Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Am J Hum Genet ; 111(4): 714-728, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579669

RESUMO

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Assuntos
Argininossuccinato Liase , Acidúria Argininossuccínica , Humanos , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Guia de Sistemas CRISPR-Cas , Ureia , Edição de Genes/métodos
2.
Stem Cell Res ; 76: 103365, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422816

RESUMO

Argininosuccinic aciduria (ASA) is a rare inherited metabolic disease caused by argininosuccinate lyase (ASL) deficiency. Patients with ASA present with hyperammonaemia due to an impaired urea cycle pathway in the liver, and systemic disease with epileptic encephalopathy, chronic liver disease, and arterial hypertension. A human induced pluripotent stem cell (iPSC) line from the fibroblasts of a patient with ASA with homozygous pathogenic c.437G > A mutation of hASL was generated. Characterization of the cell line demonstrated pluripotency, differentiation potential and normal karyotype. This cell line, called UCLi024-A, can be utilized for in vitro disease modelling of ASA, and design of novel therapeutics.


Assuntos
Acidúria Argininossuccínica , Células-Tronco Pluripotentes Induzidas , Humanos , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/metabolismo , Acidúria Argininossuccínica/terapia , Células-Tronco Pluripotentes Induzidas/metabolismo , Argininossuccinato Liase/genética , Mutação/genética , Homozigoto
3.
Clin Dysmorphol ; 33(1): 43-49, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865865

RESUMO

Argininosuccinate lyase (ASL) deficiency is an autosomal recessive disorder of the urea cycle with a diverse spectrum of clinical presentation that is detectable in newborn screening. We report an 8-year-old girl with ASL deficiency who was detected through newborn screening and was confirmed using biochemical and functional assay. She is compound heterozygous for a likely pathogenic variant NM_000048.4(ASL):c.283C>T (p.Arg95Cys) and a likely benign variant NM_000048.4(ASL): c.1319T>C (p.Leu440Pro). Functional characterisation of the likely benign genetic variant in ASL was performed. Genomic sequencing was performed on the index patient presenting with non-specific symptoms of poor feeding and lethargy and shown to have increased serum and urine argininosuccinic acid. Functional assay using HEK293T cell model was performed. ASL enzymatic activity was reduced for Leu440Pro. This study highlights the role of functional testing of a variant that may appear benign in a patient with a phenotype consistent with ASL deficiency, and reclassifies NM_000048.4(ASL): c.1319T>C (p.Leu440Pro) variant as likely pathogenic.


Assuntos
Acidúria Argininossuccínica , Recém-Nascido , Feminino , Humanos , Criança , Acidúria Argininossuccínica/diagnóstico , Acidúria Argininossuccínica/genética , Argininossuccinato Liase/genética , Argininossuccinato Liase/química , Argininossuccinato Liase/metabolismo , Triagem Neonatal , Células HEK293 , Sequência de Bases
4.
Hum Mol Genet ; 33(1): 33-37, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738569

RESUMO

Inhaled nitric oxide (NO) therapy has been reported to improve lung growth in premature newborns. However, the underlying mechanisms by which NO regulates lung development remain largely unclear. NO is enzymatically produced by three isoforms of nitric oxide synthase (NOS) enzymes. NOS knockout mice are useful tools to investigate NO function in the lung. Each single NOS knockout mouse does not show obvious lung alveolar phenotype, likely due to compensatory mechanisms. While mice lacking all three NOS isoforms display impaired lung alveolarization, implicating NO plays a pivotal role in lung alveolarization. Argininosuccinate lyase (ASL) is the only mammalian enzyme capable of synthesizing L-arginine, the sole precursor for NOS-dependent NO synthesis. ASL is also required for channeling extracellular L-arginine into a NO-synthetic complex. Thus, ASL deficiency (ASLD) is a non-redundant model for cell-autonomous, NOS-dependent NO deficiency. Here, we assessed lung alveolarization in ASL-deficient mice. Hypomorphic deletion of Asl (AslNeo/Neo) results in decreased lung alveolarization, accompanied with reduced level of S-nitrosylation in the lung. Genetic ablation of one copy of Caveolin-1, which is a negative regulator of NO production, restores total S-nitrosylation as well as lung alveolarization in AslNeo/Neo mice. Importantly, NO supplementation could partially rescue lung alveolarization in AslNeo/Neo mice. Furthermore, endothelial-specific knockout mice (VE-Cadherin Cre; Aslflox/flox) exhibit impaired lung alveolarization at 12 weeks old, supporting an essential role of endothelial-derived NO in the enhancement of lung alveolarization. Thus, we propose that ASLD is a model to study NO-mediated lung alveolarization.


Assuntos
Argininossuccinato Liase , Óxido Nítrico , Animais , Camundongos , Argininossuccinato Liase/genética , Óxido Nítrico Sintase/genética , Arginina/genética , Camundongos Knockout , Pulmão , Isoformas de Proteínas , Mamíferos
5.
Am J Cardiol ; 192: 155-159, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36807131

RESUMO

A 39-year-old male was referred for treatment of hypertension. He had been treated for argininosuccinic aciduria since 8 months of age. Therapeutic drugs, including l-arginine, sodium phenylbutyrate, and antiepileptic drugs, had been prescribed. A detailed medical history revealed that he complained of chest discomfort under psychologic stress. A 12-lead electrocardiogram showed abnormal q waves in lead III and aVF. Transthoracic echocardiography showed hypokinesia of the left ventricular posterior wall. The patient was diagnosed with myocardial infarction because of coronary vasospastic angina by intracoronary acetylcholine provocation test. Argininosuccinic aciduria is a genetic disorder of the urea cycle caused by a deficiency of argininosuccinate lyase. Reduction of the enzymatic activity leads to a decrease in nitric oxide production, even if arginine is supplemented. Our case report supports the significance of endothelial function in the pathogenesis of coronary vasospasm.


Assuntos
Acidúria Argininossuccínica , Vasoespasmo Coronário , Masculino , Humanos , Adulto , Acidúria Argininossuccínica/diagnóstico , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/terapia , Argininossuccinato Liase/genética , Angina Pectoris , Arginina
6.
Mol Cell ; 82(20): 3919-3931.e7, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270249

RESUMO

Cancer-specific TERT promoter mutations have been linked to the reactivation of epigenetically silenced TERT gene by creating de novo binding motifs for E-Twenty-Six transcription factors, especially GABPA. How these mutations switch on TERT from epigenetically repressed states to expressed states have not been defined. Here, we revealed that EGFR activation induces ERK1/2-dependent phosphorylation of argininosuccinate lyase (ASL) at Ser417 (S417), leading to interactions between ASL and GABPA at the mutant regions of TERT promoters. The ASL-generated fumarate inhibits KDM5C, leading to enhanced trimethylation of histone H3 Lys4 (H3K4me3), which in turn promotes the recruitment of c-Myc to TERT promoters for TERT expression. Expression of ASL S417A, which abrogates its binding with GABPA, results in reduced TERT expression, inhibited telomerase activity, shortened telomere length, and impaired brain tumor growth in mice. This study reveals an unrecognized mechanistic insight into epigenetically activation of mutant TERT promoters where GABPA-interacted ASL plays an instrumental role.


Assuntos
Glioblastoma , Telomerase , Animais , Camundongos , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/genética , Fumaratos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Histonas/genética , Histonas/metabolismo , Mutação , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo , Encurtamento do Telômero , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas
7.
Plant Mol Biol ; 110(1-2): 13-22, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35583703

RESUMO

KEY MESSAGE: This study revealed different catalytic efficiencies of cyanobacterial argininosuccinate lyases in non-nitrogen-fixing and nitrogen-fixing cyanobacteria, demonstrating that L-arginine inhibition of L-argininosuccinate lyase is conserved among enzymes of three cyanobacterial orders. Arginine is a nitrogen-rich amino acid that uses a nitrogen reservoir, and its biosynthesis is strictly controlled by feedback inhibition. Argininosuccinate lyase (EC 4.3.2.1) is the final enzyme in arginine biosynthesis that catalyzes the conversion of argininosuccinate to L-arginine and fumarate. Cyanobacteria synthesize intracellular cyanophycin, which is a nitrogen reservoir composed of aspartate and arginine. Arginine is an important source of nitrogen for cyanobacteria. We expressed and purified argininosuccinate lyases, ArgHs, from Synechocystis sp. PCC 6803, Nostoc sp. PCC 7120, and Arthrospira platensis NIES-39. The catalytic efficiency of the Nostoc sp. PCC 7120 ArgH was 2.8-fold higher than those of Synechocystis sp. PCC 6803 and Arthrospira platensis NIES-39. All three ArgHs were inhibited in the presence of arginine, and their inhibitory effects were lowered at pH 7.0, compared to those at pH 8.0. These results indicate that arginine inhibition of ArgH is widely conserved among the three cyanobacterial orders. The current results demonstrate the conserved regulation of enzymes in the cyanobacterial aspartase/fumarase superfamily.


Assuntos
Liases , Synechocystis , Arginina/metabolismo , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Liases/metabolismo , Nitrogênio/metabolismo , Spirulina , Synechocystis/genética , Synechocystis/metabolismo
8.
NPJ Syst Biol Appl ; 7(1): 36, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535676

RESUMO

Epithelial-to-mesenchymal transition (EMT) is fundamental to both normal tissue development and cancer progression. We hypothesized that EMT plasticity defines a range of metabolic phenotypes and that individual breast epithelial metabolic phenotypes are likely to fall within this phenotypic landscape. To determine EMT metabolic phenotypes, the metabolism of EMT was described within genome-scale metabolic models (GSMMs) using either transcriptomic or proteomic data from the breast epithelial EMT cell culture model D492. The ability of the different data types to describe breast epithelial metabolism was assessed using constraint-based modeling which was subsequently verified using 13C isotope tracer analysis. The application of proteomic data to GSMMs provided relatively higher accuracy in flux predictions compared to the transcriptomic data. Furthermore, the proteomic GSMMs predicted altered cholesterol metabolism and increased dependency on argininosuccinate lyase (ASL) following EMT which were confirmed in vitro using drug assays and siRNA knockdown experiments. The successful verification of the proteomic GSMMs afforded iBreast2886, a breast GSMM that encompasses the metabolic plasticity of EMT as defined by the D492 EMT cell culture model. Analysis of breast tumor proteomic data using iBreast2886 identified vulnerabilities within arginine metabolism that allowed prognostic discrimination of breast cancer patients on a subtype-specific level. Taken together, we demonstrate that the metabolic reconstruction iBreast2886 formalizes the metabolism of breast epithelial cell development and can be utilized as a tool for the functional interpretation of high throughput clinical data.


Assuntos
Neoplasias da Mama , Proteômica , Argininossuccinato Liase/genética , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Genoma , Humanos
9.
Hum Genet ; 140(10): 1471-1485, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34417872

RESUMO

Argininosuccinate lyase (ASL) is essential for the NO-dependent regulation of tyrosine hydroxylase (TH) and thus for catecholamine production. Using a conditional mouse model with loss of ASL in catecholamine neurons, we demonstrate that ASL is expressed in dopaminergic neurons in the substantia nigra pars compacta, including the ALDH1A1 + subpopulation that is pivotal for the pathogenesis of Parkinson disease (PD). Neuronal loss of ASL results in catecholamine deficiency, in accumulation and formation of tyrosine aggregates, in elevation of α-synuclein, and phenotypically in motor and cognitive deficits. NO supplementation rescues the formation of aggregates as well as the motor deficiencies. Our data point to a potential metabolic link between accumulations of tyrosine and seeding of pathological aggregates in neurons as initiators for the pathological processes involved in neurodegeneration. Hence, interventions in tyrosine metabolism via regulation of NO levels may be therapeutic beneficial for the treatment of catecholamine-related neurodegenerative disorders.


Assuntos
Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/metabolismo , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Fenótipo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo
10.
Front Immunol ; 12: 653571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054815

RESUMO

Macrophages are indispensable immune cells tasked at eliminating intracellular pathogens. Mycobacterium tuberculosis (Mtb), one of the most virulent intracellular bacterial pathogens known to man, infects and resides within macrophages. While macrophages can be provoked by extracellular stimuli to inhibit and kill Mtb bacilli, these host defense mechanisms can be blocked by limiting nutritional metabolites, such as amino acids. The amino acid L-arginine has been well described to enhance immune function, especially in the context of driving macrophage nitric oxide (NO) production in mice. In this study, we aimed to establish the necessity of L-arginine on anti-Mtb macrophage function independent of NO. Utilizing an in vitro system, we identified that macrophages relied on NO for only half of their L-arginine-mediated host defenses and this L-arginine-mediated defense in the absence of NO was associated with enhanced macrophage numbers and viability. Additionally, we observed macrophage glycolysis to be driven by both L-arginine and mechanistic target of rapamycin (mTOR), and inhibition of glycolysis or mTOR reduced macrophage control of Mtb as well as macrophage number and viability in the presence of L-arginine. Our data underscore L-arginine as an essential nutrient for macrophage function, not only by fueling anti-mycobacterial NO production, but also as a central regulator of macrophage metabolism and additional host defense mechanisms.


Assuntos
Arginina/metabolismo , Suplementos Nutricionais , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/dietoterapia , Animais , Arginina/administração & dosagem , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Cultura Primária de Células , Células RAW 264.7 , Tuberculose/imunologia , Tuberculose/microbiologia
11.
Am J Med Genet A ; 185(7): 2026-2036, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851512

RESUMO

Urea cycle disorders (UCDs) are inherited metabolic diseases that lead to hyperammonemia with variable clinical manifestations. Using data from a nationwide study, we investigated the onset time, gene variants, clinical manifestations, and treatment of patients with UCDs in Japan. Of the 229 patients with UCDs diagnosed and/or treated between January 2000 and March 2018, identified gene variants and clinical information were available for 102 patients, including 62 patients with ornithine transcarbamylase (OTC) deficiency, 18 patients with carbamoyl phosphate synthetase 1 (CPS1) deficiency, 16 patients with argininosuccinate synthetase (ASS) deficiency, and 6 patients with argininosuccinate lyase (ASL) deficiency. A total of 13, 10, 4, and 5 variants in the OTC, CPS1, ASS, and ASL genes were respectively identified as novel variants, which were neither registered in ClinVar databases nor previously reported. The onset time and severity in patients with UCD could be predicted based on the identified gene variants in each patient from this nationwide study and previous studies. This genetic information may help in predicting the long-term outcome and determining specific treatment strategies such as liver transplantation in patients with UCDs.


Assuntos
Argininossuccinato Liase/genética , Argininossuccinato Sintase/genética , Carbamoil-Fosfato Sintase (Amônia)/genética , Ornitina Carbamoiltransferase/genética , Distúrbios Congênitos do Ciclo da Ureia/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Variação Genética/genética , Humanos , Hiperamonemia/enzimologia , Hiperamonemia/genética , Hiperamonemia/patologia , Lactente , Masculino , Doenças Metabólicas/enzimologia , Doenças Metabólicas/genética , Doenças Metabólicas/patologia , Distúrbios Congênitos do Ciclo da Ureia/enzimologia , Distúrbios Congênitos do Ciclo da Ureia/patologia , Adulto Jovem
12.
Anal Chem ; 92(17): 11505-11510, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32794704

RESUMO

We developed a simple and rapid method for analyzing nonproteinogenic amino acids that does not require conventional chromatographic equipment. In this technique, nonproteinogenic amino acids were first converted to a proteinogenic amino acid through in vitro metabolism in a cell extract. The proteinogenic amino acid generated from the nonproteinogenic precursors were then incorporated into a reporter protein using a cell-free protein synthesis system. The titers of the nonproteinogenic amino acids could be readily quantified by measuring the activity of reporter proteins. This method, which combines the enzymatic conversion of target amino acids with translational analysis, makes amino acid analysis more accessible while minimizing the cost and time requirements. We anticipate that the same strategy could be extended to the detection of diverse biochemical molecules with clinical and industrial implications.


Assuntos
Extratos Celulares/química , Citrulina/química , Ornitina/química , Proteínas/química , Sequência de Aminoácidos , Arginina/química , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Carboxil e Carbamoil Transferases/genética , Carboxil e Carbamoil Transferases/metabolismo , Citrulina/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Ornitina/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Estereoisomerismo , Especificidade por Substrato
13.
Mol Genet Genomic Med ; 8(7): e1301, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32410394

RESUMO

BACKGROUND: The urea cycle plays a key role in preventing the accumulation of toxic nitrogenous waste products, including two essential enzymes: ornithine transcarbamylase (OTC) and argininosuccinate lyase (ASL). Ornithine transcarbamylase deficiency (OTCD) results from mutations in the OTC. Meanwhile, argininosuccinate lyase deficiency (ASLD) is caused by mutations in the ASL. METHODS: Blood tandem mass spectrometric analysis and urea organic acidemia screening were performed on five Chinese cases, including three OTCD and two ASLD patients. Next-generation sequencing was then used to make a definite diagnosis, and the related variants were validated by Sanger sequencing. RESULTS: The five patients exhibited severe clinical symptoms, with abnormal biochemical analysis and amino acids profile. Genetic analysis revealed two variants [c.77G>A (p.Arg26Gln); c.116G>T (p.Gly39Val)] in the OTC, as well as two variants [c.1311T>G (p.Tyr437*); c.961T>A (p.Tyr321Asn)] in the ASL. Conservation analysis showed that the amino acids of the two novel mutations were highly conserved in different species and were predicted to be possibly damaging with several in silico prediction programs. 3D-modeling analysis indicated that the two novel missense variants might result in modest distortions of the OTC and ASL protein structures, respectively. CONCLUSIONS: Two novel variants expand the mutational spectrums of the OTC and ASL. All the results may contribute to a better understanding of the clinical course and genetic characteristics of patients with urea cycle disorders.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Mutação , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Ornitina Carbamoiltransferase/genética , Argininossuccinato Liase/química , Acidúria Argininossuccínica/patologia , Feminino , Humanos , Lactente , Masculino , Simulação de Dinâmica Molecular , Ornitina Carbamoiltransferase/química , Doença da Deficiência de Ornitina Carbomoiltransferase/patologia , Linhagem , Domínios Proteicos
14.
Hum Mutat ; 41(5): 946-960, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31943503

RESUMO

Argininosuccinic aciduria (ASA) is an inherited urea cycle disorder and has a highly variable phenotypic spectrum ranging from individuals with lethal hyperammonemic encephalopathy, liver dysfunction, and cognitive deterioration, to individuals with a mild disease course. As it is difficult to predict the phenotypic severity, we aimed at identifying a reliable disease prediction model. We applied a biallelic expression system to assess the functional impact of pathogenic argininosuccinate lyase (ASL) variants and to determine the enzymatic activity of ASL in 58 individuals with ASA. This cohort represented 42 ASL gene variants and 42 combinations in total. Enzymatic ASL activity was compared with biochemical and clinical endpoints from the UCDC and E-IMD databases. Enzymatic ASL activity correlated with peak plasma ammonium concentration at initial presentation and with the number of hyperammonemic events (HAEs) per year of observation. Individuals with ≤9% of enzymatic activity had more severe initial decompensations and a higher annual frequency of HAEs than individuals above this threshold. Enzymatic ASL activity also correlated with the cognitive outcome and the severity of the liver disease, enabling a reliable severity prediction for individuals with ASA. Thus, enzymatic activity measured by this novel expression system can serve as an important marker of phenotypic severity.


Assuntos
Acidúria Argininossuccínica/diagnóstico , Acidúria Argininossuccínica/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Fenótipo , Adolescente , Adulto , Argininossuccinato Liase/sangue , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Acidúria Argininossuccínica/metabolismo , Biomarcadores , Criança , Pré-Escolar , Ativação Enzimática , Feminino , Expressão Gênica , Estudos de Associação Genética/métodos , Humanos , Rim/metabolismo , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , RNA Mensageiro/genética , Índice de Gravidade de Doença , Adulto Jovem
15.
Genomics ; 112(3): 2247-2260, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31884157

RESUMO

The air-breathing magur catfish (Clarias magur) is a potential ureogenic teleost because of its functional ornithine-urea cycle (OUC), unlike typical freshwater teleosts. The ability to convert ammonia waste to urea was a significant step towards land-based life forms from aquatic predecessors. Here we investigated the molecular characterization of some OUC genes and the molecular basis of stimulation of ureogenesis via the OUC in magur catfish. The deduced amino acid sequences from the complete cDNA coding sequences of ornithine transcarbamyolase, argininosuccinate synthase, and argininosuccinate lyase indicated that phylogenetically magur catfish is very close to other ureogenic catfishes. Ammonia exposure led to a significant induction of major OUC genes and the gene products in hepatic and in certain non-hepatic tissues of magur catfish. Hence, it is reasonable to assume that the induction of ureogenesis in magur catfish under hyper-ammonia stress is mediated through the activation of OUC genes as an adaptational strategy.


Assuntos
Argininossuccinato Liase/metabolismo , Argininossuccinato Sintase/metabolismo , Peixes-Gato/metabolismo , Proteínas de Peixes/metabolismo , Ornitina Carbamoiltransferase/metabolismo , Ornitina/metabolismo , Ureia/metabolismo , Amônia/toxicidade , Animais , Argininossuccinato Liase/biossíntese , Argininossuccinato Liase/química , Argininossuccinato Liase/genética , Argininossuccinato Sintase/biossíntese , Argininossuccinato Sintase/química , Argininossuccinato Sintase/genética , Peixes-Gato/genética , Proteínas de Peixes/biossíntese , Proteínas de Peixes/química , Proteínas de Peixes/genética , Ornitina Carbamoiltransferase/biossíntese , Ornitina Carbamoiltransferase/química , Ornitina Carbamoiltransferase/genética , Filogenia , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Distribuição Tecidual
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(9): 926-929, 2019 Sep 10.
Artigo em Chinês | MEDLINE | ID: mdl-31515792

RESUMO

OBJECTIVE: To explore the genetic basis of a neonate with argininosuccinic aciduria (ASA). METHODS: A neonate with lethargy and food refusal was admitted. The patient had myoclonus, myasthenia, uroschesis, irregular breathing and paroxysmal ventricular tachycardia, and died at 75 hours after birth. Laboratory test showed marked increase in blood ammonia (1249.8 µmol/L). Peripheral blood samples of the patient, her parents and sister were collected and subjected to trio whole-exome sequencing. RESULTS: Whole-exome sequencing revealed that the patient has carried compound heterozygous mutations of the argininosuccinate lyase (ASL) gene, namely c.425(exon5)_c.426(exon5) insAGCTCCCAGCT (p.Thr142Thrfs*37) and c.626(exon8)delT (p.Leu209Argfs*42). The patient was diagnosed as ASA caused by ASL gene mutations. Her parents and her elder sister were heterozygous carriers of the above mutations and had a normal phenotype. CONCLUSION: ASA is a severe congenital genetic metabolic disease and can manifest as onset of hyperammonemia in neonates. The clinical diagnosis is difficult and ASL gene testing may be helpful.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/diagnóstico , Acidúria Argininossuccínica/genética , Hiperamonemia , Feminino , Testes Genéticos , Humanos , Recém-Nascido , Linhagem
17.
Biomed Res Int ; 2019: 3530198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31183366

RESUMO

Pathogenic variants in the argininosuccinate lyase (ASL) gene have been shown to cause argininosuccinate lyase deficiency (ASLD); therefore, sequencing analysis offers advantages for prenatal testing and counseling in families afflicted with this condition. Here, we performed a genetic analysis of an ASLD patient and his family with an aim to offer available information for clinical diagnosis. The research subjects were a 23-month-old patient with a high plasma level of citrulline and his unaffected parents. Whole-exome sequencing identified potential related ASL gene mutations in this trio. Enzymatic activity was detected spectrophotometrically by a coupled assay using arginase and measuring urea production. We identified a novel nonsynonymous mutation (c.206A>G, p.Lys69Arg) and a stop mutation (c.637C>T, p.Arg213∗) in ASL in a Chinese Han patient with ASLD. The enzymatic activity of a p.Lys69Arg ASL construct in human embryonic kidney 293T cells was significantly reduced compared to that of the wild-type construct, and no significant activity was observed for the p.Arg213∗ construct. Compound heterozygous p.Lys69Arg and p.Arg213∗ mutations that resulted in reduced ASL enzyme activity were found in a patient with ASLD. This finding expands the clinical spectrum of ASL pathogenic variants.


Assuntos
Argininossuccinato Liase , Acidúria Argininossuccínica , Sequenciamento do Exoma , Heterozigoto , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Acidúria Argininossuccínica/enzimologia , Acidúria Argininossuccínica/genética , Citrulina/sangue , Citrulina/genética , Células HEK293 , Humanos , Lactente , Masculino
18.
Biochem Biophys Res Commun ; 514(1): 51-57, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31018905

RESUMO

Krüppel-like factors (KLFs) are zinc-finger transcriptional factors that regulate target gene expression. Recent studies have shown that KLFs play essential roles in cancer development, whereas the function of KLF7 in glioma remains unclear. In this study, we showed that KLF7 was up-regulated in glioma tissues and its expression was inversely correlated with the patients' survival. Functional experiments demonstrated that KLF7 promoted the proliferation, migration and tumorigenesis of glioma cells. Mechanistically, KLF7 transcriptionally activated argininosuccinate lyase (ASL), which was observed highly expressed in glioma tissues. The biosynthesis of polyamine, a urea cycle metabolite, was enhanced by KLF7 in glioma cells. In addition, ASL contributed to the growth of glioma cells triggered by KLF7. Our findings demonstrate KLF7 as an oncogene and link KLF7 to ASL-mediated polyamine metabolism in glioma.


Assuntos
Argininossuccinato Liase/genética , Neoplasias Encefálicas/genética , Glioma/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Poliaminas/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Ativação Transcricional
19.
Plasmid ; 103: 25-35, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30954454

RESUMO

The development of CRISPR interference (CRISPRi) technology has dramatically increased the pace and the precision of target identification during platform strain development. In order to develop a simple, reliable, and dual-inducible CRISPRi system for the industrially relevant Corynebacterium glutamicum, we combined two different inducible repressor systems in a single plasmid to separately regulate the expression of dCas9 (anhydro-tetracycline-inducible) and a given single guide RNA (IPTG-inducible). The functionality of the resulting vector was demonstrated by targeting the l-arginine biosynthesis pathway in C. glutamicum. By co-expressing dCas9 and a specific single guide RNA targeting the 5'-region of the argininosuccinate lyase gene argH, the specific activity of the target enzyme was down-regulated and in a l-arginine production strain, l-arginine formation was shifted towards citrulline formation. The system was also employed for down-regulation of multiple genes by concatenating sgRNA sequences encoded on one plasmid. Simultaneous down-regulated expression of both argH and the phosphoglucose isomerase gene pgi proved the potential of the system for multiplex targeting. The system can be a promising tool for further pathway engineering in C. glutamicum. Cumulative effects on targeted genes can be rapidly evaluated avoiding tedious and time-consuming traditional gene knockout approaches.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Marcação de Genes/métodos , Plasmídeos/química , Arginina/biossíntese , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Citrulina/biossíntese , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Isopropiltiogalactosídeo/farmacologia , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Tetraciclinas/farmacologia
20.
J Inherit Metab Dis ; 42(6): 1147-1161, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30723942

RESUMO

The first patients affected by argininosuccinic aciduria (ASA) were reported 60 years ago. The clinical presentation was initially described as similar to other urea cycle defects, but increasing evidence has shown overtime an atypical systemic phenotype with a paradoxical observation, that is, a higher rate of neurological complications contrasting with a lower rate of hyperammonaemic episodes. The disappointing long-term clinical outcomes of many of the patients have challenged the current standard of care and therapeutic strategy, which aims to normalize plasma ammonia and arginine levels. Interrogations have raised about the benefit of newborn screening or liver transplantation on the neurological phenotype. Over the last decade, novel discoveries enabled by the generation of new transgenic argininosuccinate lyase (ASL)-deficient mouse models have been achieved, such as, a better understanding of ASL and its close interaction with nitric oxide metabolism, ASL physiological role outside the liver, and the pathophysiological role of oxidative/nitrosative stress or excessive arginine treatment. Here, we present a collaborative review, which highlights these recent discoveries and novel emerging concepts about ASL role in human physiology, ASA clinical phenotype and geographic prevalence, limits of current standard of care and newborn screening, pathophysiology of the disease, and emerging novel therapies. We propose recommendations for monitoring of ASA patients. Ongoing research aims to better understand the underlying pathogenic mechanisms of the systemic disease to design novel therapies.


Assuntos
Acidúria Argininossuccínica , Animais , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/diagnóstico , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/patologia , Acidúria Argininossuccínica/terapia , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/genética , Hiperamonemia/terapia , Recém-Nascido , Fígado/diagnóstico por imagem , Fígado/patologia , Fígado/cirurgia , Transplante de Fígado , Camundongos , Camundongos Transgênicos , Triagem Neonatal/métodos , Triagem Neonatal/tendências , Estresse Oxidativo/fisiologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...