Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.483
Filtrar
1.
Neurol India ; 72(2): 364-367, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691483

RESUMO

BACKGROUND AND OBJECTIVES: The role of various genetic markers including alpha synuclein, Parkin, etc., is known in the pathogenesis of Parkinson's disease (PD). Novel genetic markers including paraoxonase 1 (PON1) have also been linked to PD pathogenesis in recent studies. The PON1 L55M allele carriers may have defective clearance of environmental toxins and may result in increased susceptibility to PD. Hence, we studied the role of PON1 L55M polymorphism in PD among a North Indian population. MATERIALS AND METHOD: Seventy-four PD patients and 74 age- and sex-matched controls were recruited in this hospital-based case-control study. Baseline characteristics were recorded using structured questionnaire. DNA was extracted from 3-4 ml of venous blood, followed by PCR and restriction digestion. PON1 L55M genotypes were visualized as bands: LL (177 bp), LM (177, 140 bp) and MM (140,44 bp) on 3% agarose gel. Mann-Whitney U test and Chi-squared test were used for comparing two groups of skewed and categorical variables, respectively. Measures of strength of association were calculated by binary regression analysis. P value < 0.05 was considered as significant. RESULTS: Parkinson's disease patients had significantly higher exposure to pesticides (12.2%; P (organophosphate exposure) < 0.001) and well water drinking (28.4%; P = 0.006) compared to controls. Frequency distribution of LL, LM, MM genotypes was 67.5% (50/74), 28.4% (21/74), and 4.1% (3/74), respectively, for cases and 72.6% (54/74), 26% (19/74) and 1.4% (1/74), respectively, for controls. PON1 L55M genotype distribution between Parkinson's disease cases and controls was not significant (P = 0.53). PON1 L55M polymorphism was not associated with PD after adjusting for confounders by binary regression analysis. CONCLUSION: There was no significant association between PON1 L55M polymorphism and PD. Larger population-based studies would be required from India before drawing any definite conclusions.


Assuntos
Arildialquilfosfatase , Predisposição Genética para Doença , Doença de Parkinson , Humanos , Arildialquilfosfatase/genética , Doença de Parkinson/genética , Doença de Parkinson/epidemiologia , Índia/epidemiologia , Feminino , Masculino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Predisposição Genética para Doença/genética , Idoso , Polimorfismo Genético/genética , Genótipo
2.
Biomolecules ; 14(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38672443

RESUMO

Paraoxonase-1 (PON1), a serum antioxidant enzyme, has been implicated in Alzheimer's disease (AD) pathogenesis that involves early oxidative damage. Corinthian currants and their components have been shown to display antioxidant and other neuroprotective effects in AD. We evaluated the effect of a Corinthian currant paste-supplemented diet (CurD), provided to 1-month-old 5xFAD mice for 1, 3, and 6 months, on PON1 activity and levels of oxidation markers in serum and the brain of mice as compared to a control diet (ConD) or glucose/fructose-matched diet (GFD). Administration of CurD for 1 month increased PON1 activity and decreased oxidized lipid levels in serum compared to ConD and GFD. Longer-term administration of CurD did not, however, affect serum PON1 activity and oxidized lipid levels. Furthermore, CurD administered for 1 and 3 months, but not for 6 months, increased PON1 activity and decreased free radical levels in the cortex of mice compared to ConD and GFD. To probe the mechanism for the increased PON1 activity in mice, we studied the effect of Corinthian currant polar phenolic extract on PON1 activity secreted by Huh-7 hepatocytes or HEK293 cells transfected with a PON1-expressing plasmid. Incubation of cells with the extract led to a dose-dependent increase of secreted PON1 activity, which was attributed to increased cellular PON1 expression. Collectively, our findings suggest that phenolics in Corinthian currants can increase the hepatic expression and activity of antioxidant enzyme PON1 and that a Corinthian currant-supplemented diet during the early stages of AD in mice reduces brain oxidative stress.


Assuntos
Doença de Alzheimer , Antioxidantes , Arildialquilfosfatase , Encéfalo , Modelos Animais de Doenças , Animais , Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/genética , Doença de Alzheimer/metabolismo , Camundongos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Humanos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Masculino
3.
FASEB J ; 38(7): e23611, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597925

RESUMO

Mutations in the Paraoxonase 1 (Pon1) gene underlie aging, cardiovascular disease, and impairments of the nervous and gastrointestinal systems and are linked to the intestinal microbiome. The potential role of Pon1 in modulating the intestinal microbiota and serum metabolites is poorly understood. The present study demonstrated that mice with genomic excision of Pon1 by a multiplexed guide RNA CRISPR/Cas9 approach exhibited disrupted gut microbiota, such as significantly depressed alpha-diversity and distinctly separated beta diversity, accompanied by varied profiles of circulating metabolites. Furthermore, genomic knock in of Pon1 exerted a distinct effect on the intestinal microbiome and serum metabolome, including dramatically enriched Aerococcus, linoleic acid and depleted Bacillus, indolelactic acid. Specifically, a strong correlation was established between bacterial alterations and metabolites in Pon1 knockout mice. In addition, we identified metabolites related to gut bacteria in response to Pon1 knock in. Thus, the deletion of Pon1 affects the gut microbiome and functionally modifies serum metabolism, which can lead to dysbiosis, metabolic dysfunction, and infection risk. Together, these findings put forth a role for Pon1 in microbial alterations that contribute to metabolism variations. The function of Pon1 in diseases might at least partially depend on the microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbioma Gastrointestinal/genética , RNA Guia de Sistemas CRISPR-Cas , Modelos Animais de Doenças , Arildialquilfosfatase/genética , Camundongos Knockout
4.
J Cardiothorac Vasc Anesth ; 38(4): 946-956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311492

RESUMO

OBJECTIVES: Cardiopulmonary bypass (CPB) is linked to systemic inflammatory responses and oxidative stress. Paraoxonase 1 (PON1) is an antioxidant enzyme with a cardioprotective role whose activity is decreased in systemic inflammation and in patients with acute myocardial and global ischemia. Glucocorticoids counteract the effect of oxidative stress by upregulating PON1 gene expression. The authors aimed to determine the effect of methylprednisolone on PON1 activity during cardiac surgery on CPB. DESIGN: Prospective, randomized, controlled clinical trial. SETTING: The University Medical Center Ljubljana, Slovenia. PARTICIPANTS: Forty adult patients who underwent complex cardiac surgery on CPB between February 2016 and December 2017 were randomized into methylprednisolone and control groups (n = 20 each). INTERVENTIONS: Patients in the methylprednisolone group received 1 g of methylprednisolone in the CPB priming solution, whereas patients in the control group were not given methylprednisolone during CPB. MEASUREMENTS AND MAIN RESULTS: The effect of methylprednisolone from the CPB priming solution was compared with standard care during CPB on PON1 activity until postoperative day 5. Correlations of PON1 activity with lipid status, mediators of inflammation, and hemodynamics were analyzed also. No significant differences were found between study groups for PON1 activity, high-density lipoprotein, and low-density lipoprotein in any of the measurement intervals (p > 0.016). The methylprednisolone group had significantly lower tumor necrosis factor alpha (p < 0.001) and interleukin-6 (p < 0.001), as well as C-reactive protein and procalcitonin (p < 0.016) after surgery. No significant difference was found between groups for hemodynamic parameters. A positive correlation existed between PON1 and lipid status, whereas a negative correlation was found between PON1 activity and tumor necrosis factor alpha, interleukin-6, and CPB duration. CONCLUSIONS: Methylprednisolone does not influence PON1 activity during cardiac surgery on CPB.


Assuntos
Arildialquilfosfatase , Metilprednisolona , Adulto , Humanos , Metilprednisolona/uso terapêutico , Arildialquilfosfatase/genética , Ponte Cardiopulmonar/efeitos adversos , Interleucina-6 , Fator de Necrose Tumoral alfa , Estudos Prospectivos , Inflamação , Lipídeos
5.
Biomolecules ; 14(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38397445

RESUMO

Paraoxonase-2 (PON2) is a ubiquitously expressed intracellular protein that is localized in the perinuclear region, the endoplasmic reticulum (ER), and mitochondria, and is also associated with the plasma membrane. PON2 functions as an antioxidant enzyme by reducing the levels of reactive oxygen species (ROS) in the mitochondria and ER through different mechanisms, thus having an anti-apoptotic effect and preventing the formation of atherosclerotic lesions. While the antiatherogenic role played by this enzyme has been extensively explored within endothelial cells in association with vascular disorders, in the last decade, great efforts have been made to clarify its potential involvement in both blood and solid tumors, where PON2 was reported to be overexpressed. This review aims to deeply and carefully examine the contribution of this enzyme to different aspects of tumor cells by promoting the initiation, progression, and spread of neoplasms.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Células Endoteliais/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
6.
Hum Genomics ; 18(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173046

RESUMO

BACKGROUND: Clopidogrel is a widely prescribed prodrug that requires activation via specific pharmacogenes to exert its anti-platelet function. Genetic variations in the genes encoding its transporter, metabolizing enzymes, and target receptor lead to variability in its activation and platelet inhibition and, consequently, its efficacy. This variability increases the risk of secondary cardiovascular events, and therefore, some variations have been utilized as genetic biomarkers when prescribing clopidogrel. METHODS: Our study examined clopidogrel-related genes (CYP2C19, ABCB1, PON1, and P2Y12R) in a cohort of 298 healthy Emiratis individuals. The study used whole exome sequencing (WES) data to comprehensively analyze pertinent variations of these genes, including their minor allele frequencies, haplotype distribution, and their resulting phenotypes. RESULTS: Our data shows that approximately 37% (n = 119) of the cohort are likely to benefit from the use of alternative anti-platelet drugs due to their classification as intermediate or poor CYP2C19 metabolizers. Additionally, more than 50% of the studied cohort exhibited variants in ABCB1, PON1, and P2YR12 genes, potentially influencing clopidogrel's transport, enzymatic clearance, and receptor performance. CONCLUSIONS: Recognizing these alleles and genotype frequencies may explain the clinical differences in medication response across different ethnicities and predict adverse events. Our findings underscore the need to consider genetic variations in prescribing clopidogrel, with potential implications for implementing personalized anti-platelet therapy among Emiratis based on their genetic profiles.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Inibidores da Agregação Plaquetária , Humanos , Clopidogrel/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/farmacologia , Citocromo P-450 CYP2C19/genética , Ticlopidina/uso terapêutico , Ticlopidina/farmacologia , Emirados Árabes Unidos , Hidrocarboneto de Aril Hidroxilases/genética , Genótipo , Arildialquilfosfatase/genética
7.
Biochem Med (Zagreb) ; 34(1): 030701, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125616

RESUMO

Introduction: Paraoxonase 1 (PON1) is the enzyme that removes carcinogenic radicals from lipids. The aim of the study was to investigate the differences in PON1 activity and oxidation stress parameters between patients with cervical intraepithelial neoplasia (CIN) and healthy controls. Materials and methods: The study included 65 women with CIN and 109 healthy women. Lipid parameters were determined on Cobas Integra 400 plus (Roche, Mannheim, Germany). Tiols and reduced glutathione (GSH) were determined spectrophotometric using Eliman reagent. Activity of PON1 was assessed with two substrates, paraoxon and phenylacetate by spectrophotometric method. Malondialdehyde (MDA) was determined by high performance liquid chromatography (Shimadzu Corporation, Kyoto, Japan). Mann-Whitney-test, t-test, χ2-test, correlation and logistic regression was used in statistical analysis. P < 0.05 was considered statistically significant. Results: The basal (P = 0.929) and NaCl-stimulated (P = 0.985) PON1 activity and activities standardised on the concentration of high-density lipoprotein (HDL; P = 0.076; P = 0.065, respectively) and apolipoprotein AI (apo AI; P = 0.444; P = 0.499, respectively) as well as PON1 phenotypes (P = 0.842) did not differ significantly between the groups. The PON1 arylesterase activity (53±19 kU/L vs. 77±17 kU/L; P < 0.001) and HDL-standardized activity (37 (28-44) kU/mmol vs. 43 (37-50) kU/mmol; P < 0.001) and apoAI (29±11 kU/g vs. 44±11 kU/g; P < 0.001) was significantly reduced in the CIN group. The concentration of the thiol groups was similar (P = 0.519), of MDA was lower (0.39 (0.27-0.55) µmol/L vs. 0.76 (0.57-1.15) µmol/L; P < 0.001) and of GSH was higher (112.0 (66.0-129.6) µg/mL vs. 53.4 (34.8-134.4) µg/mL; P < 0.001) in the CIN group. Conclusion: Reduced PON1 arylesterase activity, lower MDA and higher GSH concentration were observed in CIN patients.


Assuntos
Arildialquilfosfatase , Displasia do Colo do Útero , Humanos , Feminino , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Hidrolases de Éster Carboxílico , Estresse Oxidativo
8.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38138163

RESUMO

Background and Objectives: PON1 is a multi-functional antioxidant protein that hydrolyzes a variety of endogenous and exogenous substrates in the human system. Growing evidence suggests that the Leu55Met and Gln192Arg substitutions alter PON1 activity and are linked with a variety of oxidative-stress-related diseases. Materials and Methods: We implemented structural modeling and molecular dynamics (MD) simulation along with essential dynamics of PON1 and molecular docking with their endogenous (n = 4) and exogenous (n = 6) substrates to gain insights into conformational changes and binding affinity in order to characterize the specific functional ramifications of PON1 variants. Results: The Leu55Met variation had a higher root mean square deviation (0.249 nm) than the wild type (0.216 nm) and Gln192Arg (0.202 nm), implying increased protein flexibility. Furthermore, the essential dynamics analysis confirms the structural change in PON1 with Leu55Met vs. Gln192Arg and wild type. Additionally, PON1 with Leu55Met causes local conformational alterations at the substrate binding site, leading to changes in binding affinity with their substrates. Conclusions: Our findings highlight the structural consequences of the variants, which would increase understanding of the role of PON1 in the pathogenesis of oxidative-stress-related diseases, as well as the management of endogenous and exogenous chemicals in the treatment of diseases.


Assuntos
Arildialquilfosfatase , Humanos , Antioxidantes/metabolismo , Arildialquilfosfatase/genética , Arildialquilfosfatase/química , Arildialquilfosfatase/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo/genética
9.
Arch Endocrinol Metab ; 68: e210204, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948561

RESUMO

Objective: To study associations between polymorphisms in the angiotensin converting enzyme (ACE I/D), actinin 3 (ACTN3 R577X) and paraoxonase 1 (PON1 T(-107)C) genes and chronic diseases (diabetes and hypertension) in women. Materials and methods: Genomic DNA was extracted from saliva samples of 78 women between 18 and 59 years old used for genetic polymorphism screening. Biochemical data were collected from the medical records in Basic Health Units from Southern Brazil. Questionnaires about food consumption, physical activity level and socioeconomic status were applied. Results: The XX genotype of ACTN3 was associated with low HDL levels and high triglycerides, total cholesterol and glucose levels. Additionally, high triglycerides and LDL levels were observed in carriers of the TT genotype of PON1, and lower total cholesterol levels were associated to the CC genotype. As expected, women with diabetes/hypertense had increased body weight, BMI (p = 0.02), waist circumference (p = 0.01), body fat percentage, blood pressure (p = 0.02), cholesterol, triglycerides (p = 0.02), and blood glucose (p = 0.01), when compared to the control group. Conclusion: Both ACTN3 R577X and PON1 T(-107)C polymorphisms are associated with nutritional status and blood glucose and lipid levels in women with diabetes/hypertense. These results contribute to genetic knowledge about predisposition to obesity-related diseases.


Assuntos
Diabetes Mellitus , Hipertensão , Adolescente , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Actinina/genética , Arildialquilfosfatase/genética , Glicemia , Colesterol , Diabetes Mellitus/genética , Genótipo , Hipertensão/genética , Peptidil Dipeptidase A/genética , Polimorfismo Genético/genética , Triglicerídeos
10.
Environ Sci Technol ; 57(41): 15366-15378, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37787746

RESUMO

We explored the influence of child and maternal single nucleotide polymorphisms (SNPs) in genes related to neurological function and arsenic metabolism (i.e., ABCA1, ABCB1, PON1, CYP3A, BDNF, GSTP1, MT2A, and APOE as well as AS3MT) on the association between prenatal arsenic (As) exposure and methylation efficiency and neuropsychological development in 4-5-year-old children. Participants were 549 mother-child pairs from the INMA (Environment and Childhood) Spanish Project. We measured inorganic arsenic (iAs) and the metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in urine samples collected during pregnancy. Neuropsychological development was assessed at the age of 4-5 years using the McCarthy Scales of Children's Abilities (MSCA). Several SNPs were determined in maternal and child DNA; AS3MT and APOE haplotypes were inferred. The median ∑As (sum of iAs, DMA, and MMA) was 7.08 µg/g creatinine. Statistically significant interactions for children's APOE haplotype were observed. Specifically, ε4-carrier children had consistently lower MSCA scores in several scales with increasing ∑As and MMA concentrations. These results provide evidence regarding the neurotoxic effects of early life exposure to As, observing that the APOE ε4 allele could make children more vulnerable to this exposure.


Assuntos
Arsênio , Arsenicais , Gravidez , Feminino , Humanos , Pré-Escolar , Criança , Arsênio/toxicidade , Predisposição Genética para Doença , Metiltransferases/genética , Metiltransferases/metabolismo , Arsenicais/urina , Ácido Cacodílico/urina , Apolipoproteínas E/genética , Arildialquilfosfatase/genética
11.
Arch Toxicol ; 97(12): 3037-3060, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787774

RESUMO

The toxicology field is concerned with the impact of organophosphorus (OP) compounds on human health. These compounds have been linked to an increased risk of neurological disorders, including neurodegenerative and neurodevelopmental diseases. This article aims to review studies on the role of OP compounds in developing these neurological disorders and explore how genetic variations can affect susceptibility to the neurotoxicity of these pesticides. Studies have shown that exposure to OP compounds can lead to the development of various neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD), autism, intellectual disability, and other developmental neurotoxicities. Apart from inhibiting the cholinesterase enzyme, OP compounds are believed to cause other pathological mechanisms at both the extracellular level (cholinergic, serotonergic, dopaminergic, glutamatergic, and GABAergic synapses) and the intracellular level (oxidative stress, mitochondrial dysfunction, inflammation, autophagy, and apoptosis) that contribute to these disorders. Specific genetic polymorphisms, including PON1, ABCB1, NOS, DRD4, GST, CYP, and APOE, have increased the risk of developing OP-related neurological disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Síndromes Neurotóxicas , Doença de Parkinson , Praguicidas , Humanos , Praguicidas/toxicidade , Compostos Organofosforados/toxicidade , Síndromes Neurotóxicas/etiologia , Polimorfismo de Nucleotídeo Único , Arildialquilfosfatase/genética
12.
Indian J Med Res ; 158(3): 292-302, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37861624

RESUMO

Background & objectives: Impaired high density lipoprotein (HDL) functionality has been shown to be associated with cardiovascular disease risk. The study was aimed to identify the alterations in HDL function [antioxidative activity (AOA)] and subfraction distribution between acute coronary syndrome (ACS) and stable coronary artery disease (SCAD) individuals and analysing the accuracy of HDL parameters to discriminate between the groups. Methods: HDL subfraction distribution analysis was performed in 200 coronary artery disease patients (ACS and SCAD) and 60 control individuals using dextran sulphate, heparin and manganese chloride precipitation method. In terms of HDL function, AOA was evaluated by dihydrorhodamine-based fluorescent cell-free assay and paraoxonase (PON1) enzyme paraoxonase and arylesterase activity. Results: We found that higher AOA [odds ratio (95% confidence interval {CI})]: 0.09 (0.02-0.44), P<0.01 for SCAD; 0.008 (0.001-0.07), P<0.001 for ACS and higher PON1 activity [0.22 (0.8-0.59), P<0.01 for SCAD; 0.16 (0.06-0.4), P<0.001 for ACS] were associated with a lower odds of developing coronary artery disease (CAD). AOA of apoB-depleted serum was significantly correlated with HDL2-C/HDL3-C (HDL-cholesterol) ratio in controls (r=-0.31, P=0.01) and ACS (r=-0.18, P=0.04). It was observed that AOA and HDL subfraction distribution together could discriminate between the two groups of CAD with an accuracy of 72.8 per cent (P=0.004). Interpretation & conclusions: Impaired AOA and altered subfraction distribution of HDL may be responsible for its diminished anti-athero protective activity and can discriminate between the two groups of CAD individuals.


Assuntos
Doença da Artéria Coronariana , Humanos , Lipoproteínas HDL , Arildialquilfosfatase/genética , HDL-Colesterol , Antioxidantes
13.
Reprod Biol Endocrinol ; 21(1): 97, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37885002

RESUMO

BACKGROUND: Childbearing in women with advanced maternal age (AMA) has increased the need for artificial reproductive technology (ART). ART and oxidative stress are associated with many pregnancy complications. Paraoxonase (PON) 1 is one of the key components responsible for antioxidative activity in high-density lipoprotein (HDL). This study aimed to investigate the longitudinal changes of oxidative stress and PON1 lactonase activity and status in older women undergoing ART. METHODS: This prospective nested case-control study included 129 control and 64 ART women. Blood samples were obtained respectively at different stages of pregnancy. PON1 level and lactonase activity were assessed using 7-O-diethylphosphoryl-3-cyano-4-methyl-7-hydroxycoumarin (DEPCyMC) and 5-thiobutyl butyrolactone (TBBL) as a substrate, respectively. A normalized lactonase activity (NLA) was estimated based on the ratio of TBBLase to DEPCyMCase activity. Serum total oxidant status (TOS), total antioxidant capacity (TAC), malondialdehyde (MDA), homocysteine (HCY), PON1 C-108T and Q192R genetic polymorphisms, and metabolic parameters were analyzed. RESULTS: Lactonase activity and level of PON1 gradually decreased with pregnancy progression, while glycolipid metabolism parameters and TAC levels increased with pregnancy progression or significantly raised during the 2nd and 3rd trimesters, and NLA of PON1, TOS, OSI, MDA, and HCY significantly increased before delivery in the ART and control groups. Compared with the control women, the ART women had substantially higher or relatively high lactonase activity and NLA of PON1 and TAC during pregnancy; higher triglyceride (TG), total cholesterol, low-density lipoprotein cholesterol, atherogenic index, apolipoprotein (apo) B, and apoB/apoA1 ratio in the 1st trimester; and higher fasting glucose, fasting insulin, homeostatic model assessment of insulin resistance, and TG levels before delivery. No significant differences were found in the frequencies of PON1 C-108T and Q192R genotypes and alleles between the ART and control groups. CONCLUSIONS: Women with AMA undergoing ART had higher TAC, PON1 lactonase activity, and PON1 NLA than control women, suggesting increased compensatory antioxidant capacity in ART women, thus showing higher sensitivity to oxidative stress-related injury and diseases.


Assuntos
Arildialquilfosfatase , Estresse Oxidativo , Técnicas de Reprodução Assistida , Feminino , Humanos , Gravidez , Antioxidantes/metabolismo , Arildialquilfosfatase/genética , Estudos de Casos e Controles , Colesterol , Estudos Prospectivos
14.
Indian J Pharmacol ; 55(3): 179-184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37555413

RESUMO

Human paraoxonase 1 (PON1) enzyme protects against atherosclerosis by preventing low-density lipoprotein from oxidative modification. Upregulation of PON1 enzymatic activity is suggested to contribute to atheroprotective potential of statins. Glutamine (Q) to arginine (R) at site 192 and leucine (L) to methionine (M) substitution at site 55 polymorphisms influence the PON1 activity. The study assessed the role of PON1 polymorphisms on lipid-lowering and PON1-modulating activity of statins in a Western Indian cohort of patients with dyslipidemia. Lipid profile and PON1 activity were determined at baseline and 3 months after initiation of statin treatment. PON1 genotypes (QQ, QR, RR; LL, LM, and MM) were determined by PCR-RFLP. Paraoxon was used as a substrate for assessing PON1 activity by spectrophotometry. A total of 140 statin-naïve patients were enrolled; of them, 116 were available for final analysis. Fifty-seven (50%) had QQ, 39 (35%) had QR, and 17 (15%) had RR genotypes. Seventy-six (67%) patients had LL, 35 (31%) had LM, and 2 (2%) had MM genotypes. We observed no impact of PON1 polymorphisms on lipid parameters posttreatment. A significant increase was observed in the serum PON1 activity from a median (range) of 47.92 U/L (9.03-181.25) to 72.22 U/L (7.64-244.44) (P < 0.05) following statin treatment, which was independent from high-density lipoprotein (HDL) concentration. This increase was significantly greater in QQ compared to QR and RR genotypes (P = 0.01). To conclude, the important antioxidant properties of statins are exerted via the rise in serum PON1 activity, independent of HDL cholesterol concentrations. The increase was greater in individuals with QQ genotype. Future large-scale studies will validate the premise that QQ homozygotes see added benefits from statin treatment compared to R carriers. In the meantime, PON1 enzymatic activity remains an important marker to be measured while assessing pleotropic effects of statins in CAD.


Assuntos
Arildialquilfosfatase , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Arildialquilfosfatase/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Antioxidantes , Estudos Prospectivos , Genótipo , Lipoproteínas HDL , Fenótipo
15.
Environ Toxicol ; 38(11): 2645-2655, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37647369

RESUMO

BACKGROUND: BRCA1 associated protein (BRAP) participates in the regulation of myocardial infarction and atherosclerosis. But the function of BRAP in cerebral ischemia-reperfusion (CIR) injury has not been elucidated yet. METHODS: BRAP expression in PC12 cells in response to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment was examined with Western blot assay. PC12 cells underwent OGD/R-treatment and were subsequently transfected with pcDNA-BRAP or sh-BRAP, followed by determination of viability, lactate dehydrogenase (LDH) production, apoptosis, inflammatory cytokine secretion, and oxidative stress marker protein levels. Paraoxonase 1 (PON1) promoter methylation was evaluated with methylation-specific PCR assay. the effect of BRAP/PON1 axis on CIR injury was investigated by rescue experiments. Additionally, sh-BRAP was injected into a middle cerebral artery occlusion (MCAO) rat model, and the changes of neurological damage were evaluated. RESULTS: BRAP overexpression exacerbated OGD/R-induced viability reduction, LDH production, apoptosis, inflammatory cytokine secretion and oxidative stress in PC12 neuronal cells. In contrast, BRAP silencing showed the opposite results. Mechanistically, BRAP reduced PON1 expression by promoting DNA methyl transferase1 (DNMT1)-mediated PON1 promoter methylation. PON1 silencing reversed BRAP-mediated neuroprotection. Additionally, BRAP silencing alleviated CIR-induced neurological damage in MCAO rats. CONCLUSION: BRAP silencing suppressed OGD/R-induced neuronal apoptosis, inflammation, and oxidative stress, and alleviated CIR-induced neurological damage in MCAO rats through facilitating PON1 expression.


Assuntos
Arildialquilfosfatase , Traumatismo por Reperfusão , Ubiquitina-Proteína Ligases , Animais , Ratos , Apoptose/genética , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Citocinas/metabolismo , Glucose/farmacologia , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/genética , Estresse Oxidativo , Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Ubiquitina-Proteína Ligases/genética
16.
Sci Total Environ ; 898: 165530, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453710

RESUMO

The development and progression of prostate cancer (PCa) depends on complex interactions between genetic, environmental and dietary factors that modulate the carcinogenesis process. Interactions between chemical exposures and genetic polymorphisms in genes encoding xenobiotic metabolizing enzymes (XME), antioxidant enzymes and DNA repair enzymes have been reported as the main drivers of cancer. Thus, a better understanding of the causal risk factors for PCa will provide avenues to identify men at increased risk and will contribute to develop effective detection and prevention methods. We performed a meta-analysis on 17,518 cases and 42,507 controls obtained from 42 studies to determine whether seven SNPs and one CNV pertaining to oxidative stress, xenobiotic detoxification and DNA repair enzymes are associated with the risk of PCa (GPX1 (rs1050450), XRCC1 (rs25487), PON1 (rs662), SOD2 (rs4880), CAT (rs1001179), GSTP1 (rs1695) and CNV GSTM1). A significant increased risk of PCa was found for SOD2 (rs4880) ORGG+GA vs. AA 1.08; 95%CI 1.01-1.15, CAT (rs1001179) ORTT vs. TC+CC 1.39; 95%CI 1.17-1.66, PON1 (rs662) ORCT vs. CC+TT 1.17; 95%CI 1.01-1.35, GSTP1 (rs1695) ORGG vs. GA+AA 1.20; 95%CI 1.05-1.38 and GSTM1 (dual null vs. functional genotype) ORN vs. NN1+NN2 1.34; 95%CI 1.10-1.64. The meta-analysis showed that the CNV GSTM1, and the SNPs GSTP1 (rs1695) and CAT (rs1001179) are strongly associated with a greater risk of PCa and, to a lesser extent, the genetic variants SOD2 (rs4880) and PON1 (rs662). Although several antioxidant enzymes and XME play an important role in the PCa development, other risk factors such as chemical exposures should also be considered to gain insight on PCa risk. The functional in silico analysis showed that the genetic variants studied had no clinical implication regarding malignancy, except for GPX1 (rs1050450) SNP.


Assuntos
Antioxidantes , Neoplasias da Próstata , Masculino , Humanos , Xenobióticos , Glutationa S-Transferase pi/genética , Genótipo , Neoplasias da Próstata/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Estudos de Casos e Controles , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Arildialquilfosfatase/genética
17.
Mol Nutr Food Res ; 67(17): e2300281, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423968

RESUMO

SCOPE: Dietary flavan-3-ols are known to mediate cardiovascular benefits. Currently, it is assumed that the levels of flavan-3-ol catabolites detected in humans, 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (γVL) and 5-(3',4'-dihydroxyphenyl)-γ-valeric acid (γVA), and their corresponding phase II metabolites, are determined exclusively by the action of the gut microbiome. However, a family of human proteins, paraoxonase (PON), can theoretically hydrolyze γVL metabolites into the corresponding γVAs. This study aims to determine if PON is involved in γVL and γVA metabolism in humans. METHODS AND RESULTS: A rapid conversion of γVL into γVA is detected in serum ex vivo (half-life = 9.8 ± 0.3 min) that is catalyzed by PON1 and PON3 isoforms. Phase II metabolites of γVL are also reacted with PON in serum. Following an intake of flavan-3-ol in healthy males (n = 13), the profile of γVA metabolites detected is consistent with that predicted from the reactivity of γVL metabolites with PON in serum. Furthermore, common PON polymorphisms are evaluated to assess the use of γVL metabolites as biomarkers of flavan-3-ol intake. CONCLUSION: PONs are involved in flavan-3-ol metabolic pathway in humans. PON polymorphisms have a minor contribution to inter-individual differences in the levels of γVL metabolites, without affecting their use as a nutritional biomarker.


Assuntos
Arildialquilfosfatase , Flavonoides , Masculino , Humanos , Arildialquilfosfatase/genética , Flavonoides/metabolismo , Lactonas
18.
Int J Food Sci Nutr ; 74(4): 510-521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37282563

RESUMO

Vitamin E and paraoxonase 1 (PON1) are associated with cancer development. However, their interactive effect on colorectal cancer (CRC) risk is inconclusive. We conducted a case-control study including 1,351 CRC patients and 2,670 controls at the Korean National Cancer Centre (KNCC). There was an inverse association between vitamin E intake and CRC risk (odds ratio (OR) = 0.31; 95% confidence interval (CI) = 0.22-0.42). We identified a reduced CRC risk among individuals with CC genotype of PON1 rs662 polymorphism compared with subjects carrying the T allele (OR = 0.74; 95% CI = 0.61-0.90). The highest interaction between vitamin E intake and PON1 rs662 variants was significant for the subjects carrying the CC genotype (p-interaction = 0.014). This study provided further supporting evidence that vitamin E intake is associated with lower odds of CRC. Furthermore, the activity of vitamin E is strengthened among individuals carrying C allele of the PON1 rs662 polymorphism.


Assuntos
Arildialquilfosfatase , Neoplasias Colorretais , Humanos , Arildialquilfosfatase/genética , Estudos de Casos e Controles , Polimorfismo Genético , Genótipo , Vitamina E , Neoplasias Colorretais/genética , República da Coreia/epidemiologia , Polimorfismo de Nucleotídeo Único
19.
Sci Rep ; 13(1): 9929, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337025

RESUMO

Paraoxonase 2 (PON2) is a multifunctional intracellular enzyme that has received growing attention for its ability to modulate various aspects of normal and malignant cellular physiology. Recent research has revealed that PON2 is upregulated in tissues from patients with various types of solid tumors and hematologic cancers, likely due to its ability to suppress oxidative stress and evade apoptosis. However, the effects of PON2 on pulmonary oncogenesis are unknown. Here, we conducted studies to investigate how PON2 influences lung cancer cell proliferation in vitro and lung tumorigenesis in vivo using a variety of cellular and animal models. It was found that PON2 expression deficiency hampered the proliferation of cultured lung cancer cells with concomitant cell cycle arrest at the G1 phase. In addition, the loss of endogenous PON2 expression impaired key aspects of oxidative metabolism in lung adenocarcinoma cells. Moreover, we investigated how the interplay between PON2 expression in lung tumors and host mice influences lung tumor initiation and progression. PON2 status in both transplanted tumor cells and mice failed to influence the development of subcutaneously grafted Lewis lung carcinoma (LLC) tumors, orthotopically implanted LLC tumors, and oncogenic Kras-driven primary lung adenocarcinoma tumors. Importantly, the frequencies of tumor-infiltrating myeloid subsets that include myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages were not impacted by PON2 expression in LLC tumor-bearing mice. Overall, our studies indicate that PON2 plays a limited role in murine lung tumorigenesis.


Assuntos
Adenocarcinoma de Pulmão , Arildialquilfosfatase , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética
20.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37146172

RESUMO

Convergent adaptation to the same environment by multiple lineages frequently involves rapid evolutionary change at the same genes, implicating these genes as important for environmental adaptation. Such adaptive molecular changes may yield either change or loss of protein function; loss of function can eliminate newly deleterious proteins or reduce energy necessary for protein production. We previously found a striking case of recurrent pseudogenization of the Paraoxonase 1 (Pon1) gene among aquatic mammal lineages-Pon1 became a pseudogene with genetic lesions, such as stop codons and frameshifts, at least four times independently in aquatic and semiaquatic mammals. Here, we assess the landscape and pace of pseudogenization by studying Pon1 sequences, expression levels, and enzymatic activity across four aquatic and semiaquatic mammal lineages: pinnipeds, cetaceans, otters, and beavers. We observe in beavers and pinnipeds an unexpected reduction in expression of Pon3, a paralog with similar expression patterns but different substrate preferences. Ultimately, in all lineages with aquatic/semiaquatic members, we find that preceding any coding-level pseudogenization events in Pon1, there is a drastic decrease in expression, followed by relaxed selection, thus allowing accumulation of disrupting mutations. The recurrent loss of Pon1 function in aquatic/semiaquatic lineages is consistent with a benefit to Pon1 functional loss in aquatic environments. Accordingly, we examine diving and dietary traits across pinniped species as potential driving forces of Pon1 functional loss. We find that loss is best associated with diving activity and likely results from changes in selective pressures associated with hypoxia and hypoxia-induced inflammation.


Assuntos
Arildialquilfosfatase , Caniformia , Animais , Arildialquilfosfatase/genética , Mamíferos/genética , Cetáceos/genética , Roedores , Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...