Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Sci Rep ; 13(1): 8986, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268727

RESUMO

The ARR3 gene, also known as cone arrestin, belongs to the arrestin family and is expressed in cone cells, inactivating phosphorylated-opsins and preventing cone signals. Variants of ARR3 reportedly cause X-linked dominant female-limited early-onset (age < 7 years old) high myopia (< - 6D). Here, we reveal a new mutation (c.228T>A, p.Tyr76*) in ARR3 gene that can cause early-onset high myopia (eoHM) limited to female carriers. Protan/deutan color vision defects were also found in family members, affecting both genders. Using ten years of clinical follow-up data, we identified gradually worsening cone dysfunction/color vision as a key feature among affected individuals. We present a hypothesis that higher visual contrast due to the mosaic of mutated ARR3 expression in cones contributes to the development of myopia in female carriers.


Assuntos
Arrestina , Defeitos da Visão Cromática , Visão de Cores , Miopia , Criança , Feminino , Humanos , Masculino , Arrestina/genética , Defeitos da Visão Cromática/genética , Mutação , Miopia/genética , Células Fotorreceptoras Retinianas Cones
2.
Am J Respir Cell Mol Biol ; 67(5): 550-561, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944139

RESUMO

G protein-coupled receptors (GPCRs) not only are turned on or off to control canonical G protein signaling but also may be fine-tuned to promote qualitative/biased signaling. Qualitative signaling by M3 muscarinic acetylcholine receptors (mAChRs) has been proposed, but its impact on physiologic systems remains unclear, and currently no biased M3 mAChR ligands have been described. Herein, we identify PD 102807 as a biased M3 ligand and delineate its signaling and function in human airway smooth muscle (ASM) cells. PD 102807 induced M3-mediated ß-arrestin recruitment but not calcium mobilization. PD 102807 inhibited methacholine (MCh)-induced calcium mobilization in (M3-expressing) ASM cells. PD 102807 induced phosphorylation of AMP-activated protein kinase (AMPK) and the downstream effector acetyl-coenzyme A carboxylase (ACC). PD 102807- induced phosphorylated (p)-AMPK levels were greatly reduced in ASM cells with minimal M3 expression and were not inhibited by the Gq inhibitor YM-254890. Induction of p-AMPK and p-ACC was inhibited by ß-arrestin 1 or GRK2/3 knockdown. Similarly, MCh induced phosphorylation of AMPK/ACC, but these effects were Gq dependent and unaffected by GRK2/3 knockdown. Consistent with the known ability of AMPK to inhibit transforming growth factor ß (TGF-ß)-mediated functions, PD 102807 inhibited TGF-ß-induced SMAD-Luc activity, sm-α-actin expression, actin stress fiber formation, and ASM cell hypercontractility. These findings reveal that PD 102807 is a biased M3 ligand that inhibits M3-transduced Gq signaling but promotes Gq protein-independent, GRK-/arrestin-dependent, M3-mediated AMPK signaling, which in turn regulates ASM phenotype and contractile function. Consequently, biased M3 ligands hold significant promise as therapeutic agents capable of exploiting the pleiotropic nature of M3 signaling.


Assuntos
Proteínas Quinases Ativadas por AMP , Arrestina , Humanos , Arrestina/genética , Arrestina/metabolismo , Arrestina/farmacologia , Ligantes , Proteínas Quinases Ativadas por AMP/metabolismo , Miócitos de Músculo Liso/metabolismo , beta-Arrestina 1/metabolismo , Actinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806256

RESUMO

Three out of four subtypes of arrestin proteins expressed in mammals self-associate, each forming oligomers of a distinct kind. Monomers and oligomers have different subcellular localization and distinct biological functions. Here we summarize existing evidence regarding arrestin oligomerization and discuss specific functions of monomeric and oligomeric forms, although too few of the latter are known. The data on arrestins highlight biological importance of oligomerization of signaling proteins. Distinct modes of oligomerization might be an important contributing factor to the functional differences among highly homologous members of the arrestin protein family.


Assuntos
Arrestina , Arrestinas , Animais , Arrestina/genética , Arrestina/metabolismo , Arrestinas/metabolismo , Mamíferos/metabolismo , beta-Arrestinas/metabolismo
4.
Front Cell Infect Microbiol ; 12: 754333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252023

RESUMO

Arrestins are a family of scaffold proteins that play a crucial role in regulating numerous cellular processes, such as GPCR signaling. The Arthrobotrys oligospora arrestin family contains 12 members, which have highly conserved N-terminal and C-terminal domains. In the presence of ammonia, A. oligospora can change its lifestyle from saprotrophic to carnivorous. During this transition, the expression pattern of arrestin-coding (AoArc) genes was markedly upregulated. Therefore, we disrupted seven AoArc genes from A. oligospora to identify their functions. Although individual arrestin mutant strains display similar pathogenesis, phenotypes, and stress resistance, the fundamental data on the roles of AoArc genes in A. oligospora are obtained in this study. Membrane endocytosis in AoArc mutants was significantly reduced. Meanwhile, the capacity of trap device formation against nematodes and ammonia was impaired due to AoArc deletions. We also found that AoArc genes could regulate conidial phenotypes, cell nuclear distribution, pH response, and stress resistance. Results of qRT-PCR assays revealed that sporulation-regulated genes were affected after the deletion of AoArc genes. In particular, among the 12 arrestins, AoArc2 mediates pH signaling in the fungus A. oligospora. Notably, combined with the classical paradigm of arrestin-GPCR signal transduction, we suggest that arrestin-regulated trap formation in A. oligospora may be directly linked to the receptor endocytosis pathway.


Assuntos
Ascomicetos , Nematoides , Animais , Arrestina/genética , Arrestina/metabolismo , Ascomicetos/genética , Endocitose , Nematoides/microbiologia , Virulência/genética
5.
Mol Biol Rep ; 49(6): 4225-4236, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35211863

RESUMO

BACKGROUND: The arrestin domain containing proteins (ARRDCs) are crucial adaptor proteins assist in signal transduction and regulation of sensory physiology. The molecular localization of the ARRDC gene has been confined mainly to the mammalian system while in invertebrates the expression pattern was not addressed significantly. The present study reports the identification, tissue specific expression and functional characterization of an ARRDC transcript in earthworm, Eudrilus eugeniae. METHODS AND RESULTS: The coding region of earthworm ARRDC transcript was 1146 bp in length and encoded a protein of 381 amino acid residues. The worm ARRDC protein consists of conserved N-terminal and C-terminal regions and showed significant homology with the ARRDC3 sequence of other species. The tissue specific expression analysis through whole mount in-situ hybridization denoted the expression of ARRDC transcript in the central nervous system of the worm which includes cerebral ganglion and ventral nerve cord. Besides, the expression of ARRDC gene was observed in the epidermal region of earthworm skin. The functional characterization of ARRDC gene was assessed through siRNA silencing and the gene was found to play key role in the light sensing ability and photophobic movement of the worm. CONCLUSIONS: The neuronal and dermal expression patterns of ARRDC gene and its functional characterization hypothesized the role of the gene in assisting the photosensory cells to regulate the process of photoreception and phototransduction in the worm.


Assuntos
Oligoquetos , Animais , Arrestina/genética , Arrestina/metabolismo , Hibridização In Situ , Mamíferos/metabolismo , Oligoquetos/genética , Oligoquetos/metabolismo , Proteínas/genética , RNA Interferente Pequeno/metabolismo
6.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830362

RESUMO

Arrestins are a small family of proteins that bind G protein-coupled receptors (GPCRs). Arrestin binds to active phosphorylated GPCRs with higher affinity than to all other functional forms of the receptor, including inactive phosphorylated and active unphosphorylated. The selectivity of arrestins suggests that they must have two sensors, which detect receptor-attached phosphates and the active receptor conformation independently. Simultaneous engagement of both sensors enables arrestin transition into a high-affinity receptor-binding state. This transition involves a global conformational rearrangement that brings additional elements of the arrestin molecule, including the middle loop, in contact with a GPCR, thereby stabilizing the complex. Here, we review structural and mutagenesis data that identify these two sensors and additional receptor-binding elements within the arrestin molecule. While most data were obtained with the arrestin-1-rhodopsin pair, the evidence suggests that all arrestins use similar mechanisms to achieve preferential binding to active phosphorylated GPCRs.


Assuntos
Arrestina/ultraestrutura , Receptores Acoplados a Proteínas G/ultraestrutura , Rodopsina/ultraestrutura , Arrestina/genética , Sítios de Ligação/genética , Humanos , Mutagênese/genética , Fosforilação , Ligação Proteica/genética , Conformação Proteica , Receptores Acoplados a Proteínas G/genética , Rodopsina/genética
7.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34326250

RESUMO

G protein-coupled receptors (GPCRs) are important pharmaceutical targets for the treatment of a broad spectrum of diseases. Although there are structures of GPCRs in their active conformation with bound ligands and G proteins, the detailed molecular interplay between the receptors and their signaling partners remains challenging to decipher. To address this, we developed a high-sensitivity, high-throughput matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method to interrogate the first stage of signal transduction. GPCR-G protein complex formation is detected as a proxy for the effect of ligands on GPCR conformation and on coupling selectivity. Over 70 ligand-GPCR-partner protein combinations were studied using as little as 1.25 pmol protein per sample. We determined the selectivity profile and binding affinities of three GPCRs (rhodopsin, beta-1 adrenergic receptor [ß1AR], and angiotensin II type 1 receptor) to engineered Gα-proteins (mGs, mGo, mGi, and mGq) and nanobody 80 (Nb80). We found that GPCRs in the absence of ligand can bind mGo, and that the role of the G protein C terminus in GPCR recognition is receptor-specific. We exemplified our quantification method using ß1AR and demonstrated the allosteric effect of Nb80 binding in assisting displacement of nadolol to isoprenaline. We also quantified complex formation with wild-type heterotrimeric Gαißγ and ß-arrestin-1 and showed that carvedilol induces an increase in coupling of ß-arrestin-1 and Gαißγ to ß1AR. A normalization strategy allows us to quantitatively measure the binding affinities of GPCRs to partner proteins. We anticipate that this methodology will find broad use in screening and characterization of GPCR-targeting drugs.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Receptores Opioides/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Arrestina/genética , Arrestina/metabolismo , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ligantes , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Opioides/química , Anticorpos de Cadeia Única , Perus , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
8.
Nat Commun ; 11(1): 4857, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978402

RESUMO

Characterization of the dynamic conformational changes in membrane protein signaling complexes by nuclear magnetic resonance (NMR) spectroscopy remains challenging. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion. Crystallographic analysis revealed structural changes that reshaped the TMSiPhe-specific amino-acyl tRNA synthetase active site to selectively accommodate the trimethylsilyl (TMSi) group. The unique up-field 1H-NMR chemical shift and the highly efficient incorporation of TMSiPhe enabled the characterization of multiple conformational states of a phospho-ß2 adrenergic receptor/ß-arrestin-1(ß-arr1) membrane protein signaling complex, using only 5 µM protein and 20 min of spectrum accumulation time. We further showed that extracellular ligands induced conformational changes located in the polar core or ERK interaction site of ß-arr1 via direct receptor transmembrane core interactions. These observations provided direct delineation and key mechanism insights that multiple receptor ligands were able to induce distinct functionally relevant conformational changes of arrestin.


Assuntos
Arrestina/química , Arrestina/genética , Arrestina/metabolismo , Ligantes , Espectroscopia de Prótons por Ressonância Magnética/métodos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Fenilalanina , Ligação Proteica , Conformação Proteica , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , beta-Arrestina 1/química , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
9.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744498

RESUMO

How cells adjust nutrient transport across their membranes is incompletely understood. Previously, we have shown that S. cerevisiae broadly re-configures the nutrient transporters at the plasma membrane in response to amino acid availability, through endocytosis of sugar- and amino acid transporters (AATs) (Müller et al., 2015). A genome-wide screen now revealed that the selective endocytosis of four AATs during starvation required the α-arrestin family protein Art2/Ecm21, an adaptor for the ubiquitin ligase Rsp5, and its induction through the general amino acid control pathway. Art2 uses a basic patch to recognize C-terminal acidic sorting motifs in AATs and thereby instructs Rsp5 to ubiquitinate proximal lysine residues. When amino acids are in excess, Rsp5 instead uses TORC1-activated Art1 to detect N-terminal acidic sorting motifs within the same AATs, which initiates exclusive substrate-induced endocytosis. Thus, amino acid excess or starvation activate complementary α-arrestin-Rsp5-complexes to control selective endocytosis and adapt nutrient acquisition.


Assuntos
Aminoácidos/metabolismo , Arrestina/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arrestina/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitinação
10.
Nat Chem Biol ; 16(12): 1343-1350, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32778842

RESUMO

The adhesion G-protein-coupled receptor (GPCR) latrophilin 3 (ADGRL3) has been associated with increased risk of attention deficit hyperactivity disorder (ADHD) and substance use in human genetic studies. Knockdown in multiple species leads to hyperlocomotion and altered dopamine signaling. Thus, ADGRL3 is a potential target for treatment of neuropsychiatric disorders that involve dopamine dysfunction, but its basic signaling properties are poorly understood. Identification of adhesion GPCR signaling partners has been limited by a lack of tools to acutely activate these receptors in living cells. Here, we design a novel acute activation strategy to characterize ADGRL3 signaling by engineering a receptor construct in which we could trigger acute activation enzymatically. Using this assay, we found that ADGRL3 signals through G12/G13 and Gq, with G12/13 the most robustly activated. Gα12/13 is a new player in ADGRL3 biology, opening up unexplored roles for ADGRL3 in the brain. Our methodological advancements should be broadly useful in adhesion GPCR research.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Fator 6 Ativador da Transcrição/agonistas , Fator 6 Ativador da Transcrição/química , Fator 6 Ativador da Transcrição/genética , Animais , Arrestina/química , Arrestina/genética , Arrestina/metabolismo , Sistemas CRISPR-Cas , Engenharia Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/química , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Cinética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
11.
Anal Chem ; 92(13): 8983-8991, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32524822

RESUMO

Molecular processes within cells have traditionally been studied with biochemical methods due to their high degree of specificity and ease of use. In recent years, cell-based assays have gained more and more popularity since they facilitate the extraction of mode of action, phenotypic, and toxicity information. However, to provide specificity, cellular assays rely heavily on biomolecular labels and tags while label-free cell-based assays only offer holistic information about a bulk property of the investigated cells. Here, we introduce a cell-based assay for protein-protein interaction analysis. We achieve specificity by spatially ordering a membrane protein of interest into a coherent pattern of fully functional membrane proteins on the surface of an optical sensor. Thereby, molecular interactions with the coherently ordered membrane proteins become visible in real time, while nonspecific interactions and holistic changes within the living cell remain invisible. Due to its unbiased nature, this new cell-based detection method presents itself as an invaluable tool for cell signaling research and drug discovery.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Membrana/metabolismo , Arrestina/química , Arrestina/genética , Arrestina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mapas de Interação de Proteínas , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
13.
Doc Ophthalmol ; 141(3): 217-226, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32333190

RESUMO

PURPOSE: We report a 15-month follow-up case on a Chinese patient with Oguchi disease associated with the multiple evanescent white dot syndrome (MEWDS). METHODS: The patient's clinical presentation and follow-up visits were documented via decimal best-corrected visual acuity, fundus photography, fundus autofluorescence (FAF) imaging, near-infrared FAF, spectral domain optical coherence tomography, Humphrey's visual fields, microperimetry, and multifocal electroretinography. We also performed whole exome sequencing for screening variation in the patient and her relatives. RESULTS: The patient had typical clinical characteristic of Oguchi disease, including night blindness, the Mizuo-Nakamura phenomenon (a golden yellow discoloration of the fundus that disappears in the prolonged dark adaptation [DA]) and typical full-field electroretinogram changes (nearly undetected b-wave in 0.01 and 0.03 ERGs that can partially recover only after prolonged DA). Aside from Oguchi disease, the patient was also diagnosed with the MEWDS based on clinical detections, including suddenly reduced visual acuity, appeared white dots, blurred ellipsoid zone and disrupted interdigitation zone, enlarged blind spot, and reduced macular sensitivity. A series of investigations revealed that along with the 15-month follow-up after onset, the visual acuity enhanced, the numerous white dots disappeared, and the macular structure returned to normal. Moreover, the novel homozygous splicing alteration c.181 + 1G > A was identified in the SAG gene. CONCLUSIONS: This work is the first long-term case study of a patient with Oguchi disease associated with the MEWDS. The recovery period of symptoms caused by the MEWDS was much longer than that in typical patients with MEWDS. Molecular genetics demonstrate that this is the first case of Oguchi disease caused by splicing alterations in the SAG gene.


Assuntos
Arrestina/genética , Oftalmopatias Hereditárias/diagnóstico , Oftalmopatias Hereditárias/genética , Cegueira Noturna/diagnóstico , Cegueira Noturna/genética , Sítios de Splice de RNA/genética , Síndrome dos Pontos Brancos/diagnóstico , Adulto , Adaptação à Escuridão , Eletrorretinografia , Oftalmopatias Hereditárias/fisiopatologia , Feminino , Seguimentos , Humanos , Cegueira Noturna/fisiopatologia , Linhagem , Reação em Cadeia da Polimerase , Splicing de RNA , Retina/fisiopatologia , Escotoma/diagnóstico , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Testes de Campo Visual , Campos Visuais/fisiologia , Síndrome dos Pontos Brancos/fisiopatologia , Sequenciamento do Exoma
14.
J Biol Chem ; 295(19): 6498-6508, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32238431

RESUMO

Arrestin-1 is the arrestin family member responsible for inactivation of the G protein-coupled receptor rhodopsin in photoreceptors. Arrestin-1 is also well-known to interact with additional protein partners and to affect other signaling cascades beyond phototransduction. In this study, we investigated one of these alternative arrestin-1 binding partners, the glycolysis enzyme enolase-1, to map the molecular contact sites between these two proteins and investigate how the binding of arrestin-1 affects the catalytic activity of enolase-1. Using fluorescence quench protection of strategically placed fluorophores on the arrestin-1 surface, we observed that arrestin-1 primarily engages enolase-1 along a surface that is opposite of the side of arrestin-1 that binds photoactivated rhodopsin. Using this information, we developed a molecular model of the arrestin-1-enolase-1 complex, which was validated by targeted substitutions of charge-pair interactions. Finally, we identified the likely source of arrestin's modulation of enolase-1 catalysis, showing that selective substitution of two amino acids in arrestin-1 can completely remove its effect on enolase-1 activity while still remaining bound to enolase-1. These findings open up opportunities for examining the functional effects of arrestin-1 on enolase-1 activity in photoreceptors and their surrounding cells.


Assuntos
Arrestina/química , Biomarcadores Tumorais/química , Proteínas de Ligação a DNA/química , Modelos Moleculares , Complexos Multienzimáticos/química , Fosfopiruvato Hidratase/química , Rodopsina/química , Proteínas Supressoras de Tumor/química , Arrestina/genética , Sítios de Ligação , Biomarcadores Tumorais/genética , Catálise , Proteínas de Ligação a DNA/genética , Humanos , Complexos Multienzimáticos/genética , Fosfopiruvato Hidratase/genética , Rodopsina/genética , Proteínas Supressoras de Tumor/genética
16.
Biochemistry ; 59(3): 297-302, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31846310

RESUMO

G-protein-coupled receptors (GPCRs) have evolved as highly specialized cellular machinery that can dictate biological outcomes in response to diverse stimuli. Specifically, they induce multiple pathway responses upon structural perturbations induced at local protein sites. GPCRs utilize a concurrent strategy involving a central transmembrane topology and biochemical modifications for precise functional implementation. However, the specific role of the latter is not known due to the lack of precise probing techniques that can characterize receptor dynamics upon biochemical modifications. Phosphorylation is known to be one of the critical biochemical modifications in GPCRs that aids in receptor desensitization via arrestin binding. Here, we carry out all-atom molecular dynamics simulations of rhodopsin in a membrane environment to study its conformational dynamics induced upon phosphorylation. Interestingly, our comparative analysis of non-phosphorylated and phosphorylated rhodopsin structure demonstrated enhanced receptor stability upon phosphorylation at the C-terminal region that leads to the opening of the extracellular part of the transmembrane helices. In addition, monitoring the distinct number of phosphorylation states showed that having fewer phosphorylated residues does not bring about appropriate conformational changes in the extracellular region. Since phosphorylation results in receptor desensitization and recycling of the ligand, our findings provide significant insights into the conformational dynamics of the mechanism of ligand exit from the receptor.


Assuntos
Membrana Celular/genética , Conformação Proteica , Receptores Acoplados a Proteínas G/genética , Rodopsina/genética , Animais , Arrestina/química , Arrestina/genética , Membrana Celular/química , Evolução Molecular , Humanos , Ligantes , Simulação de Dinâmica Molecular , Fosforilação/genética , Ligação Proteica , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/química , Rodopsina/química , Transdução de Sinais/genética
17.
mBio ; 10(6)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744923

RESUMO

Arrestins, a structurally specialized and functionally diverse group of proteins, are central regulators of adaptive cellular responses in eukaryotes. Previous studies on fungal arrestins have demonstrated their capacity to modulate diverse cellular processes through their adaptor functions, facilitating the localization and function of other proteins. However, the mechanisms by which arrestin-regulated processes are involved in fungal virulence remain unexplored. We have identified a small family of four arrestins, Ali1, Ali2, Ali3, and Ali4, in the human fungal pathogen Cryptococcus neoformans Using complementary microscopy, proteomic, and reverse genetics techniques, we have defined a role for Ali1 as a novel contributor to cytokinesis, a fundamental cell cycle-associated process. We observed that Ali1 strongly interacts with proteins involved in lipid synthesis, and that ali1Δ mutant phenotypes are rescued by supplementation with lipid precursors that are used to build cellular membranes. From these data, we hypothesize that Ali1 contributes to cytokinesis by serving as an adaptor protein, facilitating the localization of enzymes that modify the plasma membrane during cell division, specifically the fatty acid synthases Fas1 and Fas2. Finally, we assessed the contributions of the C. neoformans arrestin family to virulence to better understand the mechanisms by which arrestin-regulated adaptive cellular responses influence fungal infection. We observed that the C. neoformans arrestin family contributes to virulence, and that the individual arrestin proteins likely fulfill distinct functions that are important for disease progression.IMPORTANCE To survive under unpredictable conditions, all organisms must adapt to stressors by regulating adaptive cellular responses. Arrestin proteins are conserved regulators of adaptive cellular responses in eukaryotes. Studies that have been limited to mammals and model fungi have demonstrated that the disruption of arrestin-regulated pathways is detrimental for viability. The human fungal pathogen Cryptococcus neoformans causes more than 180,000 infection-related deaths annually, especially among immunocompromised patients. In addition to being genetically tractable, C. neoformans has a small arrestin family of four members, lending itself to a comprehensive characterization of its arrestin family. This study serves as a functional analysis of arrestins in a pathogen, particularly in the context of fungal fitness and virulence. We investigate the functions of one arrestin protein, Ali1, and define its novel contributions to cytokinesis. We additionally explore the virulence contributions of the C. neoformans arrestin family and find that they contribute to disease establishment and progression.


Assuntos
Arrestina/metabolismo , Ciclo Celular , Suscetibilidade a Doenças , Fungos/fisiologia , Micoses/microbiologia , Arrestina/genética , Biomarcadores , Ciclo Celular/genética , Citocinese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Metabolismo dos Lipídeos , Modelos Biológicos , Mutação , Micoses/metabolismo , Virulência , Proteínas ras/metabolismo
18.
Sci Rep ; 9(1): 11309, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383899

RESUMO

To analyze the expression, localization, and functional dynamics of target proteins in situ, especially in living cells, it is important to develop a convenient, versatile, and efficient method to precisely introduce exogenous genes into the genome, which is applicable for labeling and engineering of the endogenous proteins of interest. By combining the CRISPR/Cas9 genome editing technology with an electroporation technique, we succeeded in creating knock-in alleles, from which GFP (RFP)-tagged endogenous proteins are produced, in neurons and glial cells in vivo in the developing mouse retina and brain. Correct gene targeting was confirmed by single-cell genotyping and Western blot analysis. Several gene loci were successfully targeted with high efficiency. Moreover, we succeeded in engineering the mouse genome to express foreign genes from the endogenous gene loci using a self-cleaving 2A peptide. Our method could be used to monitor the physiological changes in localization of endogenous proteins and expression levels of both mRNA and protein at a single cell resolution. This work discloses a powerful and widely applicable approach for visualization and manipulation of endogenous proteins in neural tissues.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Camundongos/genética , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/metabolismo , Animais , Arrestina/análise , Arrestina/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Eletroporação/métodos , Técnicas de Introdução de Genes/métodos , Loci Gênicos , Glutamato-Amônia Ligase/análise , Glutamato-Amônia Ligase/genética , Proteínas do Tecido Nervoso/análise , Neuroglia/citologia , Neuroglia/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/análise , Rodopsina/genética , Sinaptofisina/análise , Sinaptofisina/genética
19.
Ophthalmology ; 126(11): 1557-1566, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257036

RESUMO

PURPOSE: To present phenotypic features of 22 patients with S-antigen (SAG) mutations. DESIGN: Retrospective cohort study. PARTICIPANTS: Twenty-one Japanese patients from 16 families with a homozygous c.924delA mutation and 1 patient with a homozygous c.636delT mutation in the SAG gene. METHODS: Clinical records on symptoms; best-corrected visual acuity; and Goldmann perimetry, fundus photography, fundus autofluorescence (FAF), OCT, and electroretinography results were reviewed. MAIN OUTCOME MEASURES: Best-corrected visual acuity, Goldmann perimetry results, imaging findings, and electroretinography results. RESULTS: Ten patients had Oguchi disease and 12 had retinitis pigmentosa (RP) with mean follow-up periods of 13.8 and 10.2 years, respectively. Retinitis pigmentosa patients were older (mean age, 56.0 years) than those with Oguchi disease (mean age, 22.1 years; P < 0.001) at the initial visit. Night blindness noted in childhood was the most common initial symptom for both Oguchi disease (80.0%) and RP (91.7%) patients. Best-corrected visual acuity in the logarithm of the minimum angle of resolution (logMAR) was well preserved in Oguchi disease patients (mean, 0.02 logMAR in both eyes) but reduced in most RP patients (mean, 1.32 logMAR [right eye] and 1.35 logMAR [left eye]). Similarly, the visual field in the retinal area was preserved in Oguchi disease patients (mean, 677 mm2 right eye and 667 mm2 left eye) and reduced in RP patients (mean, 369 mm2 right eye and 294 mm2 left eye). Fundus images revealed a characteristic golden sheen with no retinal degeneration in Oguchi disease patients, excluding 2 with macular degeneration detected by FAF, OCT, or both and 1 with mild retinal degeneration confirmed by OCT and fluorescein angiography. Pigmentary retinal degeneration most evident posteriorly was observed in RP patients, accompanied by a characteristic golden sheen in 12 of 14 patients undergoing ultra-widefield fundus imaging. OCT showed disrupted macular structure, and FAF revealed variable hypofluorescence. Electroretinography identified absent rod responses in both diseases, along with relative preservation of cone responses in Oguchi disease patients. Three patients showed progressive loss of the golden sheen based on fundus images, including 1 who demonstrated RP 26 years after the initial diagnosis of Oguchi disease. CONCLUSIONS: Retinitis pigmentosa with SAG mutations often shows a characteristic golden sheen surrounding posterior pigmentary retinal degeneration. Oguchi disease can show progressive degeneration in adulthood, rarely resulting in RP.


Assuntos
Arrestina/genética , Oftalmopatias Hereditárias/diagnóstico , Mutação , Cegueira Noturna/diagnóstico , Retinose Pigmentar/diagnóstico , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Eletrorretinografia , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/fisiopatologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Cegueira Noturna/genética , Cegueira Noturna/fisiopatologia , Fenótipo , Retina/fisiopatologia , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Testes de Campo Visual , Campos Visuais/fisiologia
20.
Cells ; 8(7)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295851

RESUMO

Our previous studies demonstrated the importance of arrestin domain containing 3 (ARRDC3), a metastasis suppressor, in inhibiting invasive and metastatic potential of triple negative breast cancer (TNBC) in vitro and in vivo. However, little is known about ARRDC3 mediated transcriptional control and its target genes that are implicated in its metastatic suppressing activity. In this study, we used miRNA array and subsequent functional analyses to identify miRNAs whose expression are significantly regulated by ARRDC3 in TNBC cells. We identified miR-200b as a major target gene of ARRDC3. miR-200b played an essential role in mediating ARRDC3 dependent reversal of EMT phenotypes and chemo-resistance to DNA damaging agents in TNBC cells. Expression of miR-200b also increased the expression of ARRDC3 as well in TNBC cells, suggesting a positive feedback loop between these two molecules. In addition, we combined the therapeutic powers of miR-200b and 5-fluorourancil (5-FU) into a single compound (5-FU-miR-200b) to maximize the synergistic effects of these compounds. Chemically modified miR-200b (5-FU-miR-200b mimic) was more effective in inhibiting metastatic potentials of TNBC cells than unmodified miR-200b and does not require transfection reagents, implying its therapeutic potential in TNBC. Our studies showed the importance of therapeutic targeting ARRDC3/miR-200b pathway in TNBC.


Assuntos
Arrestinas/metabolismo , MicroRNAs/biossíntese , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Arrestina/genética , Arrestina/metabolismo , Arrestinas/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Ativação Transcricional , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...