Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Cardiovasc Res ; 120(9): 1011-1023, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38776406

RESUMO

AIMS: Gene therapy with cardiac phosphodiesterases (PDEs), such as phosphodiesterase 4B (PDE4B), has recently been described to effectively prevent heart failure (HF) in mice. However, exact molecular mechanisms of its beneficial effects, apart from general lowering of cardiomyocyte cyclic adenosine monophosphate (cAMP) levels, have not been elucidated. Here, we studied whether gene therapy with two types of PDEs, namely PDE2A and PDE4B, can prevent pressure-overload-induced HF in mice by acting on and restoring altered cAMP compartmentation in distinct subcellular microdomains. METHODS AND RESULTS: HF was induced by transverse aortic constriction followed by tail-vein injection of adeno-associated-virus type 9 vectors to overexpress PDE2A3, PDE4B3, or luciferase for 8 weeks. Heart morphology and function was assessed by echocardiography and histology which showed that PDE2A and especially PDE4B gene therapy could attenuate cardiac hypertrophy, fibrosis, and decline of contractile function. Live cell imaging using targeted cAMP biosensors showed that PDE overexpression restored altered cAMP compartmentation in microdomains associated with ryanodine receptor type 2 (RyR2) and caveolin-rich plasma membrane. This was accompanied by ameliorated caveolin-3 decline after PDE2A3 overexpression, reduced RyR2 phosphorylation in PDE4B3 overexpressing hearts, and antiarrhythmic effects of both PDEs measured under isoproterenol stimulation in single cells. Strong association of overexpressed PDE4B but not PDE2A with RyR2 microdomain could prevent calcium leak and arrhythmias in human-induced pluripotent stem-derived cardiomyocytes with the A2254V mutation in RyR2 causing catecholaminergic polymorphic ventricular tachycardia. CONCLUSION: Our data indicate that gene therapy with phosphodiesterases can prevent HF including associated cardiac remodelling and arrhythmias by restoring altered cAMP compartmentation in functionally relevant subcellular microdomains.


Assuntos
AMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Modelos Animais de Doenças , Terapia Genética , Insuficiência Cardíaca , Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , AMP Cíclico/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Humanos , Camundongos Endogâmicos C57BL , Masculino , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Remodelação Ventricular , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Função Ventricular Esquerda , Sinalização do Cálcio , Fosforilação , Frequência Cardíaca
2.
J Biol Chem ; 298(3): 101716, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151687

RESUMO

The CHKB gene encodes choline kinase ß, which catalyzes the first step in the biosynthetic pathway for the major phospholipid phosphatidylcholine. Homozygous loss-of-function variants in human CHKB are associated with a congenital muscular dystrophy. Dilated cardiomyopathy is present in some CHKB patients and can cause heart failure and death. Mechanisms underlying a cardiac phenotype due to decreased CHKB levels are not well characterized. We determined that there is cardiac hypertrophy in Chkb-/- mice along with a decrease in left ventricle size, internal diameter, and stroke volume compared with wildtype and Chkb+/- mice. Unlike wildtype mice, 60% of the Chkb+/- and all Chkb-/- mice tested displayed arrhythmic events when challenged with isoproterenol. Lipidomic analysis revealed that the major change in lipid level in Chkb+/- and Chkb-/- hearts was an increase in the arrhythmogenic lipid acylcarnitine. An increase in acylcarnitine level is also associated with a defect in the ability of mitochondria to use fatty acids for energy and we observed that mitochondria from Chkb-/- hearts had abnormal cristae and inefficient electron transport chain activity. Atrial natriuretic peptide (ANP) is a hormone produced by the heart that protects against the development of heart failure including ventricular conduction defects. We determined that there was a decrease in expression of ANP, its receptor NPRA, as well as ventricular conduction system markers in Chkb+/- and Chkb-/- mice.


Assuntos
Arritmias Cardíacas , Colina Quinase , Insuficiência Cardíaca , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/genética , Fator Natriurético Atrial/genética , Colina Quinase/deficiência , Colina Quinase/genética , Colina Quinase/metabolismo , Modelos Animais de Doenças , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Humanos , Camundongos , Fosfatidilcolinas/metabolismo
3.
Biochem Pharmacol ; 195: 114866, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863976

RESUMO

Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.


Assuntos
Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Ácidos Graxos/metabolismo , Cardiopatias/metabolismo , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/metabolismo , Inibidores Enzimáticos/uso terapêutico , Epóxido Hidrolases/antagonistas & inibidores , Compostos de Epóxi/química , Cardiopatias/tratamento farmacológico , Cardiopatias/enzimologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/metabolismo , Humanos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/metabolismo , Solubilidade , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/enzimologia , Taquicardia Ventricular/metabolismo
4.
Cardiovasc Diabetol ; 20(1): 199, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607570

RESUMO

BACKGROUND: Empagliflozin is a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor used to lower blood sugar in adults with type 2 diabetes. Empagliflozin also exerts cardioprotective effects independent from glucose control, but its benefits on arrhythmogenesis and sudden cardiac death are not known. The purpose of this study was to examine the effect of empagliflozin on myocardial ischemia/reperfusion-provoked cardiac arrhythmia and sudden cardiac death in vivo. METHODS: Male Sprague Dawley rats were randomly assigned to sham-operated, control or empagliflozin groups. All except for the sham-operated rats were subjected to 5-min left main coronary artery ligation followed by 20-min reperfusion. A standard limb lead II electrocardiogram was continuously measured throughout the experiment. Coronary artery reperfusion-induced ventricular arrhythmogenesis and empagliflozin therapy were evaluated. The hearts were used for protein phosphorylation analysis and immunohistological assessment. RESULTS: Empagliflozin did not alter baseline cardiac normal conduction activity. However, empagliflozin eliminated myocardial vulnerability to sudden cardiac death (from 69.2% mortality rate in the control group to 0% in the empagliflozin group) and reduced the susceptibility to reperfusion-induced arrhythmias post I/R injury. Empagliflozin increased phosphorylation of cardiac ERK1/2 after reperfusion injury. Furthermore, inhibition of ERK1/2 using U0126 abolished the anti-arrhythmic action of empagliflozin and ERK1/2 phosphorylation. CONCLUSIONS: Pretreatment with empagliflozin protects the heart from subsequent severe lethal ventricular arrhythmia induced by myocardial ischemia and reperfusion injury. These protective benefits may occur as a consequence of activation of the ERK1/2-dependent cell-survival signaling pathway in a glucose-independent manner.


Assuntos
Arritmias Cardíacas/prevenção & controle , Compostos Benzidrílicos/farmacologia , Morte Súbita Cardíaca/prevenção & controle , Glucosídeos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais
5.
Pflugers Arch ; 473(8): 1315-1327, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145500

RESUMO

Cardiac alternans closely linked to calcium dysregulation is a crucial risk factor for fatal arrhythmia causing especially sudden death. Calcium overload is well-known to activate Ca2+-dependent protein kinase C (PKC); however, the effects of PKC on arrhythmogenic cardiac alternans have not yet been investigated. This study aimed to determine the contributions of PKC activities in cardiac alternans associated with calcium cycling disturbances. In the present study, action potential duration alternans (APD-ALT) induced by high free intracellular calcium ([Ca2+]i) exerted not only in a calcium concentration-dependent manner but also in a frequency-dependent manner. High [Ca2+]i-induced APD-ALT was suppressed by not only BAPTA-AM but also nifedipine. On the other hand, PKC inhibitors BIM and Gö 6976 eliminated high [Ca2+]i-induced APD-ALT, and PKC activator PMA was found to induce APD-ALT at normal [Ca2+]i condition. Furthermore, BIM effectively prevented calcium transient alternans (CaT-ALT) and even CaT disorders caused by calcium overload. Moreover, BIM not only eliminated electrocardiographic T-wave alternans (TWA) caused by calcium dysregulation, but also lowered the incidence of ventricular arrhythmias in isolated hearts. What's more, BIM prevented the expression of PKC α upregulated by calcium overload in high calcium-perfused hearts. We firstly found that pharmacologically inhibiting Ca2+-dependent PKC over-activation suppressed high [Ca2+]i-induced cardiac alternans. This recognition indicates that inhibition of PKC activities may become a therapeutic target for the prevention of pro-arrhythmogenic cardiac alternans associated with calcium dysregulation.


Assuntos
Arritmias Cardíacas/etiologia , Cálcio/metabolismo , Miócitos Cardíacos/fisiologia , Proteína Quinase C/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/prevenção & controle , Sistema de Condução Cardíaco/fisiopatologia , Terapia de Alvo Molecular , Técnicas de Patch-Clamp , Cultura Primária de Células , Proteína Quinase C/antagonistas & inibidores , Proteínas Quinases/metabolismo , Coelhos
7.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922740

RESUMO

Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations of the GLA gene that result in a deficiency of the enzymatic activity of α-galactosidase A and consequent accumulation of glycosphingolipids in body fluids and lysosomes of the cells throughout the body. GB3 accumulation occurs in virtually all cardiac cells (cardiomyocytes, conduction system cells, fibroblasts, and endothelial and smooth muscle vascular cells), ultimately leading to ventricular hypertrophy and fibrosis, heart failure, valve disease, angina, dysrhythmias, cardiac conduction abnormalities, and sudden death. Despite available therapies and supportive treatment, cardiac involvement carries a major prognostic impact, representing the main cause of death in FD. In the last years, knowledge has substantially evolved on the pathophysiological mechanisms leading to cardiac damage, the natural history of cardiac manifestations, the late-onset phenotypes with predominant cardiac involvement, the early markers of cardiac damage, the role of multimodality cardiac imaging on the diagnosis, management and follow-up of Fabry patients, and the cardiac efficacy of available therapies. Herein, we provide a comprehensive and integrated review on the cardiac involvement of FD, at the pathophysiological, anatomopathological, laboratory, imaging, and clinical levels, as well as on the diagnosis and management of cardiac manifestations, their supportive treatment, and the cardiac efficacy of specific therapies, such as enzyme replacement therapy and migalastat.


Assuntos
Arritmias Cardíacas/terapia , Terapia de Reposição de Enzimas , Doença de Fabry/terapia , alfa-Galactosidase/administração & dosagem , alfa-Galactosidase/metabolismo , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/etiologia , Doença de Fabry/complicações , Doença de Fabry/enzimologia , Humanos
8.
Am J Physiol Heart Circ Physiol ; 320(3): H1199-H1212, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449853

RESUMO

CaMKII is needed for the recovery of Ca2+ transients during acidosis but also mediates postacidic arrhythmias. CaMKIIδ can sustain its activity following Met281/282 oxidation. Increasing cytosolic Na+ during acidosis as well as postacidic pH normalization should result in prooxidant conditions within the cell favoring oxidative CaMKIIδ activation. We tested whether CaMKIIδ activation through Met281/282 oxidation is involved in recovery of Ca2+ transients during acidosis and promotes cellular arrhythmias post-acidosis. Single cardiac myocytes were isolated from a well-established mouse model in which CaMKIIδ was made resistant to oxidative activation by knock-in replacement of two oxidant-sensitive methionines (Met281/282) with valines (MM-VV). MM-VV myocytes were exposed to extracellular acidosis (pHo 6.5) and compared to wild type (WT) control cells. Full recovery of Ca2+ transients was observed in both WT and MM-VV cardiac myocytes during late-phase acidosis. This was associated with comparably enhanced sarcoplasmic reticulum Ca2+ load and preserved CaMKII specific phosphorylation of phospholamban at Thr17 in MM-VV myocytes. CaMKII was phosphorylated at Thr287, but not Met281/282 oxidized. In line with this, postacidic cellular arrhythmias occurred to a similar extent in WT and MM-VV cells, whereas inhibition of CaMKII using AIP completely prevented recovery of Ca2+ transients during acidosis and attenuated postacidic arrhythmias in MM-VV cells. Using genetically altered cardiomyocytes with cytosolic expression of redox-sensitive green fluorescent protein-2 coupled to glutaredoxin 1, we found that acidosis has a reductive effect within the cytosol of cardiac myocytes despite a significant acidosis-related increase in cytosolic Na+. Our study shows that activation of CaMKIIδ through Met281/282 oxidation is neither required for recovery of Ca2+ transients during acidosis nor relevant for postacidic arrhythmogenesis in isolated cardiac myocytes. Acidosis reduces the cytosolic glutathione redox state of isolated cardiac myocytes despite a significant increase in cytosolic Na+. Pharmacological inhibition of global CaMKII activity completely prevents recovery of Ca2+ transients and protects from postacidic arrhythmias in MM-VV myocytes, which confirms the relevance of CaMKII in the context of acidosis.NEW & NOTEWORTHY The current study shows that activation of CaMKIIδ through Met281/282 oxidation is neither required for CaMKII-dependent recovery of Ca2+ transients during acidosis nor relevant for the occurrence of postacidic cellular arrhythmias. Despite a usually prooxidant increase in cytosolic Na+, acidosis reduces the cytosolic glutathione redox state within cardiac myocytes. This novel finding suggests that oxidation of cytosolic proteins is less likely to occur during acidosis.


Assuntos
Acidose/enzimologia , Arritmias Cardíacas/enzimologia , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Frequência Cardíaca , Miócitos Cardíacos/enzimologia , Acidose/complicações , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Técnicas Biossensoriais , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Feminino , Glutationa/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Miocárdica , Oxirredução , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
9.
Basic Res Cardiol ; 115(6): 71, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33237428

RESUMO

Chronic hyperglycemia and diabetes lead to impaired cardiac repolarization, K+ channel remodeling and increased arrhythmia risk. However, the exact signaling mechanism by which diabetic hyperglycemia regulates cardiac K+ channels remains elusive. Here, we show that acute hyperglycemia increases inward rectifier K+ current (IK1), but reduces the amplitude and inactivation recovery time of the transient outward K+ current (Ito) in mouse, rat, and rabbit myocytes. These changes were all critically dependent on intracellular O-GlcNAcylation. Additionally, IK1 amplitude and Ito recovery effects (but not Ito amplitude) were prevented by the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor autocamtide-2-related inhibitory peptide, CaMKIIδ-knockout, and O-GlcNAc-resistant CaMKIIδ-S280A knock-in. Ito reduction was prevented by inhibition of protein kinase C (PKC) and NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS). In mouse models of chronic diabetes (streptozotocin, db/db, and high-fat diet), heart failure, and CaMKIIδ overexpression, both Ito and IK1 were reduced in line with the downregulated K+ channel expression. However, IK1 downregulation in diabetes was markedly attenuated in CaMKIIδ-S280A. We conclude that acute hyperglycemia enhances IK1 and Ito recovery via CaMKIIδ-S280 O-GlcNAcylation, but reduces Ito amplitude via a NOX2-ROS-PKC pathway. Moreover, chronic hyperglycemia during diabetes and CaMKII activation downregulate K+ channel expression and function, which may further increase arrhythmia susceptibility.


Assuntos
Arritmias Cardíacas/enzimologia , Glicemia/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Miócitos Cardíacos/enzimologia , NADPH Oxidase 2/metabolismo , Canais de Potássio/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Arritmias Cardíacas/sangue , Arritmias Cardíacas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Glicosilação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coelhos , Transdução de Sinais
10.
Basic Res Cardiol ; 115(6): 60, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910221

RESUMO

Obscurin comprises a family of giant modular proteins that play key structural and regulatory roles in striated muscles. Immunoglobulin domains 58/59 (Ig58/59) of obscurin mediate binding to essential modulators of muscle structure and function, including canonical titin, a smaller splice variant of titin, termed novex-3, and phospholamban (PLN). Importantly, missense mutations localized within the obscurin-Ig58/59 region that affect binding to titins and/or PLN have been linked to the development of myopathy in humans. To elucidate the pathophysiological role of this region, we generated a constitutive deletion mouse model, Obscn-ΔIg58/59, that expresses obscurin lacking Ig58/59, and determined the consequences of this manipulation on cardiac morphology and function under conditions of acute stress and through the physiological process of aging. Our studies show that young Obscn-ΔIg58/59 mice are susceptible to acute ß-adrenergic stress. Moreover, sedentary Obscn-ΔIg58/59 mice develop left ventricular hypertrophy that progresses to dilation, contractile impairment, atrial enlargement, and arrhythmia as a function of aging with males being more affected than females. Experiments in ventricular cardiomyocytes revealed altered Ca2+ cycling associated with changes in the expression and/or phosphorylation levels of major Ca2+ cycling proteins, including PLN, SERCA2, and RyR2. Taken together, our work demonstrates that obscurin-Ig58/59 is an essential regulatory module in the heart and its deletion leads to age- and sex-dependent cardiac remodeling, ventricular dilation, and arrhythmia due to deregulated Ca2+ cycling.


Assuntos
Arritmias Cardíacas/enzimologia , Frequência Cardíaca , Hipertrofia Ventricular Esquerda/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Fatores de Troca de Nucleotídeo Guanina Rho/deficiência , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Potenciais de Ação , Fatores Etários , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Deleção de Genes , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Domínios de Imunoglobulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Comportamento Sedentário , Fatores Sexuais , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
12.
BMC Cardiovasc Disord ; 20(1): 85, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066388

RESUMO

BACKGROUND: Coronary microembolization (CME) has a poor prognosis, with ventricular arrhythmia being the most serious consequence. Understanding the underlying mechanisms could improve its management. We investigated the effects of granulocyte colony-stimulating factor (G-CSF) on connexin-43 (Cx43) expression and ventricular arrhythmia susceptibility after CME. METHODS: Forty male rabbits were randomized into four groups (n = 10 each): Sham, CME, G-CSF, and AG490 (a JAK2 selective inhibitor). Rabbits in the CME, G-CSF, and AG490 groups underwent left anterior descending (LAD) artery catheterization and CME. Animals in the G-CSF and AG490 groups received intraperitoneal injection of G-CSF and G-CSF + AG490, respectively. The ventricular structure was assessed by echocardiography. Ventricular electrical properties were analyzed using cardiac electrophysiology. The myocardial interstitial collagen content and morphologic characteristics were evaluated using Masson and hematoxylin-eosin staining, respectively. RESULTS: Western blot and immunohistochemistry were employed to analyze the expressions of Cx43, G-CSF receptor (G-CSFR), JAK2, and STAT3. The ventricular effective refractory period (VERP), VERP dispersion, and inducibility and lethality of ventricular tachycardia/fibrillation were lower in the G-CSF than in the CME group (P < 0.01), indicating less severe myocardial damage and arrhythmias. The G-CSF group showed higher phosphorylated-Cx43 expression (P < 0.01 vs. CME). Those G-CSF-induced changes were reversed by A490, indicating the involvement of JAK2. G-CSFR, phosphorylated-JAK2, and phosphorylated-STAT3 protein levels were higher in the G-CSF group than in the AG490 (P < 0.01) and Sham (P < 0.05) groups. CONCLUSION: G-CSF might attenuate myocardial remodeling via JAK2-STAT3 signaling and thereby reduce ventricular arrhythmia susceptibility after CME.


Assuntos
Arritmias Cardíacas/prevenção & controle , Doença da Artéria Coronariana/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Janus Quinase 2/metabolismo , Infarto do Miocárdio/prevenção & controle , Miocárdio/enzimologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Conexina 43/metabolismo , Doença da Artéria Coronariana/enzimologia , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/fisiopatologia , Modelos Animais de Doenças , Fibrose , Masculino , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fosforilação , Coelhos , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Período Refratário Eletrofisiológico/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
13.
Channels (Austin) ; 13(1): 520-532, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31790629

RESUMO

PI 3-kinase α (PI3Kα) is a lipid kinase that converts phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3). PI3Kα regulates a variety of cellular processes such as nutrient sensing, cell cycle, migration, and others. Heightened activity of PI3Kα in many types of cancer made it a prime oncology drug target, but also raises concerns of possible adverse effects on the heart. Indeed, recent advances in preclinical models demonstrate an important role of PI3Kα in the control of cytoskeletal integrity, Na+ channel activity, cardioprotection, and prevention of arrhythmias.


Assuntos
Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/prevenção & controle , Citoesqueleto/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sódio/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Citoesqueleto/genética , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase/química
14.
Nutr Metab Cardiovasc Dis ; 29(9): 991-998, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31353205

RESUMO

BACKGROUND AND AIM: Obesity is an important risk factor for ventricular arrhythmia (VA), and myeloid differentiation protein 1 (MD1) has been reported to decrease in obese hearts. Nevertheless, underlying mechanisms linking MD1 and VA have not been fully studied. This study aims to investigate the regulatory role of MD1 in VA caused by diet-induced obesity. METHODS AND RESULTS: MD1 knock-out (KO) and wild type (WT) mice from experimental groups were fed with a high-fat diet (HFD) since the age of six weeks for 20 weeks. The body weight gain, fast glucose and serum lipid levels were measured and recorded. In addition, pathological analysis, echocardiography, electrocardiography, langendorff-perfused heart and molecular analysis were performed to detect HFD-induced vulnerability to VA and its underlying mechanisms. After a 20-week HFD feeding, the mice showed an increase in body weight, glycemic, lipid levels, QTc interval, LVEDd, LVEDs and LVFS. HFD feeding also increased vulnerability to VA, as shown by the prolonged action potential duration (APD), enhanced APD alternans threshold and greater incidence of VA. Moreover, HFD feeding caused LV hypertrophy and fibrosis, and decreased the protein expressions of Kv4.2, Kv4.3, Kv1.5, Kv2.1 and Cav1.2 channels. At last, the above-mentioned HFD-induced adverse effects were further exacerbated in KO mice compared with WT mice. Mechanistically, MD1 deletion markedly enhanced the activation of TLR4/MyD88/CaMKII signaling pathway in HFD-fed mice. CONCLUSION: MD1 deficiency increased HFD-induced vulnerability to VA. This is mainly caused by the aggravated maladaptive LV hypertrophy, fibrosis and decreased protein expressions of ion channels, which are induced by the enhanced activation of the TLR4/MyD88/CaMKII signaling pathway.


Assuntos
Arritmias Cardíacas/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Frequência Cardíaca , Ventrículos do Coração/enzimologia , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína MyoD/metabolismo , Obesidade/enzimologia , Receptor 4 Toll-Like/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Knockout , Proteína MyoD/genética , Obesidade/genética , Obesidade/fisiopatologia , Transdução de Sinais , Fatores de Tempo , Função Ventricular Esquerda , Remodelação Ventricular
15.
J Cardiovasc Pharmacol ; 73(3): 195-205, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30839513

RESUMO

Myocardial relaxation and stiffness are influenced by fibrillar collagen content. Cyclic nucleotide signaling regulators have been investigated targeting more effective modulation of collagen deposition during myocardial healing process. To assess the effects of phosphodiesterase type 3 and phosphodiesterase type 5 inhibitors on cardiac function and left ventricular myocardial fibrosis in catecholamine-induced myocardial injury, sildenafil and pimobendan were administered to male Wistar rats 24 hours after isoproterenol injection. Echocardiography and electrocardiogram were performed to assess kinetic and rhythm changes during 45 days of drug administration. At the end of study, type I and type III collagen were measured through immunohistochemistry analysis, and left ventricular pressure was assessed through invasive method. Echocardiography assessment showed increased relative wall thickness at 45 days in pimobendan group with significant diastolic dysfunction and increased collagen I deposition compared with nontreated positive group (3.03 ± 0.31 vs. 2.73 ± 0.28%, P < 0.05). Diastolic pressure correlated positively with type I collagen (r = 0.54, P < 0.05). Type III collagen analysis did not demonstrate difference among the groups. Sildenafil administration attenuated type I collagen deposition (2.15 ± 0.51 vs. positive group, P < 0.05) and suggested to be related to arrhythmic events. Arrhythmic events were not related to the quantity of fibrillar collagen deposition. Although negative modulation of collagen synthesis through cyclic nucleotides signaling have shown promising results, in this study, pimobendan postconditioning resulted in increased collagen type I formation and severe diastolic dysfunction while sildenafil postconditioning reduced collagen type I deposition and attenuated diastolic dysfunction.


Assuntos
Isoproterenol , Miocárdio/enzimologia , Inibidores da Fosfodiesterase 3/toxicidade , Inibidores da Fosfodiesterase 5/farmacologia , Piridazinas/toxicidade , Citrato de Sildenafila/farmacologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/fisiopatologia , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Fibrose , Masculino , Miocárdio/patologia , Ratos Wistar , Medição de Risco , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/fisiopatologia
16.
Am J Physiol Heart Circ Physiol ; 316(6): H1507-H1527, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30875259

RESUMO

The "stress" kinases cAMP-dependent protein kinase (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII), phosphorylate the Na+ channel Nav1.5 subunit to regulate its function. However, how the channel regulation translates to ventricular conduction is poorly understood. We hypothesized that the stress kinases positively and differentially regulate conduction in the right (RV) and the left (LV) ventricles. We applied the CaMKII blocker KN93 (2.75 µM), PKA blocker H89 (10 µM), and broad-acting phosphatase blocker calyculin (30 nM) in rabbit hearts paced at a cycle length (CL) of 150-8,000 ms. We used optical mapping to determine the distribution of local conduction delays (inverse of conduction velocity). Control hearts exhibited constant and uniform conduction at all tested CLs. Calyculin (15-min perfusion) accelerated conduction, with greater effect in the RV (by 15.3%) than in the LV (by 4.1%; P < 0.05). In contrast, both KN93 and H89 slowed down conduction in a chamber-, time-, and CL-dependent manner, with the strongest effect in the RV outflow tract (RVOT). Combined KN93 and H89 synergistically promoted conduction slowing in the RV (KN93: 24.7%; H89: 29.9%; and KN93 + H89: 114.2%; P = 0.0016) but not the LV. The progressive depression of RV conduction led to conduction block and reentrant arrhythmias. Protein expression levels of both the CaMKII-δ isoform and the PKA catalytic subunit were higher in the RVOT than in the apical LV (P < 0.05). Thus normal RV conduction requires a proper balance between kinase and phosphatase activity. Dysregulation of this balance due to pharmacological interventions or disease is potentially proarrhythmic. NEW & NOTEWORTHY We show that uniform ventricular conduction requires a precise physiological balance of the activities of calcium/calmodulin-dependent protein kinase II (CaMKII), PKA, and phosphatases, which involves region-specific expression of CaMKII and PKA. Inhibiting CaMKII and/or PKA activity elicits nonuniform conduction depression, with the right ventricle becoming vulnerable to the development of conduction disturbances and ventricular fibrillation/ventricular tachycardia.


Assuntos
Arritmias Cardíacas/enzimologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Frequência Cardíaca , Ventrículos do Coração/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Função Ventricular Esquerda , Potenciais de Ação , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Estimulação Cardíaca Artificial , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Preparação de Coração Isolado , Masculino , Fosfoproteínas Fosfatases/antagonistas & inibidores , Coelhos , Transdução de Sinais , Fatores de Tempo , Função Ventricular Direita
17.
Physiol Rep ; 7(3): e13957, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30737904

RESUMO

Sudden cardiac death (SCD) is the leading global cause of mortality. SCD often arises from cardiac ischemia reperfusion (IR) injury, pathologic sequence variants within ion channel genes, or a combination of the two. Alternative approaches are needed to prevent or ameliorate ventricular arrhythmias linked to SCD. Here, we investigated the efficacy of remote ischemic preconditioning (RIPC) of the limb versus the liver in reducing ventricular arrhythmias in a mouse model of SCD. Mice lacking the Kcne2 gene, which encodes a potassium channel ß subunit associated with acquired Long QT syndrome were exposed to IR injury via coronary ligation. This resulted in ventricular arrhythmias in all mice (15/15) and SCD in 5/15 mice during reperfusion. Strikingly, prior RIPC (limb or liver) greatly reduced the incidence and severity of all ventricular arrhythmias and completely prevented SCD. Biochemical and pharmacological analysis demonstrated that RIPC cardioprotection required ERK1/2 and/or AKT phosphorylation. A lack of alteration in GSK-3ß phosphorylation suggested against conventional reperfusion injury salvage kinase (RISK) signaling pathway protection. If replicated in human studies, limb RIPC could represent a noninvasive, nonpharmacological approach to limit dangerous ventricular arrhythmias associated with ischemia and/or channelopathy-linked SCD.


Assuntos
Arritmias Cardíacas/prevenção & controle , Morte Súbita Cardíaca/prevenção & controle , Extremidades/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Fígado/irrigação sanguínea , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Circulação Hepática , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fosforilação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Fluxo Sanguíneo Regional , Transdução de Sinais
18.
Circ Res ; 124(5): 737-746, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602331

RESUMO

RATIONALE: Voltage-gated Na+ channel ( INa) function is critical for normal cardiac excitability. However, the Na+ channel late component ( INa,L) is directly associated with potentially fatal forms of congenital and acquired human arrhythmia. CaMKII (Ca2+/calmodulin-dependent kinase II) enhances INa,L in response to increased adrenergic tone. However, the pathways that negatively regulate the CaMKII/Nav1.5 axis are unknown and essential for the design of new therapies to regulate the pathogenic INa,L. OBJECTIVE: To define phosphatase pathways that regulate INa,L in vivo. METHODS AND RESULTS: A mouse model lacking a key regulatory subunit (B56α) of the PP (protein phosphatase) 2A holoenzyme displayed aberrant action potentials after adrenergic stimulation. Unbiased computational modeling of B56α KO (knockout) mouse myocyte action potentials revealed an unexpected role of PP2A in INa,L regulation that was confirmed by direct INa,L recordings from B56α KO myocytes. Further, B56α KO myocytes display decreased sensitivity to isoproterenol-induced induction of arrhythmogenic INa,L, and reduced CaMKII-dependent phosphorylation of Nav1.5. At the molecular level, PP2A/B56α complex was found to localize and coimmunoprecipitate with the primary cardiac Nav channel, Nav1.5. CONCLUSIONS: PP2A regulates Nav1.5 activity in mouse cardiomyocytes. This regulation is critical for pathogenic Nav1.5 late current and requires PP2A-B56α. Our study supports B56α as a novel target for the treatment of arrhythmia.


Assuntos
Arritmias Cardíacas/enzimologia , Frequência Cardíaca , Ativação do Canal Iônico , Miócitos Cardíacos/enzimologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Proteína Fosfatase 2/metabolismo , Potenciais de Ação , Agonistas Adrenérgicos beta/farmacologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Fosforilação , Proteína Fosfatase 2/deficiência , Proteína Fosfatase 2/genética , Fatores de Tempo
19.
J Cardiol ; 73(1): 81-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30487059

RESUMO

BACKGROUND: The hypothalamic paraventricular nucleus (PVN) is the center of the regulation of autonomic nervous system functions and cardiovascular activity. Phosphoinositide-3 kinase (PI3K)-AKT pathway in PVN contributes to mediate sympathetic nerve activity and is activated in spontaneously hypertensive rats. Overactivation of the sympathetic output was considered as an important mechanism of the arrhythmias. In the present study, we aimed to explore whether targeted regulation of sympathetic activity in PVN could reduce the peripheral sympathoexcitatory and attenuate the ventricular arrhythmias (VAs) in myocardial infarction (MI) rats via PI3K-AKT pathway. METHODS: A stainless steel gauge guide cannula was stereotaxically implanted into the PVN, and 7 days later, rats were randomly divided into the following 4 groups: group A, control+dimethyl sulfoxide (DMSO); group B, control+LY294002; group C, MI surgery+DMSO; and group D, MI surgery+LY294002. Studies were conducted seven days post-MI. Myocardial function, infarct size, inducible VAs by programmed electrical stimulation, renal sympathetic nerve activity (RSNA), and protein level of PI3K and AKT were measured. RESULTS: MI increased the protein ratios of p-PI3K-to-total-PI3K and p-AKT-to-total-AKT in PVN but can be reduced by LY294002 treatment. Inhibition of sympathetic nerve activity in PVN led to a reversion in plasma norepinephrine, RSNA and inducible VAs in MI rats. CONCLUSIONS: PI3K-AKT pathway in the PVN was a main mechanism in regulating sympathetic activity and arrhythmias in MI rats. Targeted inhibition of sympathetic activity in PVN may be a potential treatment for the VAs via PI3K-AKT pathway.


Assuntos
Arritmias Cardíacas/enzimologia , Infarto do Miocárdio/enzimologia , Núcleo Hipotalâmico Paraventricular/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Sistema Nervoso Simpático/enzimologia , Animais , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Cromonas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Masculino , Morfolinas/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Miocárdio/enzimologia , Norepinefrina/sangue , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais/efeitos dos fármacos
20.
Cardiovasc Res ; 115(3): 556-569, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169578

RESUMO

AIMS: Abnormal Ca2+ release from the sarcoplasmic reticulum (SR), associated with Ca2+-calmodulin kinase II (CaMKII)-dependent phosphorylation of RyR2 at Ser2814, has consistently been linked to arrhythmogenesis and ischaemia/reperfusion (I/R)-induced cell death. In contrast, the role played by SR Ca2+ uptake under these stress conditions remains controversial. We tested the hypothesis that an increase in SR Ca2+ uptake is able to attenuate reperfusion arrhythmias and cardiac injury elicited by increased RyR2-Ser2814 phosphorylation. METHODS AND RESULTS: We used WT mice, which have been previously shown to exhibit a transient increase in RyR2-Ser2814 phosphorylation at the onset of reperfusion; mice with constitutive pseudo-phosphorylation of RyR2 at Ser2814 (S2814D) to exacerbate CaMKII-dependent reperfusion arrhythmias and cardiac damage, and phospholamban (PLN)-deficient-S2814D knock-in (SDKO) mice resulting from crossbreeding S2814D with phospholamban knockout deficient (PLNKO) mice. At baseline, S2814D and SDKO mice had structurally normal hearts. Moreover none of the strains were arrhythmic before ischaemia. Upon cardiac I/R, WT, and S2814D hearts exhibited abundant arrhythmias that were prevented by PLN ablation. In contrast, PLN ablation increased infarct size compared with WT and S2814D hearts. Mechanistically, the enhanced SR Ca2+ sequestration evoked by PLN ablation in SDKO hearts prevented arrhythmogenic events upon reperfusion by fragmenting SR Ca2+ waves into non-propagated and non-arrhythmogenic events (mini-waves). Conversely, the increase in SR Ca2+ sequestration did not reduce but rather exacerbated I/R-induced SR Ca2+ leak, as well as mitochondrial alterations, which were greatly avoided by inhibition of RyR2. These results indicate that the increase in SR Ca2+ uptake is ineffective in preventing the enhanced SR Ca2+ leak of PLN ablated myocytes from either entering into nearby mitochondria and/or activating additional CaMKII pathways, contributing to cardiac damage. CONCLUSION: Our results demonstrate that increasing SR Ca2+ uptake by PLN ablation can prevent the arrhythmic events triggered by CaMKII-dependent phosphorylation of RyR2-induced SR Ca2+ leak. These findings underscore the benefits of increasing SERCA2a activity in the face of SR Ca2+ triggered arrhythmias. However, enhanced SERCA2a cannot prevent but rather exacerbates I/R cardiac injury.


Assuntos
Arritmias Cardíacas/enzimologia , Proteínas de Ligação ao Cálcio/deficiência , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mitocôndrias Cardíacas/enzimologia , Infarto do Miocárdio/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miócitos Cardíacos/enzimologia , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Frequência Cardíaca , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/patologia , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA