Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 204: 105364, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716929

RESUMO

Viral exoribonucleases are uncommon in the world of RNA viruses. To date, they have only been identified in the Arenaviridae and the Coronaviridae families. The exoribonucleases of these viruses play a crucial role in the pathogenicity and interplay with host innate immune response. Moreover, coronaviruses exoribonuclease is also involved in a proofreading mechanism ensuring the genetic stability of the viral genome. Because of their key roles in virus life cycle, they constitute attractive target for drug design. Here we developed a sensitive, robust and reliable fluorescence polarization assay to measure the exoribonuclease activity and its inhibition in vitro. The effectiveness of the method was validated on three different viral exoribonucleases, including SARS-CoV-2, Lymphocytic Choriomeningitis and Machupo viruses. We performed a screening of a focused library consisting of 113 metal chelators. Hit compounds were recovered with an IC50 at micromolar level. We confirmed 3 hits in SARS-CoV-2 infected Vero-E6 cells.


Assuntos
Antivirais , Arenavirus , Exorribonucleases , SARS-CoV-2 , Animais , Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Chlorocebus aethiops , Exorribonucleases/antagonistas & inibidores , Polarização de Fluorescência , SARS-CoV-2/efeitos dos fármacos , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores
2.
Viruses ; 13(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203149

RESUMO

Lujo virus (LUJV), a highly pathogenic arenavirus, was first identified in 2008 in Zambia. To aid the identification of effective therapeutics for LUJV, we developed a recombinant reporter virus system, confirming reporter LUJV comparability with wild-type virus and its utility in high-throughput antiviral screening assays. Using this system, we evaluated compounds with known and unknown efficacy against related arenaviruses, with the aim of identifying LUJV-specific and potential new pan-arenavirus antivirals. We identified six compounds demonstrating robust anti-LUJV activity, including several compounds with previously reported activity against other arenaviruses. These data provide critical evidence for developing broad-spectrum antivirals against high-consequence arenaviruses.


Assuntos
Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Lujo virus/efeitos dos fármacos , Animais , Infecções por Arenaviridae/tratamento farmacológico , Infecções por Arenaviridae/virologia , Arenavirus/fisiologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Genoma Viral , Proteínas de Fluorescência Verde/genética , Humanos , Lujo virus/genética , Lujo virus/fisiologia , Testes de Sensibilidade Microbiana , Proteínas Recombinantes , Células Vero , Internalização do Vírus/efeitos dos fármacos
3.
Bioorg Med Chem Lett ; 41: 127983, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33965007

RESUMO

We identified and explored the structure-activity relationship (SAR) of a novel heterocyclic chemical series of arenavirus cell entry inhibitors. Optimized lead compounds, including diphenyl-substituted imidazo[1,2-a]pyridines, benzimidazoles, and benzotriazoles exhibited low to sub-nanomolar potency against both pseudotyped and infectious Old and New World arenaviruses, attractive metabolic stability in human and most nonhuman liver microsomes as well as a lack of hERG K + channel or CYP enzyme inhibition. Moreover, the straightforward synthesis of several lead compounds (e.g., the simple high yield 3-step synthesis of imidazo[1,2-a]pyridine 37) could provide a cost-effective broad-spectrum arenavirus therapeutic that may help to minimize the cost-prohibitive burdens associated with treatments for emerging viruses in economically challenged geographical settings.


Assuntos
Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Descoberta de Drogas , Compostos Heterocíclicos/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Arenavirus/metabolismo , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33468464

RESUMO

Neglected diseases caused by arenaviruses such as Lassa virus (LASV) and filoviruses like Ebola virus (EBOV) primarily afflict resource-limited countries, where antiviral drug development is often minimal. Previous studies have shown that many approved drugs developed for other clinical indications inhibit EBOV and LASV and that combinations of these drugs provide synergistic suppression of EBOV, often by blocking discrete steps in virus entry. We hypothesize that repurposing of combinations of orally administered approved drugs provides effective suppression of arenaviruses. In this report, we demonstrate that arbidol, an approved influenza antiviral previously shown to inhibit EBOV, LASV, and many other viruses, inhibits murine leukemia virus (MLV) reporter viruses pseudotyped with the fusion glycoproteins (GPs) of other arenaviruses (Junin virus [JUNV], lymphocytic choriomeningitis virus [LCMV], and Pichinde virus [PICV]). Arbidol and other approved drugs, including aripiprazole, amodiaquine, sertraline, and niclosamide, also inhibit infection of cells by infectious PICV, and arbidol, sertraline, and niclosamide inhibit infectious LASV. Combining arbidol with aripiprazole or sertraline results in the synergistic suppression of LASV and JUNV GP-bearing pseudoviruses. This proof-of-concept study shows that arenavirus infection in vitro can be synergistically inhibited by combinations of approved drugs. This approach may lead to a proactive strategy with which to prepare for and control known and new arenavirus outbreaks.


Assuntos
Antivirais/uso terapêutico , Infecções por Arenaviridae/tratamento farmacológico , Arenavirus/efeitos dos fármacos , Administração Oral , Animais , Infecções por Arenaviridae/virologia , Linhagem Celular , Chlorocebus aethiops , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Células HEK293 , Humanos , Camundongos , Estudo de Prova de Conceito , Células Vero
5.
Bioorg Med Chem Lett ; 29(22): 126620, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31537423

RESUMO

Old World (Africa) and New World (South America) arenaviruses are associated with human hemorrhagic fevers. Efforts to develop small molecule therapeutics have yielded several chemical series including the 4-acyl-1,6-dialkylpiperazin-2-ones. Herein, we describe an extensive exploration of this chemotype. In initial Phase I studies, R1 and R4 scanning libraries were assayed to identify potent substituents against Old World (Lassa) virus. In subsequent Phase II studies, R6 substituents and iterative R1, R4 and R6 substituent combinations were evaluated to obtain compounds with improved Lassa and New World (Machupo, Junin, and Tacaribe) arenavirus inhibitory activity, in vitro human liver microsome metabolic stability and aqueous solubility.


Assuntos
Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas do Envelope Viral/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Arenavirus/metabolismo , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo
6.
Antiviral Res ; 167: 68-77, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30953674

RESUMO

Lassa virus (LASV) causes Lassa hemorrhagic fever in humans and poses a significant threat to public health in West Africa. Current therapeutic treatments for Lassa fever are limited, making the development of novel countermeasures an urgent priority. In this study, we identified losmapimod, a p38 mitogen-activated protein kinase (MAPK) inhibitor, from 102 screened compounds as an inhibitor of LASV infection. Losmapimod exerted its inhibitory effect against LASV after p38 MAPK down-regulation, and, interestingly, had no effect on other arenaviruses capable of causing viral hemorrhagic fever. Mechanistic studies showed that losmapimod inhibited LASV entry by affecting the stable signal peptide (SSP)-GP2 subunit interface of the LASV glycoprotein, thereby blocking pH-dependent viral fusion. As an aryl heteroaryl bis-carboxyamide derivative, losmapimod represents a novel chemical scaffold with anti-LASV activity, and it provides a new lead structure for the future development of LASV fusion inhibitors.


Assuntos
Antivirais/farmacologia , Ciclopropanos/farmacologia , Vírus Lassa/efeitos dos fármacos , Piridinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Infecções por Arenaviridae/tratamento farmacológico , Arenavirus/efeitos dos fármacos , Linhagem Celular , Chlorocebus aethiops , Reposicionamento de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Febre Lassa/tratamento farmacológico , Febre Lassa/virologia , Células Vero , Proteínas Virais de Fusão/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626681

RESUMO

Arenaviruses are a large family of emerging enveloped negative-strand RNA viruses that include several causative agents of viral hemorrhagic fevers. For cell entry, human-pathogenic arenaviruses use different cellular receptors and endocytic pathways that converge at the level of acidified late endosomes, where the viral envelope glycoprotein mediates membrane fusion. Inhibitors of arenavirus entry hold promise for therapeutic antiviral intervention and the identification of "druggable" targets is of high priority. Using a recombinant vesicular stomatitis virus pseudotype platform, we identified the clotrimazole-derivative TRAM-34, a highly selective antagonist of the calcium-activated potassium channel KCa3.1, as a specific entry inhibitor for arenaviruses. TRAM-34 specifically blocked entry of most arenaviruses, including hemorrhagic fever viruses, but not Lassa virus and other enveloped viruses. Anti-arenaviral activity was likewise observed with the parental compound clotrimazole and the derivative senicapoc, whereas structurally unrelated KCa3.1 inhibitors showed no antiviral effect. Deletion of KCa3.1 by CRISPR/Cas9 technology did not affect the antiarenaviral effect of TRAM-34, indicating that the observed antiviral effect of clotrimazoles was independent of the known pharmacological target. The drug affected neither virus-cell attachment, nor endocytosis, suggesting an effect on later entry steps. Employing a quantitative cell-cell fusion assay that bypasses endocytosis, we demonstrate that TRAM-34 specifically inhibits arenavirus-mediated membrane fusion. In sum, we uncover a novel antiarenaviral action of clotrimazoles that currently undergo in vivo evaluation in the context of other human diseases. Their favorable in vivo toxicity profiles and stability opens the possibility to repurpose clotrimazole derivatives for therapeutic intervention against human-pathogenic arenaviruses.IMPORTANCE Emerging human-pathogenic arenaviruses are causative agents of severe hemorrhagic fevers with high mortality and represent serious public health problems. The current lack of a licensed vaccine and the limited treatment options makes the development of novel antiarenaviral therapeutics an urgent need. Using a recombinant pseudotype platform, we uncovered that clotrimazole drugs, in particular TRAM-34, specifically inhibit cell entry of a range of arenaviruses, including important emerging human pathogens, with the exception of Lassa virus. The antiviral effect was independent of the known pharmacological drug target and involved inhibition of the unusual membrane fusion mechanism of arenaviruses. TRAM-34 and its derivatives currently undergo evaluation against a number of human diseases and show favorable toxicity profiles and high stability in vivo Our study provides the basis for further evaluation of clotrimazole derivatives as antiviral drug candidates. Their advanced stage of drug development will facilitate repurposing for therapeutic intervention against human-pathogenic arenaviruses.


Assuntos
Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Clotrimazol/farmacologia , Fusão de Membrana/efeitos dos fármacos , Células A549 , Animais , Infecções por Arenaviridae/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Endocitose/efeitos dos fármacos , Células HEK293 , Células HeLa , Febres Hemorrágicas Virais/tratamento farmacológico , Febres Hemorrágicas Virais/virologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Vírus Lassa/efeitos dos fármacos , Células Vero , Proteínas do Envelope Viral/metabolismo , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
8.
Antiviral Res ; 160: 87-93, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30339847

RESUMO

The family Arenaviridae consists of numerous enveloped RNA viruses with ambisense coding strategies. Eight arenaviruses, including Lassa virus, are known to cause severe and fatal viral hemorrhagic fever (VHF) in humans, yet vaccines and treatments for disease caused by arenaviruses are very limited. In this study, we screened a natural product library consisting of 131 compounds and identified tangeretin, a polymethoxylated flavone widely present in citrus fruit peels, as a Lassa virus entry inhibitor that blocks viral fusion. Further analyses demonstrated the efficacy of tangeretin against seven other VHF-causing arenaviruses, suggesting that this compound, which has a history of medical usage, could be used to develop an effective therapeutic to treat infection and disease caused by Lassa virus and related viruses.


Assuntos
Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Citrus/química , Flavonas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antivirais/isolamento & purificação , Arenavirus/fisiologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Flavonas/isolamento & purificação
9.
ACS Infect Dis ; 4(5): 815-824, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29405696

RESUMO

Several arenaviruses cause hemorrhagic fever (HF) disease in humans and represent important public health problems in their endemic regions. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus is a neglected human pathogen of clinical significance. There are no licensed arenavirus vaccines, and current antiarenavirus therapy is limited to an off-label use of ribavirin that is only partially effective. Therefore, there is an unmet need for novel therapeutics to combat human pathogenic arenaviruses, a task that will be facilitated by the identification of compounds with antiarenaviral activity that could serve as probes to identify arenavirus-host interactions suitable for targeting, as well as lead compounds to develop future antiarenaviral drugs. Screening of a combinatorial library of Krönhke pyridines identified compound KP-146 [(5-(5-(2,3-dihydrobenzo[ b][1,4] dioxin-6-yl)-4'-methoxy-[1,1'-biphenyl]-3-yl)thiophene-2-carboxamide] as having strong anti-lymphocytic choriomeningitis virus (LCMV) activity in cultured cells. KP-146 did not inhibit LCMV cell entry but rather interfered with the activity of the LCMV ribonucleoprotein (vRNP) responsible for directing virus RNA replication and gene transcription, as well as with the budding process mediated by the LCMV matrix Z protein. LCMV variants with increased resistance to KP-146 did not emerge after serial passages in the presence of KP-146. Our findings support the consideration of Kröhnke pyridine scaffold as a valuable source to identify compounds that could serve as tools to dissect arenavirus-host interactions, as well as lead candidate structures to develop antiarenaviral drugs.


Assuntos
Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Mineração de Dados , Descoberta de Drogas , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas , Animais , Antivirais/síntese química , Antivirais/química , Infecções por Arenaviridae/tratamento farmacológico , Infecções por Arenaviridae/virologia , Arenavirus/fisiologia , Linhagem Celular , Técnicas de Química Sintética , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Desenho de Fármacos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Piridinas/síntese química , Piridinas/química , Células Vero , Replicação Viral/efeitos dos fármacos
10.
Methods Mol Biol ; 1604: 371-392, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28986849

RESUMO

Among the members of the Arenaviridae family, Junín virus and Lassa virus represent important human health threats generating annual outbreaks of severe human hemorrhagic fever (HF) in endemic areas of Argentina and Western Africa, respectively. Given the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. During the last two decades, academic research studies originated important results identifying novel molecules to be considered for further in vivo characterization. This chapter summarizes experimental in vitro approaches used to determine the possible mechanism of action of these antiviral agents.


Assuntos
Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Arenavirus/fisiologia , Vírus Hantaan/efeitos dos fármacos , Vírus Hantaan/fisiologia
11.
Curr Top Microbiol Immunol ; 392: 231-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26472215

RESUMO

The family Arenaviridae currently comprises over 20 viral species, each of them associated with a main rodent species as the natural reservoir and in one case possibly phyllostomid bats. Moreover, recent findings have documented a divergent group of arenaviruses in captive alethinophidian snakes. Human infections occur through mucosal exposure to aerosols or by direct contact of abraded skin with infectious materials. Arenaviruses merit interest both as highly tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa and Argentine hemorrhagic fevers (AHFs), respectively, for which there are no FDA-licensed vaccines, and current therapy is limited to an off-label use of ribavirin (Rib) that has significant limitations. Arenaviruses are enveloped viruses with a bi-segmented negative strand (NS) RNA genome. Each genome segment, L (ca 7.3 kb) and S (ca 3.5 kb), uses an ambisense coding strategy to direct the synthesis of two polypeptides in opposite orientation, separated by a noncoding intergenic region (IGR). The S genomic RNA encodes the virus nucleoprotein (NP) and the precursor (GPC) of the virus surface glycoprotein that mediates virus receptor recognition and cell entry via endocytosis. The L genome RNA encodes the viral RNA-dependent RNA polymerase (RdRp, or L polymerase) and the small (ca 11 kDa) RING finger protein Z that has functions of a bona fide matrix protein including directing virus budding. Arenaviruses were thought to be relatively stable genetically with intra- and interspecies amino acid sequence identities of 90-95 % and 44-63 %, respectively. However, recent evidence has documented extensive arenavirus genetic variability in the field. Moreover, dramatic phenotypic differences have been documented among closely related LCMV isolates. These data provide strong evidence of viral quasispecies involvement in arenavirus adaptability and pathogenesis. Here, we will review several aspects of the molecular biology of arenaviruses, phylogeny and evolution, and quasispecies dynamics of arenavirus populations for a better understanding of arenavirus pathogenesis, as well as for the development of novel antiviral strategies to combat arenavirus infections.


Assuntos
Infecções por Arenaviridae/virologia , Arenavirus/genética , Evolução Molecular , Animais , Antivirais/farmacologia , Infecções por Arenaviridae/tratamento farmacológico , Arenavirus/classificação , Arenavirus/efeitos dos fármacos , Arenavirus/fisiologia , Variação Genética , Genoma Viral , Humanos , Filogenia , Replicação Viral
12.
Antiviral Res ; 126: 62-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26711718

RESUMO

Favipiravir is approved in Japan to treat novel or re-emerging influenza viruses, and is active against a broad spectrum of RNA viruses, including Ebola. Ribavirin is the only other licensed drug with activity against multiple RNA viruses. Recent studies show that ribavirin and favipiravir act synergistically to inhibit bunyavirus infections in cultured cells and laboratory mice, likely due to their different mechanisms of action. Convalescent immune globulin is the only approved treatment for Argentine hemorrhagic fever caused by the rodent-borne Junin arenavirus. We previously reported that favipiravir is highly effective in a number of small animal models of Argentine hemorrhagic fever. We now report that addition of low dose of ribavirin synergistically potentiates the activity of favipiravir against Junin virus infection of guinea pigs and another arenavirus, Pichinde virus infection of hamsters. This suggests that the efficacy of favipiravir against hemorrhagic fever viruses can be further enhanced through the addition of low-dose ribavirin.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Febres Hemorrágicas Virais/tratamento farmacológico , Pirazinas/farmacologia , Vírus de RNA/efeitos dos fármacos , Ribavirina/farmacologia , Animais , Arenavirus/efeitos dos fármacos , Chlorocebus aethiops , Cricetinae , Vírus da Dengue/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Cobaias , Orthohantavírus/efeitos dos fármacos , Vírus da Febre Hemorrágica da Crimeia-Congo/efeitos dos fármacos , Febre Hemorrágica Americana/tratamento farmacológico , Doença pelo Vírus Ebola/tratamento farmacológico , Febres Hemorrágicas Virais/sangue , Febres Hemorrágicas Virais/veterinária , Febres Hemorrágicas Virais/virologia , Vírus Junin/efeitos dos fármacos , Masculino , Mesocricetus , Camundongos , Células Vero
13.
J Virol ; 88(2): 878-89, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198417

RESUMO

Arenaviruses merit significant interest as important human pathogens, since several of them cause severe hemorrhagic fever disease that is associated with high morbidity and significant mortality. Currently, there are no FDA-licensed arenavirus vaccines available, and current antiarenaviral therapy is limited to an off-labeled use of the nucleoside analog ribavirin, which has limited prophylactic efficacy. The pyrimidine biosynthesis inhibitor A3, which was identified in a high-throughput screen for compounds that blocked influenza virus replication, exhibits a broad-spectrum antiviral activity against negative- and positive-sense RNA viruses, retroviruses, and DNA viruses. In this study, we evaluated the antiviral activity of A3 against representative Old World (lymphocytic choriomeningitis virus) and New World (Junin virus) arenaviruses in rodent, monkey, and human cell lines. We show that A3 is significantly more efficient than ribavirin in controlling arenavirus multiplication and that the A3 inhibitory effect is in part due to its ability to interfere with viral RNA replication and transcription. We document an additive antiarenavirus effect of A3 and ribavirin, supporting the potential combination therapy of ribavirin and pyrimidine biosynthesis inhibitors for the treatment of arenavirus infections.


Assuntos
Antivirais/farmacologia , Infecções por Arenaviridae/virologia , Arenavirus/efeitos dos fármacos , Pirimidinas/antagonistas & inibidores , Animais , Infecções por Arenaviridae/metabolismo , Arenavirus/genética , Arenavirus/fisiologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Pirimidinas/biossíntese , Replicação Viral/efeitos dos fármacos
14.
PLoS One ; 8(11): e81251, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278404

RESUMO

Several arenaviruses can cause severe hemorrhagic fever (HF) in humans, representing a public health threat in endemic areas of Africa and South America. The present study characterizes the potent virucidal activity of the carboxamide-derivatized aromatic disulfide NSC4492, an antiretroviral zinc finger-reactive compound, against Junín virus (JUNV), the causative agent of Argentine HF. The compound was able to inactivate JUNV in a time and temperature-dependent manner, producing more than 99 % reduction in virus titer upon incubation with virions at 37 °C for 90 min. The ability of NSC4492-treated JUNV to go through different steps of the multiplication cycle was then evaluated. Inactivated virions were able to bind and enter into the host cell with similar efficiency as control infectious particles. In contrast, treatment with NSC4492 impaired the capacity of JUNV to drive viral RNA synthesis, as measured by quantitative RT-PCR, and blocked viral protein expression, as determined by indirect immunofluorescence. These results suggest that the disulfide NSC4492 targets on the arenavirus replication complex leading to impairment in viral RNA synthesis. Additionally, analysis of VLP produced in NSC4492-treated cells expressing JUNV matrix Z protein revealed that the compound may interact with Z resulting in an altered aggregation behavior of this protein, but without affecting its intrinsic self-budding properties. The potential perspectives of NSC4492 as an inactivating vaccinal compound for pathogenic arenaviruses are discussed.


Assuntos
Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Arenavirus/fisiologia , Dissulfetos/farmacologia , Hidrazinas/farmacologia , RNA Viral/genética , Transcrição Gênica/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Temperatura , Células Vero , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
Bioorg Med Chem Lett ; 23(3): 744-9, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265895

RESUMO

A chemically diverse library of about 400,000 small molecules was screened for antiviral activity against lentiviral pseudotypes with the Lassa virus envelope glycoprotein (LASV GP) gene incorporated. High-throughput screening resulted in discovery of a hit compound (ST-37) possessing a benzimidazole core which led to a potent compound series. Herein, we report SAR studies which involved structural modifications to the phenyl rings and methylamino linker portion attached to the benzimidazole core. Many analogs in this study possessed single digit nanomolar potency against LASV pseudotypes. Compounds in this benzimidazole series also exhibited nanomolar antiviral activity against pseudotypes generated from other arenavirus envelopes indicating the potential for development of a broad-spectrum inhibitor. Ultimately, lead compound ST-193 was identified and later found to be efficacious in a lethal LASV guinea pig model showing superior protection compared to ribavirin treatment.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Benzimidazóis/química , Descoberta de Drogas , Animais , Antivirais/química , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Modelos Animais de Doenças , Cobaias , Bibliotecas de Moléculas Pequenas
16.
Bioorg Med Chem Lett ; 23(3): 750-6, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265900

RESUMO

A series of potent arenavirus inhibitors sharing a benzimidazole core were previously reported by our group. SAR studies were expanded beyond the previous analysis, which involved the attached phenyl rings and methylamino linker portion, to include modifications focused on the benzimidazole core. These changes included the introduction of various substituents to the bicyclic benzimidazole ring system along with alternate core heterocycles. Many of the analogs containing alternate nitrogen-based bicyclic ring systems were found to retain antiviral potency compared to the benzimidazole series from which we derived our lead compound, ST-193. In fact, 21 h, built on an imidazopyridine core, possessed a near tenfold increase in potency against Lassa virus pseudotypes compared to ST-193. As found with the benzimidazole series, broad-spectrum arenavirus activity was also observed for a number of the analogs discovered during this study.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Benzimidazóis/química , Descoberta de Drogas , Compostos Heterocíclicos/síntese química , Antivirais/química , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Vírus Lassa/efeitos dos fármacos , Relação Estrutura-Atividade
17.
Viruses ; 4(10): 2162-81, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23202458

RESUMO

Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC) by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP). GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.


Assuntos
Arenavirus/metabolismo , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas do Envelope Viral/biossíntese , Sequência de Aminoácidos , Antivirais/farmacologia , Infecções por Arenaviridae/tratamento farmacológico , Infecções por Arenaviridae/metabolismo , Infecções por Arenaviridae/virologia , Arenavirus/efeitos dos fármacos , Arenavirus/patogenicidade , Glicosilação , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Humanos , Pró-Proteína Convertases/antagonistas & inibidores , Sinais Direcionadores de Proteínas , Proteólise , Pirrolidinas/farmacologia , Receptores de Superfície Celular/metabolismo , Proteínas do Envelope Viral/química , Montagem de Vírus , Ligação Viral
18.
Viruses ; 4(11): 2786-805, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23202505

RESUMO

Lymphocytic choriomeningitis virus (LCMV) has contributed to unveil some of the molecular mechanisms of lethal mutagenesis, or loss of virus infectivity due to increased mutation rates. Here we review these developments, and provide additional evidence that ribavirin displays a dual mutagenic and inhibitory activity on LCMV that can be relevant to treatment designs. Using 5-fluorouracil as mutagenic agent and ribavirin either as inhibitor or mutagen, we document an advantage of a sequential inhibitor-mutagen administration over the corresponding combination treatment to achieve a low LCMV load in cell culture. This advantage is accentuated in the concentration range in which ribavirin acts mainly as an inhibitor, rather than as mutagen. This observation reinforces previous theoretical and experimental studies in supporting a sequential inhibitor-mutagen administration as a possible antiviral design. Given recent progress in the development of new inhibitors of arenavirus replication, our results suggest new options of ribavirin-based anti-arenavirus treatments.


Assuntos
Antivirais/uso terapêutico , Infecções por Arenaviridae/tratamento farmacológico , Arenavirus/genética , Mutagênese , Ribavirina/uso terapêutico , Animais , Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Quimioterapia Combinada , Genes Letais , Genes Virais , Humanos , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Vírus da Coriomeningite Linfocítica/genética , Mutação , Ribavirina/farmacologia
19.
Bioorg Med Chem Lett ; 22(13): 4263-72, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22664128

RESUMO

A series of acylthiourea derivatives were designed, synthesized, and evaluated for broad-spectrum antiviral activity with selected viruses from Poxviridae (vaccinia virus) and two different genera of the family Bunyaviridae (Rift Valley fever and La Crosse viruses). A compound selected from a library screen, compound 1, displayed submicromolar antiviral activity against both vaccinia virus (EC(50)=0.25 µM) and La Crosse virus (EC(50)=0.27 µM) in cytopathic effect (CPE) assays. SAR analysis was performed to further improve antiviral potency and to optimize drug-like properties of the initial hits. During our analysis, we identified 26, which was found to be nearly fourfold more potent than 1 against both vaccinia and La Crosse viruses. Selected compounds were further tested to more fully characterize the spectrum of antiviral activity. Many of these possessed single digit micromolar and sub-micromolar antiviral activity against a diverse array of targets, including influenza virus (Orthomyxoviridae), Tacaribe virus (Arenaviridae), and dengue virus (Flaviviridae).


Assuntos
Antivirais/química , Tioureia/química , Antivirais/síntese química , Antivirais/farmacologia , Arenavirus/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Vírus La Crosse/efeitos dos fármacos , Orthomyxoviridae/efeitos dos fármacos , Relação Estrutura-Atividade , Tioureia/síntese química , Tioureia/farmacologia , Vaccinia virus/efeitos dos fármacos
20.
J Virol ; 86(8): 4578-85, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345463

RESUMO

Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) disease in humans and pose a significant public health concern in regions where they are endemic. On the other hand, evidence indicates that the globally distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway participates in many cellular processes, including cell survival and differentiation, and also has been shown to play important roles in different steps of the life cycles of a variety of viruses. Here we report that the inhibition of the PI3K/Akt pathway inhibited budding and to a lesser extent RNA synthesis, but not cell entry, of LCMV. Accordingly, BEZ-235, a PI3K inhibitor currently in cancer clinical trials, inhibited LCMV multiplication in cultured cells. These findings, together with those previously reported for Junin virus (JUNV), indicate that targeting the PI3K/Akt pathway could represent a novel antiviral strategy to combat human-pathogenic arenaviruses.


Assuntos
Arenavirus/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Liberação de Vírus , Animais , Arenavirus/efeitos dos fármacos , Arenavirus/genética , Linhagem Celular , Chlorocebus aethiops , Cromonas/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Vírus Lassa/efeitos dos fármacos , Vírus Lassa/genética , Vírus Lassa/metabolismo , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/metabolismo , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quinolinas/farmacologia , RNA Viral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Internalização do Vírus/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...