Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.011
Filtrar
1.
Food Res Int ; 183: 114234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760147

RESUMO

Bitterness is one of the five basic tastes generally considered undesirable. The widespread presence of bitter compounds can negatively affect the palatability of foods. The classification and sensory evaluation of bitter compounds have been the focus in recent research. However, the rigorous identification of bitter tastes and further studies to effectively mask or remove them have not been thoroughly evaluated. The present paper focuses on identification of bitter compounds in foods, structural-based activation of bitter receptors, and strategies to reduce bitter compounds in foods. It also discusses the roles of metabolomics and virtual screening analysis in bitter taste. The identification of bitter compounds has seen greater success through metabolomics with multivariate statistical analysis compared to conventional chromatography, HPLC, LC-MS, and NMR techniques. However, to avoid false positives, sensory recognition should be combined. Bitter perception involves the structural activation of bitter taste receptors (TAS2Rs). Only 25 human TAS2Rs have been identified as responsible for recognizing numerous bitter compounds, showcasing their high structural diversity to bitter agonists. Thus, reducing bitterness can be achieved through several methods. Traditionally, the removal or degradation of bitter substances has been used for debittering, while the masking of bitterness presents a new effective approach to improving food flavor. Future research in food bitterness should focus on identifying unknown bitter compounds in food, elucidating the mechanisms of activation of different receptors, and developing debittering techniques based on the entire food matrix.


Assuntos
Receptores Acoplados a Proteínas G , Percepção Gustatória , Paladar , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Aromatizantes/análise , Metabolômica/métodos , Análise de Alimentos/métodos , Preferências Alimentares
2.
Food Res Int ; 187: 114315, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763628

RESUMO

Paojiao, a typical Chinese traditional fermented pepper, is favored by consumers for its unique flavor profile. Microorganisms, organic acids, amino acids, and volatile compounds are the primary constituents influencing the development of paojiao's flavor. To elucidate the key flavor compounds and core microorganisms of Qicaipaojiao (QCJ), this study conducted a comprehensive analysis of the changes in taste substances (organic acids and amino acids) and volatile flavor compounds during QCJ fermentation. Key flavor substances in QCJ were identified using threshold aroma value and odor activity value and the core microorganisms of QCJ were determined based on the correlation between dominant microorganisms and the key flavor substances. During QCJ fermentation, 16 key taste substances (12 free amino acids and 4 organic acids) and 12 key aroma substances were identified. The fermentation process involved 10 bacteria and 7 fungal genera, including Lactiplantibacillus, Leuconostoc, Klebsiella, Pichia, Wickerhamomyces, and Candida. Correlation analysis revealed that the core functional microorganisms encompassed representatives from 8 genera, including 5 bacterial genera (Lactiplantibacillus, Weissella, Leuconostoc, Klebsiella, and Kluyvera) and 3 fungal genera (Rhodotorula, Phallus, and Pichia). These core functional microorganisms exhibited significant correlations with approximately 70 % of the key flavor substances (P < 0.05). This study contributes to an enhanced understanding of flavor formation mechanisms and offers valuable insight into flavor quality control in food fermentation processes.


Assuntos
Bactérias , Capsicum , Fermentação , Odorantes , Paladar , Compostos Orgânicos Voláteis , Capsicum/microbiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Odorantes/análise , Bactérias/metabolismo , Bactérias/classificação , Microbiologia de Alimentos , Fungos/metabolismo , Fungos/classificação , Aminoácidos/análise , Aminoácidos/metabolismo , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Redes e Vias Metabólicas , Aromatizantes/metabolismo , Aromatizantes/análise
3.
Food Res Int ; 187: 114392, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763654

RESUMO

Variations in cultivars and cultivation altitudes have significant impacts on tea flavour compounds however lack of comprehensive understanding. This study provided insights into differential accumulation of crucial flavour compounds in response to cultivars, cultivation altitudes, and processing. Twelve flavonoids (262.4 âˆ¼ 275.4 mg•g-1) and 20 amino acids (AAs) (56.5 âˆ¼ 64.8 mg•g-1) were comparative analyzed in 'Longjing 43' and 'Qunti' fresh leaves harvested at low (80 m, LA) and high (500 m, HA) altitudes. Additionally, an in-depth correlation unravelling of 31 alkaloids, 25 fatty acids, 31 saccharides, 8 organic acids, and 7 vitamins and flavonoids/AAs during green tea (GT) and black tea (BT) processing was performed. Enhenced flavonoid accumulation alongside higher AAs and saccharides in HA GT promoted a sweet/mellow flavour. Abundant flavonoids, AAs, and saccharides derivates in LA BT gave rise to a sweet aftertaste. The study presents an integrated illustration of major flavour compounds' differential accumulation patterns and their interrelations, providing new insights into the influence of cultivation conditions on tea flavour.


Assuntos
Altitude , Camellia sinensis , Flavonoides , Folhas de Planta , Chá , Folhas de Planta/química , Folhas de Planta/metabolismo , Flavonoides/análise , Chá/química , Camellia sinensis/química , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Paladar , Aminoácidos/análise , Aminoácidos/metabolismo , Manipulação de Alimentos/métodos , Aromatizantes/análise , Alcaloides/análise , Alcaloides/metabolismo
4.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731439

RESUMO

The production of peanut oil in the industrial sector necessitates the utilization of diverse raw materials to generate consistent batches with stable flavor profiles, thereby leading to an increased focus on understanding the correlation between raw materials and flavor characteristics. In this study, sensory evaluations, headspace solid-phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) calculations, and correlation analysis were employed to investigate the flavors and main contributing amino acids of hot-pressed oils derived from different peanut varieties. The results confirmed that the levels of alcohols, aldehydes, and heterocyclic compounds in peanut oil varied among nine different peanut varieties under identical processing conditions. The OAVs of 25 key aroma compounds, such as methylthiol, 3-ethyl-2,5-dimethylpyrazine, and 2,3-glutarone, exceeded a value of 1. The sensory evaluations and flavor content analysis demonstrated that pyrazines significantly influenced the flavor profile of the peanut oil. The concentrations of 11 amino acids showed a strong correlation with the levels of pyrazines. Notably, phenylalanine, lysine, glutamic acid, arginine, and isoleucine demonstrated significant associations with both pyrazine and nut flavors. These findings will provide valuable insights for enhancing the sensory attributes of peanut oil and selecting optimal raw peanuts for its production.


Assuntos
Aminoácidos , Arachis , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Óleo de Amendoim , Aminoácidos/análise , Aminoácidos/química , Arachis/química , Odorantes/análise , Óleo de Amendoim/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Aromatizantes/química , Aromatizantes/análise , Pirazinas/química , Pirazinas/análise , Microextração em Fase Sólida , Paladar , Temperatura Alta
5.
Sci Rep ; 14(1): 9591, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719814

RESUMO

Vaping involves the heating of chemical solutions (e-liquids) to high temperatures prior to lung inhalation. A risk exists that these chemicals undergo thermal decomposition to new chemical entities, the composition and health implications of which are largely unknown. To address this concern, a graph-convolutional neural network (NN) model was used to predict pyrolysis reactivity of 180 e-liquid chemical flavours. The output of this supervised machine learning approach was a dataset of probability ranked pyrolysis transformations and their associated 7307 products. To refine this dataset, the molecular weight of each NN predicted product was automatically correlated with experimental mass spectrometry (MS) fragmentation data for each flavour chemical. This blending of deep learning methods with experimental MS data identified 1169 molecular weight matches that prioritized these compounds for further analysis. The average number of discrete matches per flavour between NN predictions and MS fragmentation was 6.4 with 92.8% of flavours having at least one match. Globally harmonized system classifications for NN/MS matches were extracted from PubChem, revealing that 127 acute toxic, 153 health hazard and 225 irritant classifications were predicted. This approach may reveal the longer-term health risks of vaping in advance of clinical diseases emerging in the general population.


Assuntos
Aromatizantes , Redes Neurais de Computação , Pirólise , Vaping , Vaping/efeitos adversos , Aromatizantes/química , Aromatizantes/análise , Humanos , Sistemas Eletrônicos de Liberação de Nicotina
6.
Rapid Commun Mass Spectrom ; 38(13): e9748, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38644558

RESUMO

RATIONALE: Natural monomer flavors can modify the taste of cigarettes. However, no report was published to establish the quality control method for their chemical compositions. METHODS: In this study, licorice, a traditional natural monomer flavor used in tobacco aroma processing, was selected, and the fingerprint was developed by high-performance liquid chromatography (HPLC). Next, the chemical markers of samples from different places of origin were discovered by multivariate statistical analysis. Then, its chemical constituents were identified by combination of HPLC-Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), direct infusion FT-ICR-MS (DI-FT-ICR-MS), and the technology of isotopic fine structures (IFSs). Moreover, its characteristic constituents were quantitatively analyzed using HPLC. RESULTS: The 14 common peaks were assigned in the fingerprint, and 8 of them were considered as qualitative markers by multivariate statistical analysis. A total of 42 chemical constituents were detected using HPLC-FT-ICR-MS, and 13 of them were unambiguously identified by references. Meanwhile, the elemental compositions of other eight unknown chemical components were decisively determined using IFSs. Subsequently, the contents of five characteristic constituents in 11 batches of samples were determined. CONCLUSIONS: The integration strategy established here can discover and quantify the chemical markers for improving the quality control standard of natural monomer flavor of licorice. It is expected that the strategy will be valuable for further quality control of other natural monomer flavors in Chinese tobacco industry.


Assuntos
Aromatizantes , Glycyrrhiza , Espectrometria de Massas , Espectrometria de Massas/métodos , Aromatizantes/química , Aromatizantes/análise , Cromatografia Líquida de Alta Pressão/métodos , Glycyrrhiza/química , Indústria do Tabaco , Nicotiana/química , Análise de Fourier , Controle de Qualidade , China , População do Leste Asiático
7.
ACS Sens ; 9(4): 1820-1830, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38604805

RESUMO

Umami substances play a significant role in the evaluation of food quality, and their synergistic enhancement is of great importance in improving and intensifying food flavors and tastes. Current biosensors available for umami detection still confront challenges in simultaneous quantification of multiple umami substances and umami intensities. In this study, an innovative dual-channel magnetic relaxation switching taste biosensor (D-MRSTB) was developed for the quantitative detection of representative umami substances. The multienzyme signal of D-MRSTB specifically catalyzes the umami substances of interest to generate hydrogen peroxide (H2O2), which is then used to oxidate Fe2+ to Fe3+. Such a valence-state transition of paramagnetic ions was utilized as a magnetic relaxation signaling switch to influence the transverse magnetic relaxation time (T2) within the reaction milieu, thus achieving simultaneous detection of monosodium glutamate (MSG) and inosine 5'-monophosphate (IMP). The biosensor showed good linearity (R2 > 0.99) in the concentration range of 50-1000 and 10-1000 µmol/L, with limits of detection (LOD) of 0.61 and 0.09 µmol/L for MSG and IMP, respectively. Furthermore, the biosensor accurately characterized the synergistic effect of the mixed solution of IMP and MSG, where ΔT2 showed a good linear relationship with the equivalent umami concentration (EUC) of the mixed solution (R2 = 0.998). Moreover, the D-MRSTB successfully achieved the quantitative detection of umami compounds in real samples. This sensing technology provides a powerful tool for achieving the detection of synergistic enhancement among umami compounds and demonstrates its potential for application in the food industry.


Assuntos
Técnicas Biossensoriais , Glutamato de Sódio , Paladar , Técnicas Biossensoriais/métodos , Glutamato de Sódio/química , Inosina Monofosfato/análise , Inosina Monofosfato/química , Limite de Detecção , Análise de Alimentos/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Fenômenos Magnéticos , Aromatizantes/análise , Aromatizantes/química
8.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675570

RESUMO

The effects of different fermentation methods utilizing Torulaspora delbrueckii 1004 and Saccharomyces cerevisiae 32169 on the physicochemical properties, organic acid content, polyphenol and flavonoid concentrations, antioxidant activity, and volatile aroma compounds of Huaniu apple cider were investigated in this study. Employing methods of single inoculation, co-inoculation, and sequential inoculation, it was found that sequential fermentation exhibited strong fermentative power in the initial stages, effectively reducing the content of soluble solids and achieving a balanced composition of malic, succinic, and citric acids while maintaining a lower titratable acidity. Sequential inoculation was observed to significantly enhance the total polyphenols and flavonoids, as well as the antioxidant capacity (p < 0.05). Specifically, in the synthesis of volatile aroma compounds, sequential inoculation significantly enhanced the richness and diversity of the Huaniu apple cider's aromas, particularly in terms of the concentration of ester compounds (p < 0.05). Principal component analysis further confirmed the superiority of sequential inoculation in terms of aroma component diversity and richness. The findings of this study suggest that sequential inoculation of fermentation with non-Saccharomyces and S. cerevisiae is an effective strategy for optimizing the flavor characteristics of Huaniu apple cider, offering valuable theoretical support and practical guidance for enhancing cider quality and fostering the development of new products.


Assuntos
Fermentação , Aromatizantes , Malus , Saccharomyces cerevisiae , Torulaspora , Compostos Orgânicos Voláteis , Saccharomyces cerevisiae/metabolismo , Malus/química , Torulaspora/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Aromatizantes/química , Aromatizantes/análise , Polifenóis/química , Polifenóis/análise , Antioxidantes/química , Flavonoides/análise , Flavonoides/química , Odorantes/análise
9.
Molecules ; 29(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675601

RESUMO

To date, there has been limited research on the interactive effects of yeast and lactic acid bacteria (LAB) on the sensory qualities of navel orange wine. In this study, using Jintang navel orange juice as the raw material, multi-microbial fermentation was conducted with Saccharomyces cerevisiae SC-125 and Angel yeast SY, as well as Lactiplantibacillus plantarum BC114. Single yeast and co-fermentation with Lactiplantibacillus plantarum were used as the control groups. The research aimed to investigate the physicochemical parameters of navel orange wine during fermentation. Additionally, headspace solid-phase microextraction gas chromatography-mass spectrometry (HP-SPME-GC-MS) was employed to determine and analyze the types and levels of flavor compounds in the navel orange wines produced through the different fermentation methods. The co-fermentation using the three strains significantly enhanced both the quantity and variety of volatile compounds in the navel orange wine, concomitant with heightened total phenol and flavonoid levels. Furthermore, a notable improvement was observed in the free radical scavenging activity. A sensory evaluation was carried out to analyze the differences among the various navel orange wines, shedding light on the impact of different wine yeasts and co-fermentation with LAB on the quality of navel orange wines.


Assuntos
Citrus sinensis , Fermentação , Saccharomyces cerevisiae , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Saccharomyces cerevisiae/metabolismo , Citrus sinensis/química , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Aromatizantes/análise , Aromatizantes/química
10.
J Oleo Sci ; 73(5): 813-821, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583980

RESUMO

Gas chromatography-olfactory-mass spectrometry (GC-O-MS) combined with Aroma Extract Dilution Analysis (AEDA) were employed to characterize the key odor-active compounds in sesame paste (SP) and dehulled sesame paste (DSP). The AEDA results revealed the presence of 32 and 22 odor-active compounds in SP and DSP, respectively. Furthermore, 13 aroma compounds with FD ≥ 2, OAV ≥ 1, and VIP ≥ 1 were identified as key differential aroma compounds between SP and DSP. Specifically, compounds such as 3-methylbutyraldehyde (OAV = 100.70-442.57; fruity), 2-methylbutyraldehyde (OAV = 106.89-170.31; almond), m-xylene (FD = 16; salty pastry), and 2,5-dimethylpyrazine (FD = 8-16; roasted, salty pastry) played an important role in this differentiation. Additionally, the dehulling process led to increased fermented, sweet, green, and nutty aroma notes in DSP compared to the more pronounced burnt and roasted sesame aroma notes in SP. Our findings offer a theoretical foundation for the regulation of sesame paste aroma profiles.


Assuntos
Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Sesamum , Sesamum/química , Odorantes/análise , Manipulação de Alimentos/métodos , Pirazinas/análise , Xilenos/análise , Aldeídos/análise , Paladar , Aromatizantes/análise , Compostos Orgânicos Voláteis/análise
11.
J Food Sci ; 89(5): 2611-2628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38571450

RESUMO

Fructus Aurantii (FA) is an edible and medicinal functional food used worldwide that enhances digestion. Since raw FA (RFA) possesses certain side effects for some patients, processed FA (PFA) is commonly used in clinical practice. This study aimed to establish an objective and comprehensive quality evaluation of the PFA that employed the technique of steaming and fermentation. Combined with the volatile and non-volatile components, as well as the regulation of gut microbiota, the differentiation between RFA and PFA was analyzed. The results showed that the PFA considerably reduced the contents of flavonoid glycosides while increasing hesperidin-7-O-glucoside and flavonoid aglycones. The electronic nose and GC-MS (Gas chromatography/mass spectrometry) effectively detected the variation in flavor between RFA and PFA. Correlation analysis revealed that eight volatile components (relative odor activity value [ROAV] ≥ 0.1) played a key role in inducing odor modifications. The original floral and woody notes were subdued due to decreased levels of linalool, sabinene, α-terpineol, and terpinen-4-ol. After processing, more delightful flavors such as lemon and fruity aromas were acquired. Furthermore, gut microbiota analysis indicated a significant increase in beneficial microbial taxa. Particularly, Lactobacillus, Akkermansia, and Blautia exhibited higher abundance following PFA treatment. Conversely, a lower presence of pathogenic bacteria, including Proteobacteria, Flexispira, and Clostridium. This strategy contributes to a comprehensive analysis technique for the quality assessment of FA, providing scientific justifications for processing FA into high-value products with enhanced health benefits. PRACTICAL APPLICATION: This study provided an efficient approach to Fructus Aurantii quality evaluation. The methods of fermentation and steaming showed improved quality and safety.


Assuntos
Fermentação , Frutas , Cromatografia Gasosa-Espectrometria de Massas , Microbioma Gastrointestinal , Odorantes , Paladar , Compostos Orgânicos Voláteis , Frutas/química , Frutas/microbiologia , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Citrus/química , Humanos , Aromatizantes/análise , Bactérias/classificação , Manipulação de Alimentos/métodos , Controle de Qualidade , Flavonoides/análise
12.
Food Chem ; 448: 139124, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554586

RESUMO

In this study, we applied various thermal pretreatment methods (e.g., hot-air, microwave, and stir-frying) to process walnut kernels, and conducted comparative analysis of the physicochemical properties, nutritional components, in vitro antioxidant activity, and flavor substances of the extracted walnut oil (WO). The results indicated that, thermal pretreatment significantly increased the extraction of total trace nutrients (e.g., total phenols, tocopherols, and phytosterols) in WO. The WO produced using microwave had 2316.71 mg/kg of total trace nutrients, closely followed by the stir-frying method, which yielded an 11.22% increase compared to the untreated method. The WO obtained by the microwave method had a higher Oxidative inductance period (4.05 h) and oil yield (2.48%). After analyzing the flavor in WO, we found that aldehydes accounted for 28.77% of the 73 of volatile compounds and 58.12% of the total flavor compound content in microwave-pretreated WO, these percentages were higher than those recorded by using other methods. Based on the comprehensive score obtained by the PCA, microwave-pretreatment might be a promising strategy to improve the quality of WO based on aromatic characteristics.


Assuntos
Aromatizantes , Juglans , Oxirredução , Óleos de Plantas , Paladar , Compostos Orgânicos Voláteis , Juglans/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Aromatizantes/química , Aromatizantes/análise , Óleos de Plantas/química , Antioxidantes/análise , Antioxidantes/química , Temperatura Alta , Micro-Ondas
13.
Food Chem ; 446: 138853, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422645

RESUMO

Meat flavoring was prepared using mainly enzymatic hydrolysate of plant protein mix, VB1, cysteine, and glucose by three heating processes, including A (80 °C-140 min), B (two-stage, 80 °C-30 min/120 °C-30 min), and C (120 °C-40 min). The A-, B-, and C-heated samples exhibited the strongest fatty and weakest meaty, the strongest meaty and kokumi, and the strongest roasted and bitterness characteristics, respectively. PLS-DA for free amino acids with TAVs and that for SPME/GC-MS results with GC-O and OAVs, suggested three amino acids and eight flavor compounds contributed significantly in differentiating taste or aroma attributes of the three heated samples. Molecular weight distribution and degree of amino substitution suggested 1-5 kDa peptides contributed to kokumi taste. Overall, C- and A-heating exhibited the highest rates in Maillard reaction and lipid oxidation, respectively, while those of B heating were between these two heating processes and responsible for better flavor of meat flavoring.


Assuntos
Calefação , Paladar , Reação de Maillard , Aminoácidos , Carne/análise , Hidrolisados de Proteína , Proteínas de Plantas/química , Aromatizantes/análise , Odorantes/análise
14.
Food Chem ; 445: 138696, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354643

RESUMO

This study investigated the odor profiles of four pea milk varieties based on sensory evaluation, electronic nose (E-nose), and gas chromatography-mass spectrometry (GC-MS) with soybean milk as a reference. Compared to soybean milk, pea milk exhibited lower intensity of beany, oil-oxidation, and mushroom flavors as well as higher intensity of grassy/green and earthy flavors. ZW.6 pea milk was selected for further identification of key odor-active compounds using molecular sensory science approaches. Using headspace solid phase microextraction (HS-SPME), solvent-assisted flavor evaporation (SAFE), and dynamic headspace sampling (DHS) combined with comprehensive gas chromatography-olfactometry-mass spectrometry (GC × GC-O-MS), 102 odor-active compounds were detected in ZW.6 pea milk. Among these, 19 compounds exhibiting high flavor dilution (FD) factors were accurately quantitated. Ten key odor-active compounds were ultimately identified through aroma recombination and omission experiment. Aldehydes and alcohols significantly contribute to the odor profile of pea milk.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Odorantes/análise , Glycine max , Pisum sativum , Leite/química , Compostos Orgânicos Voláteis/análise , Aromatizantes/análise , Olfatometria/métodos
15.
Food Chem ; 445: 138398, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394903

RESUMO

A protein hydrolysate of goat viscera added with xylose, cysteine, and thiamine under different pH was used to prepare a meat flavoring. Goat viscera hydrolysate and flavoring were subjected to analysis of physicochemical characteristics, amino acid profile, sugars, fatty acids, and volatile profile. Meat aroma characteristics were initiated in the hydrolysate, in which Strecker's pyrazines and aldehydes were identified, which also had fatty acids and amino acids available for the formation of 96 volatile compounds in the flavorings via lipid manipulation, Maillard occurrence, Strecker manipulation and interactions among these means. Maillard reaction products with intense meat aroma, such as 2-methyl-3-furanthiol, 2-furfurylthiol and, bis(2-methyl-3-furyl) disulfide were isolated only in the flavoring at pH 4. In contrast, the flavoring at pH 6 showed a higher concentration than all the other compounds, providing a lower meat characteristic, but an intense sweet, fatty and goat aroma.


Assuntos
Cisteína , Reação de Maillard , Animais , Cisteína/química , Tiamina/análise , Xilose/química , Hidrolisados de Proteína , Cabras , Aromatizantes/análise , Carne/análise , Ácidos Graxos , Odorantes/análise
16.
Food Res Int ; 179: 114022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342521

RESUMO

There is an important movement in the wine industry towards the production of alternative and more sustainable wines. Natural wine (NW) is a controversial category of alternative wines, which needs to be further explored. Given the role of technical experts as opinion leaders, the present work aims to explore the attitudes of Spanish winemakers towards NW and their relationship with their overall environmental awareness. Therefore, 307 Spanish winemakers completed a questionnaire to evaluate: (1) their attitudes towards NW by scoring their agreement with 31 statements, (2) their ecological awareness by evaluating 11 items, (3) their frequency of consumption and interest towards NW, and (4) their sociodemographic profile and general information about wine production. PCA with varimax rotation calculated on 28 of the 31 statements related to their attitudes showed six independent dimensions. Further hierarchical cluster analysis calculated with the six dimensions showed five clusters of wine experts with different attitudes towards NW. Results show that there is a major negative attitude towards the flavour of NW, their ageing capacity and their quality-price ratio, but a positive one in terms of economic impact for the wine industry. Aspects related to the role of NW in tradition, social identity, ecology, health, artisanal production and economic feasibility mark differential attitudes. Interestingly, the dimension related to winemakers attitude towards tradition, social identity, and ecology of NW was positively correlated with their overall ecological awareness and thus their life style. This paper sheds light in the understanding of the behaviour of Spanish winemakers regarding ecological transition and provides tools for policymaking regarding NW certification.


Assuntos
Vinho , Vinho/análise , Paladar , Atitude , Aromatizantes/análise , Inquéritos e Questionários
17.
Food Res Int ; 177: 113848, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225123

RESUMO

Descriptive sensory analysis was paired with temporal check-all-that-apply gas-chromatography olfactometry (TCATA GC-O) to compare differences in perceived flavour and volatile odour activity across a series of commercial plant-based meat analogues (PBMAs) versus conventional beef products. Multiple factor analysis separated PBMAs in two clusters along the first principal axis. The first cluster, rated higher in meaty flavour and odour, also showed higher citation proportions of sulfurous odourants. In contrast, the second cluster, higher in off odour and flavour, had higher citation proportions for fatty / legume odourants. Key odourants correlated with meaty flavour and odour were putatively identified as 2-methyl-3-furanthiol, dimethyl trisulfide, and furfuryl mercaptan while compounds correlated to off flavour and odour were putatively identified as (E,E)-3,5-octadien-2-one, 2-undecanol, and (E,E)-2,4-decadienal. No correspondence was found between PBMA odour-activity and source protein, suggesting that volatile flavour production in PBMAs is derived primarily from exogeneous flavouring materials or precursors rather than the base protein material. Contributions of lipid-protein interactions to overall flavour differences is further suggested by the putative discovery of 5,6-dihydro-2,4,6-trimethyl-4H-1,3,5-dithiazine odour activity in several meat samples profiled.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Bovinos , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Carne/análise , Cromatografia Gasosa/métodos , Paladar , Aromatizantes/análise
18.
Food Chem ; 441: 138274, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38181665

RESUMO

Descriptive sensory analysis, headspace solid-phase microextraction-gas chromatography-mass spectrometry, gas chromatography-flame ionization detector and multivariate statistical analysis were used to elucidate the regional dependence of sauce-flavor baijiu (SFB). Although SFB samples from different regions couldn't be clearly classified by sensory profiles, they could be clearly divided into 5 groups in principal component analysis plot based on quantitative targeted flavoromics analysis. And then, the relationship between sensory attributes and volatile compounds were investigated by network analysis. Twenty regional aroma markers were identified by multivariate statistical analysis to distinguish SFB samples from different regions. Furthermore, the influence of manufacturing operation on SFB in Guizhou region was further analyzed. Thirty-eight potential compounds were significant different in Guizhou SFB samples with different manufacturing operations. This study not only provides a better understanding of regional dependence on SFB flavor, but also further clarifies the inheritance importance of manufacturing operation in traditional SFB production.


Assuntos
Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Alimentos , Odorantes/análise , Aromatizantes/análise
19.
Nicotine Tob Res ; 26(3): 380-384, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37450895

RESUMO

INTRODUCTION: E-cigarettes are becoming increasingly popular in Australia, especially amongst the younger population. The synthetic cooling molecules WS-3 and WS-23 have been identified in e-cigarette products from the United States and Europe. The extent of inclusion of these synthetic coolants in Australian e-liquids is unknown, particularly in newer disposable e-cigarettes. AIMS AND METHODS: E-cigarettes and e-liquids were purchased within Australia and anonymously donated by Australian users. Nicotine, WS-3, WS-23, and menthol were quantified in the e-liquids using gas chromatography-mass spectrometry (GC-MS). RESULTS: WS-23 and nicotine were detected in all of the disposable e-cigarettes with WS-23 often present in high concentrations. There was no correlation between cooling terms in the flavor name and the inclusion of cooling agents. Only three bottled e-liquids were found to contain WS-23 while none contained WS-3 above the limit of detection. CONCLUSIONS: Synthetic coolants were a common addition in disposable e-cigarettes while rarely added to e-liquid bottle refills. Their inclusion in these products is reflective of trends observed in United States and European e-cigarette products. IMPLICATIONS: The increase in synthetic cooling agents as components of e-liquids, particularly disposable e-cigarette devices, has been observed within Australian samples across a range of brands and flavors. WS-23 was present in every disposable e-cigarette analyzed in this study, often in relatively high concentrations. Its inhalational toxicology should be considered when evaluating the safety of these products.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Humanos , Estados Unidos , Nicotina/análise , Aromatizantes/análise , Austrália , Produtos do Tabaco/análise
20.
Nicotine Tob Res ; 26(3): 385-391, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37578845

RESUMO

INTRODUCTION: Tobacco product flavors can increase product appeal, adolescent initiation and experimentation, and difficulty quitting. Flavored tobacco products are not restricted in Vietnam or the Philippines despite the high smoking prevalence among those 15 years of age and older (24% and 23%, respectively). There are no published reports to our knowledge on the levels of flavor chemicals in the cigarettes sold in these two countries. METHODS: Cigarettes were purchased in Vietnam (32 brand variants) and the Philippines (19 brand variants) during 2020. Chemical analyses gave the mg/filter, mg/rod, and mg/stick (= mg/(filter + rod)) values for 180 individual flavor chemicals. Values were calculated for menthol, clove-related compounds, and "other flavor chemicals" (OFCs). RESULTS: Five flavor groupings were found among the brand variants purchased in Vietnam: menthol + OFCs (n = 15), OFCs only (n = 8), nonflavored (n = 7), menthol + OFCs with a clove flavorant (n = 1) and menthol only (n = 1). Three flavor groupings were found among the brand variants purchased in the Philippines: menthol + OFCs (n = 10), nonflavored (n = 5), and menthol only (n = 4). CONCLUSIONS: A range of flavored cigarette products are being offered by tobacco companies in Vietnam and the Philippines, presumably to maximize cigarette sales. Regulation of flavor chemicals should be considered in these two countries. IMPLICATIONS: Article 9 of the WHO Framework Convention on Tobacco Control (FCTC), ratified by both Vietnam and the Philippines, states that "there is no justification for permitting the use of ingredients, such as flavoring agents, which help make tobacco products attractive." Flavors increase product appeal, adolescent initiation and experimentation, and difficulty quitting. These analyses found that cigarettes purchased in Vietnam and the Philippines contained menthol and other flavor chemicals. Tobacco companies are offering multiple flavor chemical profiles and nominally nonflavored versions in these countries; regulation of flavor chemicals should be considered in these two countries.


Assuntos
Encéfalo/anormalidades , Fenda Labial , Fissura Palatina , Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Adolescente , Humanos , Mentol/análise , Filipinas , Vietnã/epidemiologia , Aromatizantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...