting era of archaeal research. Moreover, gasification of coal into methane by utilizing microbial methanogenesis is a considerable way to mitigate the energy crisis for the rising world population.


Assuntos
Archaea , Carvão Mineral , Metano , Metano/metabolismo , Archaea/metabolismo , Archaea/genética , Ecossistema , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...