Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Eur J Pharmacol ; 979: 176822, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047965

RESUMO

BACKGROUND & AIMS: The treatment of cardiovascular diseases (CVD) could greatly benefit from using nitric oxide (NO) donors. This study aimed to investigate the mechanisms of action of NONO2P that contribute to the observed responses in the mesenteric artery. The hypothesis was that NONO2P would have similar pharmacological actions to sodium nitroprusside (SNP) and NO. METHODS: Male Wistar rats were euthanized to isolate the superior mesenteric artery for isometric tension recordings. NO levels were measured using the DAF-FM/DA dye, and cyclic guanosine monophosphate (cGMP) levels were determined using a cGMP-ELISA Kit. RESULTS: NONO2P presented a similar maximum efficacy to SNP. The free radical of NO (NO•) scavengers (PTIO; 100 µM and hydroxocobalamin; 30 µM) and nitroxyl anion (NO-) scavenger (L-cysteine; 3 mM) decreased relaxations promoted by NONO2P. The presence of the specific soluble guanylyl cyclase (sGC) inhibitor (ODQ; 10 µM) nearly abolished the vasorelaxation. The cGMP-dependent protein kinase (PKG) inhibition (KT5823; 1 µM) attenuated the NONO2P relaxant effect. The vasorelaxant response was significantly attenuated by blocking inward rectifying K+ channels (Kir), voltage-operated K+ channels (KV), and large conductance Ca2+-activated K+ channels (BKCa). NONO2P-induced relaxation was attenuated by cyclopiazonic acid (10 µM), indicating that sarcoplasmic reticulum Ca2+-ATPase (SERCA) activation is involved in this relaxation. Moreover, NONO2P increased NO levels in endothelial cells and cGMP production. CONCLUSIONS: NONO2P induces vasorelaxation with the same magnitude as SNP, releasing NO• and NO-. Its vasorelaxant effect involves sGC, PKG, K+ channels opening, and SERCA activation, suggesting its potential as a therapeutic option for CVD.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico , GMP Cíclico , Doadores de Óxido Nítrico , Óxido Nítrico , Canais de Potássio , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Transdução de Sinais , Guanilil Ciclase Solúvel , Vasodilatação , Animais , Masculino , Vasodilatação/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ratos , Canais de Potássio/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Guanilato Ciclase/metabolismo , Ativação Enzimática/efeitos dos fármacos
2.
Life Sci ; 338: 122405, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176584

RESUMO

AIMS: To evaluate the effects of testosterone on endothelium-dependent vasodilation and oxidative stress in mesenteric resistance arteries. MAIN METHODS: Spontaneously hypertensive rats (SHR), aged 8 to 10 weeks, were divided into four groups: intact (SHAM), intact treated with testosterone (TTO; 3 mg/kg/day) via subcutaneous route (s.c.), intact treated with testosterone and anastrozole [aromatase enzyme inhibitor (TTO + ANA; 0.1 mg/kg/day, s.c.)] and intact treated with testosterone and finasteride [5 α-reductase enzyme inhibitor (TTO + FIN; 5 mg/kg/day, s.c.)] for four weeks. Concentration-response curves to acetylcholine (ACh, 0.1 nmol/L - 10 µmol/L) were obtained in mesenteric resistance arteries previously contracted with phenylephrine (PE, 3 µmol/L), before and after the use of selective inhibitors. Reactive oxygen species (ROS) levels were assessed in the vessels and the endothelium analyzed by scanning electron microscopy. KEY FINDINGS: TTO group showed a lower participation of nitric oxide (NO), increased oxidative stress, and participation of prostanoids and endothelium-dependent hyperpolarization (EDH), possibly to maintain the vasodilator response. Lower participation of NO and prostanoids, combined to an increased participation of EDH, were observed in the TTO + ANA group, in addition to higher levels of ROS and altered endothelial morphology. The vasodilation to ACh was impaired in TTO + FIN, along increased participation of NO, reduction of prostanoids, and greater EDH-dependent vasodilation. SIGNIFICANCE: Testosterone contributes to endothelial vasodilation by enhancing EDH through an increased participation of epoxyeicosatrienoic acids. While the decrease in NO appears to involve the participation of dihydrotestosterone, 17 ß-estradiol seems to stimulate the action of the NO pathway and prostanoids.


Assuntos
Hipertensão , Vasodilatação , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Testosterona/farmacologia , Testosterona/metabolismo , Hipertensão/metabolismo , Ratos Endogâmicos SHR , Inibidores Enzimáticos/farmacologia , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Artérias Mesentéricas , Óxido Nítrico/metabolismo , Prostaglandinas/metabolismo , Endotélio Vascular/metabolismo
3.
Life Sci ; 338: 122361, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158040

RESUMO

AIMS: Overproduction of reactive oxygen species (ROS) is a pathologic hallmark of cyclophosphamide toxicity. For this reason, antioxidant compounds emerge as promising tools for preventing tissue damage induced by cyclophosphamide. We hypothesized that melatonin would display cytoprotective action in the vasculature by preventing cyclophosphamide-induced oxidative stress. MATERIALS AND METHODS: Male C57BL/6 mice (22-25 g) were injected with a single dose of cyclophosphamide (300 mg/kg; i.p.). Mice were pretreated or not with melatonin (10 mg/kg/day, i.p.), given during 4 days before cyclophosphamide injection. Functional (vascular reactivity) and oxidative/inflammatory patterns were evaluated at 24 h in resistance arteries. The antioxidant action of melatonin was assessed in vitro in cultured vascular smooth muscle cells (VSMCs) of mesenteric arteries. KEY FINDINGS: Cyclophosphamide induced ROS generation in both mesenteric arterial bed (MAB) and cultured VSMCs, and this was normalized by melatonin. Cyclophosphamide-induced ROS generation and lipoperoxidation in the bladder and kidney was also prevented by melatonin. Increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were detected in the MAB of cyclophosphamide-treated mice, all of which were prevented by melatonin. Functional assays using second-order mesenteric arteries of cyclophosphamide-treated mice revealed a decrease in vascular contractility. Melatonin prevented vascular hypocontractility in the cyclophosphamide group. Melatonin partially prevented the decrease in myeloperoxidase (MPO) and N-acetyl-beta-D-glucosaminidase (NAG) activities in the MAB of the cyclophosphamide group. SIGNIFICANCE: Melatonin may constitute a novel and promising therapeutic approach for management of the toxic effects induced by cyclophosphamide in the vasculature.


Assuntos
Melatonina , Camundongos , Masculino , Animais , Espécies Reativas de Oxigênio/farmacologia , Melatonina/uso terapêutico , Antioxidantes/metabolismo , Camundongos Endogâmicos C57BL , Ciclofosfamida/toxicidade , Estresse Oxidativo , Artérias Mesentéricas/metabolismo
4.
Clin Sci (Lond) ; 137(7): 543-559, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36972169

RESUMO

Poor disease outcomes and lethality are directly related to endothelial dysfunction in betacoronavirus infections. Here, we investigated the mechanisms underlying the vascular dysfunction caused by the betacoronaviruses MHV-3 and SARS-CoV-2. Wild-type C57BL/6 (WT) and knockout mice for inducible nitric oxide synthase (iNOS-/-) or TNF receptor 1 (TNFR1-/-) were infected with MHV-3, and K18-hACE2 transgenic mice expressing human ACE2 were infected with SARS-CoV-2. Isometric tension was used to evaluate vascular function. Protein expression was determined by immunofluorescence. Tail-cuff plethysmography and Doppler were used to assess blood pressure and flow, respectively. Nitric oxide (NO) was quantified with the DAF probe. ELISA was used to assess cytokine production. Survival curves were estimated using Kaplan-Meier. MHV-3 infection reduced aortic and vena cava contractility, arterial blood pressure, and blood flow, resulting in death. Resistance mesenteric arteries showed increased contractility. The contractility of the aorta was normalized by removing the endothelium, inhibiting iNOS, genetically deleting iNOS, or scavenging NO. In the aorta, iNOS and phospho-NF-kB p65 subunit expression was enhanced, along with basal NO production. TNF production was increased in plasma and vascular tissue. Genetic deletion of TNFR1 prevented vascular changes triggered by MHV-3, and death. Basal NO production and iNOS expression were also increased by SARS-CoV-2. In conclusion, betacoronavirus induces an endothelium-dependent decrease in contractility in macro-arteries and veins, leading to circulatory failure and death via TNF/iNOS/NO. These data highlight the key role of the vascular endothelium and TNF in the pathogenesis and lethality of coronaviruses.


Assuntos
COVID-19 , Choque , Camundongos , Humanos , Animais , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , SARS-CoV-2/metabolismo , Camundongos Endogâmicos C57BL , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Camundongos Transgênicos , Artérias Mesentéricas/metabolismo
5.
Microvasc Res ; 147: 104494, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36731768

RESUMO

AIMS: Animal models are essential to investigate cardiovascular pathophysiology and pharmacology, but phylogenetic diversity makes it necessary to identify the model with vasculature most similar to that of humans. METHODS AND RESULTS: In this study, we compared the mesenteric arteries of humans, pigs, rabbits and rats in terms of the i) evolutionary changes in the amino acid sequences of α1 and ß2 adrenoceptors; M1, M2, and M3 muscarinic receptors; and bradykinin (BKR) and thromboxane-prostanoid (TP) receptors, through bioinformatics tools; ii) expression of α1, ß2, M1, M3 and TP receptors in each tunica, as assessed by immunofluorescence; and iii) reactivity to receptor-dependent and independent contractile agonists and relaxants, by performing organ bath assays. Phylogenetically, pigs showed the highest degree of evolutionary closeness to humans for all receptors, and with the exception of BKR, rabbits presented the greatest evolutionary difference compared to humans, pigs and rats. The expression of the measured receptors in the three vascular tunica in pigs was most similar to that in humans. Using a one-way ANOVA to determine the differences in vascular reactivity, we found that the reactivity of pigs was the most similar to that of humans in terms of sensitivity (pD2) and maximum effect of vascular reactivity (Emax) to KCl, phenylephrine, isoproterenol and carbachol. CONCLUSIONS: The pig is a better vascular model than the rabbit or rat to extrapolate results to human mesenteric arteries. Comparative vascular studies have implications for understanding the evolutionary history of different species. TRANSLATIONAL PERSPECTIVE: The presented findings are useful for identifying an animal model with a vasculature that is similar to that of humans. This information is important to extrapolate, with greater precision, the findings in arterial pathophysiology or pharmacology from animal models to the healthy or diseased human being.


Assuntos
Artérias Mesentéricas , Contração Muscular , Humanos , Ratos , Coelhos , Animais , Suínos , Filogenia , Fenilefrina/farmacologia , Receptores Muscarínicos/metabolismo , Prostaglandinas/metabolismo
6.
Life Sci ; 319: 121526, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828130

RESUMO

Perivascular adipose tissue (PVAT) exerts anticontractile effect, but under non-physiological conditions it may contribute to vascular dysfunction by releasing pro-inflammatory cytokines. Since PVAT is an important source of interleukin (IL)-6, we evaluated whether this cytokine would contribute to ethanol-induced vascular dysfunction. With this purpose, male C57BL/6 wild-type (WT) or IL-6-deficient mice (IL-6-/-) were treated with ethanol for 12 weeks. Increased blood pressure was evidenced after 4 and 6 weeks of treatment with ethanol in WT and IL-6-/- mice, respectively. In WT mice, ethanol increased plasma and PVAT levels of IL-6. Ethanol favoured pro-contractile phenotype of PVAT in mesenteric arteries from WT, but not IL-6-deficient mice. Functional studies showed that tiron [(a scavenger of superoxide (O2-)] reversed the pro-contractile effect of PVAT in mesenteric arteries from ethanol-treated mice. Ethanol increased the levels of O2- in PVAT from WT mice. Ethanol-induced increase in O2- generation was higher in arteries with PVAT from WT mice when compared to IL-6-deficient mice. Treatment with ethanol augmented myeloperoxidase activity in the mesenteric arterial bed (MAB; with or without PVAT) from WT, but not IL-6-deficient mice. In conclusion, IL-6 contributes to the pro-contractile effect of PVAT by a mechanism that involves increase in ROS generation. Additionally, IL-6 mediates intravascular recruitment of neutrophils in response to ethanol and plays a role in the early stages of ethanol-induced hypertension. Collectively, our findings provide novel evidence for a role of IL-6 in the vascular dysfunction induced by ethanol.


Assuntos
Interleucina-6 , Obesidade , Masculino , Camundongos , Animais , Interleucina-6/farmacologia , Camundongos Endogâmicos C57BL , Artérias Mesentéricas , Fenótipo , Etanol/toxicidade , Tecido Adiposo
7.
Life Sci ; 308: 120917, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044974

RESUMO

AIM: Endothelial mechanisms underlying the vascular effects of estrogen modulated by the G protein-coupled estrogen receptor (GPER) are not well understood, especially in gonadal sex hormone deprivation. Thus, we investigated vascular function and endothelial signaling pathways involved in the selective activation of GPER in resistance arteries of gonadectomized rats. METHODS: Gonadectomy was performed in Wistar rats of both sexes. After 21 days, the animals were euthanized. Concentration-response curves were obtained by cumulative additions of G-1 in third-order mesenteric arteries. The vasodilatory effects of G-1 were evaluated before and after endothelium removal or incubation with pharmacological inhibitors. Tissue protein expression was measured by western blotting. Assays with 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) and 2',7' dichlorodihydrofluorescein-diacetate (H2DCF-DA) were performed in the arteries investigated. Immunolocalization was assessed by immunofluorescence. RESULTS: G-1 induced partially endothelium-dependent relaxation in both sexes. The three isoforms of the enzyme nitric oxide synthase contributed to the production and release of nitric oxide in both gonadectomized groups, but the role of inducible nitric oxide synthase is more expressive in males. The mechanistic pathway by which endothelial nitric oxide synthase is phosphorylated appears to differ between sexes, with the rapid signaling pathway phosphatidylinositol-3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3k-Akt-eNOS) being identified for males and mitogen-activated protein kinase/extracellular signal-regulated kinase/endothelial nitric oxide synthase (MEK-ERK-eNOS) for females. The contribution of hydrogen peroxide as an endothelial relaxation mediator seems to be greater in females. CONCLUSION: These results provide new insights into the effects of estrogen-induced responses via GPER on vascular function in gonadal sex hormone deprivation.


Assuntos
Óxido Nítrico Sintase Tipo III , Proteínas Proto-Oncogênicas c-akt , Animais , Endotélio Vascular , Estrogênios/metabolismo , Estrogênios/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteínas de Ligação ao GTP/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Artérias Mesentéricas , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilinositóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Caracteres Sexuais , Transdução de Sinais , Vasodilatadores/farmacologia
8.
J Nutr Biochem ; 105: 108995, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35364253

RESUMO

Cardiovascular diseases rank the top causes of death worldwide, with a substantial increase in women compared to men. Such increase can beexplained by the drastic decrease in 17-ß-estradiol hormone during menopause and associated with endothelium-dependent vascular dysfunction. The current treatments for cardiovascular diseases (e.g., hypertension), are only palliative and therefore, feasible, non-invasive options for preventing further vascular damage are needed. The polyphenol ellagic acid (EA) has risen as a candidate with possible vascular protection properties. This study evaluated the effects of EA in small mesenteric arteries of ovariectomized spontaneously hypertensive rats. Our findings showed that EA oral treatment for 4 weeks preserved vasodilation endothelial-dependent in acetylcholine pre-constricted arteries of spontaneously hypertensive rats to the same extent as 17-ß-estradiol treatment, an effect that was abolished in the presence of the nitric oxide synthase inhibitor L-NitroG-L-Arginine Methyl Ester. Moreover, EA induced vascular nitric oxide release, by increasing both the activitation site phosphorylation and total levels of the endothelial nitric oxide synthase. Finally, EA decreased superoxide anion while increased total levels of the antioxidant enzymes Superoxide Dismutase 2 and catalase. We concluded that EA has vasodilation properties acting via endothelial nitric oxide synthase activation and a potential antioxidant effect by stimulating the Superoxide Dismutase 2-catalase pathway.


Assuntos
Doenças Cardiovasculares , Hipertensão , Animais , Doenças Cardiovasculares/metabolismo , Catalase/metabolismo , Ácido Elágico/metabolismo , Ácido Elágico/farmacologia , Endotélio Vascular/metabolismo , Estradiol/farmacologia , Feminino , Humanos , Hipertensão/metabolismo , Artérias Mesentéricas , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Endogâmicos SHR , Vasodilatação
9.
Biomolecules ; 12(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35204781

RESUMO

Mitochondria-targeted hydrogen sulfide (H2S) donor compounds, such as compound AP39, supply H2S into the mitochondrial environment and have shown several beneficial in vitro and in vivo effects in cardiovascular conditions such as diabetes and hypertension. However, the study of their direct vascular effects has not been addressed to date. Thus, the objective of the present study was to analyze the effects and describe the mechanisms of action of AP39 on the in vitro vascular reactivity of mouse mesenteric artery. Protein and gene expressions of the H2S-producing enzymes (CBS, CSE, and 3MPST) were respectively analyzed by Western blot and qualitative RT-PCR, as well the in vitro production of H2S by mesenteric artery homogenates. Gene expression of CSE and 3MPST in the vessels has been evidenced by RT-PCR experiments, whereas the protein expression of all the three enzymes was demonstrated by Western blotting experiments. Nonselective inhibition of H2S-producing enzymes by AOAA abolished H2S production, whereas it was partially inhibited by PAG (a CSE selective inhibitor). Vasorelaxation promoted by AP39 and its H2S-releasing moiety (ADT-OH) were significantly reduced after endothelium removal, specifically dependent on NO-cGMP signaling and SKCa channel opening. Endogenous H2S seems to participate in the mechanism of action of AP39, and glibenclamide-induced KATP blockade did not affect the vasorelaxant response. Considering the results of the present study and the previously demonstrated antioxidant and bioenergetic effects of AP39, we conclude that mitochondria-targeted H2S donors may offer a new promising perspective in cardiovascular disease therapeutics.


Assuntos
Artérias Mesentéricas , Vasodilatadores , Animais , Camundongos , Mitocôndrias/metabolismo , Tionas , Vasodilatadores/farmacologia
10.
Nitric Oxide ; 119: 50-60, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958954

RESUMO

Organic nitrates are widely used to restore endogenous nitric oxide (NO) levels reduced by endothelial nitric oxide synthase dysfunction. However, these drugs are associated with undesirable side effects, including tolerance. This study aims to investigate the cardiovascular effects of the new organic nitrate 1,3-diisobutoxypropan-2-yl nitrate (NDIBP). Specifically, we assessed its effects on blood pressure, vascular reactivity, acute toxicity, and the ability to induce tolerance. In vitro and ex vivo techniques showed that NDIBP released NO both in a cell-free system and in isolated mesenteric arteries preparations through a process catalyzed by xanthine oxidoreductase. NDIBP also evoked endothelium-independent vasorelaxation, which was significantly attenuated by 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIO, 300 µM), a nitric oxide scavenger; 1-H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 µM), a soluble guanylyl cyclase inhibitor; tetraethylammonium (TEA, 3 mM), a potassium channel blocker; febuxostat (500 nM), a xanthine oxidase inhibitor; and proadifen (10 µM), an inhibitor of cytochrome P450 enzyme. Furthermore, this organic nitrate did not induce tolerance in isolated vessels and presented low toxicity following acute oral administration. In vivo changes on cardiovascular parameters were assessed using normotensive and renovascular hypertensive rats. NDIBP evoked a reduction of blood pressure that was significantly higher in hypertensive animals. Our results suggest that NDIBP acts as a NO donor, inducing blood pressure reduction without having the undesirable effects of tolerance. Those effects seem to be mediated by activation of NO-sGC-cGMP pathway and positive modulation of K+ channels in vascular smooth muscle.


Assuntos
Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Artérias Mesentéricas/efeitos dos fármacos , Nitratos/uso terapêutico , Doadores de Óxido Nítrico/uso terapêutico , Vasodilatadores/uso terapêutico , Animais , Anti-Hipertensivos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Hipertensão/metabolismo , Masculino , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/metabolismo , Canais de Potássio/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Guanilil Ciclase Solúvel/metabolismo , Vasodilatadores/metabolismo , Xantina Desidrogenase/metabolismo
11.
An Acad Bras Cienc ; 93(suppl 4): e20210222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34909827

RESUMO

This study evaluated the ability of resistance training (RT) of moderate intensity to promote vascular changes in insulin-induced vasodilation in healthy animals. Wistar rats were divided into two groups: control (CON) and trained (eight weeks of training, performing 3 sets with 10 repetitions at 60% of maximum intensity). Forty-eight hours after the last session of the RT, the animals were sacrificed and vascular reactivity to insulin in the absence and presence of LY294002 (phosphatidylinositol 3-kinase inhibitors (PI3K), L-NAME (nitric oxide synthase (NOS) inhibitors) and BQ123 (endothelin A antagonist (ET-A) receptor). In addition, phenylephrine (Phe)-induced vasoconstriction in the absence and presence of L-NAME was also evaluated. The RT group showed greater vasodilation in maximal response compared to the CON group. After PI3K inhibition, vasodilation was reduced in both groups. However, when the NOS participation was evaluated, the RT group showed contraction in relation to the CON group, which was abolished by BQ123. In addition, the RT group had an increase in nitrite levels compared to the CON group. When the Phe response was evaluated, there was a reduction in tension in the RT group compared to the CON group. The results suggest that RT improves vascular reactivity.


Assuntos
Treinamento Resistido , Vasodilatação , Animais , Humanos , Insulina , Artérias Mesentéricas , Óxido Nítrico , Fosfatidilinositol 3-Quinases , Inibidores de Fosfoinositídeo-3 Quinase , Ratos , Ratos Wistar
12.
Prostaglandins Other Lipid Mediat ; 157: 106586, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34438054

RESUMO

The vascular endothelium is a monolayer of flat epithelial cells located between the circulating blood and the underlying connective tissue. It conveys key functions that when impaired, lead to endothelial dysfunction. This condition is responsible for the pathogenesis of vascular diseases. The cardioprotective effect of sex hormones is widely known; hence, a murine orchidectomized model has been employed to study the effects caused by their deficiency. In the search for approaches to maintain vascular health, the effect of dietary fatty acids as CLA on cardiovascular diseases has been studied. Some proven beneficial properties of CLA are antioxidant, antiatherogenic and anti-inflammatory. Our objective was to evaluate the effect of a diet supplemented with 1.8 % (w/w) of CLA, administered during eight weeks, on the amount of cholesterol oxidation products (COPs) produced by orchidectomy and on factors related to vascular dysfunction in the aorta and the mesenteric arteries. The diet with CLA prevented the increase in prostanoids formation and maintained the normal physiological conditions of NO and antioxidant activity. In addition, it prevented the increase in cholesterol and COPs at the vascular wall. CLA-supplemented diet prevented the orchidectomy-induced alterations on prostanoids, NO and COPs and also improved the antioxidant activity. These findings could contribute to understand the mechanisms of actions of CLA involved in the prevention of cardiovascular diseases.


Assuntos
Suplementos Nutricionais , Ácidos Linoleicos Conjugados , Animais , Colesterol , Dieta , Ácidos Graxos , Artérias Mesentéricas , Camundongos , Ratos
13.
Vascul Pharmacol ; 139: 106880, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052431

RESUMO

AIM: Previous studies raise cyclooxygenase (COX) activation as a possible mechanism involved in the pathophysiology of ouabain-induced hypertension. We hypothesized that inhibition of COX-2 activity might prevent ouabain-induced vascular dysfunction and worsening of hypertension in spontaneously hypertensive rats (SHR). METHODS: SHR were exposed to ouabain or vehicle and treated or not with the selective COX-2 inhibitor nimesulide for 5 weeks. Systolic blood pressure was measured by plethysmography. Vascular reactivity by wire myograph and protein expression by Western-blot were assessed in mesenteric resistance arteries (MRA) of groups. Thromboxane A2 (TXA2) production by ELISA was evaluated in MRA supernatants of groups. RESULTS: Noradrenaline-induced maximal contraction (Emax) was greater in MRA from SHR receiving ouabain than those of vehicle group. In situ inhibition of COX-2, TXA2 synthase, or TP receptor reduced the Emax to noradrenaline in MRA of ouabain to vehicle levels. TXA2 production was higher in ouabain than in vehicle group. Ouabain enhanced expression of cytoplasmic tyrosine kinase Src (c-Src)/ERK1/2/COX-2/TXA2 synthase/TP receptor in SHR MRA, but did not change NFkB/iKB ratio. Anticontractile effect of nitric oxide (NO) was smaller in MRA from ouabain- than vehicle-treated SHR, as well as eNOS and nNOS expression. Nimesulide co-treatment prevented the ouabain-induced worsening of hypertension and noradrenaline MRA hypercontractility in SHR. CONCLUSION: Ouabain worsen hypertension and induce MRA hypercontractility in SHR associated with upregulated c-Src/ERK1/2/COX-2/TXA2 synthase/TXA2/TP receptor axis. These effects were prevented by COX-2 inhibition.


Assuntos
Hipertensão , Ouabaína , Animais , Pressão Sanguínea , Ciclo-Oxigenase 2/metabolismo , Endotélio Vascular , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/prevenção & controle , Artérias Mesentéricas/metabolismo , Ouabaína/farmacologia , Ratos , Ratos Endogâmicos SHR , Vasoconstrição , Vasodilatação
14.
Basic Clin Pharmacol Toxicol ; 129(2): 130-138, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33993648

RESUMO

Lectins are proteins that recognize specific carbohydrates, and the vasorelaxant effect of legume lectins has been previously reported, for example the Dioclea rostrata lectin (DRL). This study evaluated major pathways of DRL-induced relaxation in different artery segments and the possible molecular interactions involved. Rat thoracic aorta, coronary and mesenteric resistance arteries were tested "in vitro" with concentration-response curves to DRL (0.01-100 µg/mL). L-NAME, indomethacin and high KCl were used to evaluate nitric oxide, cyclooxygenase and hyperpolarization-dependent effects. DRL promoted relaxation of all vessels throughout different mechanisms. L-NAME blunted DRL-induced effects only in the aorta and mesenteric resistance artery. By the use of depolarizing KCl solution, vasodilation was reduced in all arteries, while incubation with indomethacin indicated a role of cyclooxygenase-derived factors for DRL effects in mesenteric and coronary arteries, but not in the aorta. Molecular docking results suggested interactions between DRL and heparan sulphate, CD31 and other glycans present on the membrane surface. These data indicate that the mechanisms involved in DRL-mediated vasodilation vary between conductance and resistance arteries of different origins, and these effects may be related to the capacity of DRL to bind a diversity of glycans, especially heparan sulphate, a proposed mechanoreceptor for nitric oxide synthase and cyclooxygenase activation.


Assuntos
Artérias/efeitos dos fármacos , Dioclea , Lectinas/metabolismo , Lectinas/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Artérias/fisiologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Simulação de Acoplamento Molecular , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Ratos Wistar
15.
Exp Parasitol ; 222: 108078, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33485874

RESUMO

The blood flow in the mesenteric region is crucial for nutrient absorption and immune response in the gastrointestinal tract. The presence of nematodes or their excreted/secreted products seems to provoke vascular dysfunction. However, it is unclear whether and how the intestinal nematodes with habitat in the intestinal niche could affect the mesenteric vascular resistance. In this study, male Wistar rats were infected with 2000 larvae of S. venezuelensis, and experiments were conducted at 0 (non-infected control), 10 or 30 days post-infection (DPI). Eggs were counted in rats' feces and adult worms recovered from the small intestine. Second- or third-order mesenteric arteries were extracted for concentration-response curves (CRC) to phenylephrine [PE; in the presence or absence of L-NAME or indomethacin] and acetylcholine. The number of eggs and adult worms were significantly higher in the 10 DPI group than those of 30 DPI group. Augmented PE-induced contraction was seen after 30 DPI compared to 10 DPI or control group. Hypercontractility to PE was partially prevented by L-NAME and wholly abolished by indomethacin incubation. Endothelium-dependent relaxation and endothelial nitric oxide synthase expression were unchanged among groups. COX-1 and COX-2 display a different pattern of expression over the infection. Hypercontractility observed in mesenteric resistance arteries in the resolution time of S. venezuelensis infection may represent systemic damage, which can generate significant cardiovascular and gastrointestinal repercussions.


Assuntos
Células Endoteliais/fisiologia , Intestinos/irrigação sanguínea , Artérias Mesentéricas/fisiopatologia , Strongyloides/fisiologia , Estrongiloidíase/fisiopatologia , Animais , Fezes/parasitologia , Feminino , Gerbillinae , Masculino , Contração Muscular , Doenças Negligenciadas/fisiopatologia , Contagem de Ovos de Parasitas , Distribuição Aleatória , Ratos , Ratos Wistar
16.
Toxicol Appl Pharmacol ; 413: 115405, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444613

RESUMO

Cardiovascular diseases are among the main causes of mortality in the world. There is evidence of cardiovascular harm after exposure to low lead or mercury concentrations, but the effects of chronic exposure to the association of low doses of these toxic metals are still unknown. This work evaluated after 4 weeks, the association effects of low concentrations of lead and mercury on blood pressure and vascular resistance reactivity. Wistar rats were exposed for 28 days to lead acetate (1st dose of 4 µg/100 g and subsequent doses of 0.05 µg /100 g/day to cover daily losses) and mercury chloride (1st dose of 2.17 µg/kg and subsequent doses of 0.03 µg/kg/ day to cover daily losses) and the control group received saline, i.m. Results showed that treatment increased blood pressure and induced left ventricular hypertrophy. The mesenteric vascular reactivity to phenylephrine and the endothelium-dependent vasodilator response assessed by acetylcholine did not change. Additionally, reduced involvement of vasoconstrictor prostanoids derived from cyclooxygenase was observed in the PbHg group. By other regulatory routes, such as potassium channels, the vessel showed a greater participation of BKCa channels, and a reduction in the participation of Kv channels and SKCa channels. The endothelium-independent smooth muscle relaxation was significantly impaired by reducing cGMP, possibly through the hyperstimulation of Phosphodiesterase-5 (PDE5). Our results suggested that exposure to low doses of lead and mercury triggers this compensatory mechanism, in response to the augment of arterial pressure.


Assuntos
Pressão Arterial/efeitos dos fármacos , GMP Cíclico/metabolismo , Cloreto de Mercúrio/toxicidade , Músculo Liso Vascular/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Vasodilatação/efeitos dos fármacos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Regulação para Baixo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Ratos Wistar , Sistemas do Segundo Mensageiro , Fatores de Tempo , Resistência Vascular/efeitos dos fármacos
17.
Naunyn Schmiedebergs Arch Pharmacol ; 394(3): 437-446, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33034715

RESUMO

Arterial hypertension is a risk factor for various cardiovascular and renal diseases, representing a major public health challenge. Although a wide range of treatment options are available for blood pressure control, many hypertensive individuals remain with uncontrolled hypertension. Thus, the search for new substances with antihypertensive potential becomes necessary. Coumarins, a group of polyphenolic compounds derived from plants, have attracted intense interest due to their diverse pharmacological properties, like potent antihypertensive activities. Braylin (6-methoxyseselin) is a coumarin identified in the Zanthoxylum tingoassuiba species, described as a phosphodiesterase-4 (PDE4) inhibitor. Although different coumarin compounds have been described as potent antihypertensive agents, the activity of braylin on the cardiovascular system has yet to be investigated. To investigate the vasorelaxation properties of braylin and its possible mechanisms of action, we performed in vitro studies using superior mesenteric arteries and the iliac arteries isolated from rats. In this study, we demonstrated, for the first time, that braylin induces potent vasorelaxation, involving distinct mechanisms from two different arteries, isolated from rats. A possible inhibition of phosphodiesterase, altering the cyclic adenosine monophosphate (cAMP)/cAMP-dependent protein kinase (PKA) pathway, may be correlated with the biological action of braylin in the mesenteric vessel, while in the iliac artery, the biological action of braylin may be correlated with increase of cyclic guanosine monophosphate (cGMP), followed by BKCa, Kir, and Kv channel activation. Together, these results provide evidence that braylin can represent a potential therapeutic use in preventing and treating cardiovascular diseases.


Assuntos
Cumarínicos/farmacologia , Artéria Ilíaca/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Artéria Ilíaca/fisiologia , Masculino , Artérias Mesentéricas/fisiologia , Canais de Potássio/fisiologia , Ratos Wistar , Vasodilatação/efeitos dos fármacos
18.
Life Sci ; 266: 118885, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316265

RESUMO

AIM: We determined the role played by O-linked N-acetylglucosamine (O-GlcNAc) of proteins in systemic arteries during late pregnancy in normotensive and hypertensive rats. MAIN METHODS: O-GlcNAc levels and O-GlcNAc modification of endothelial nitric oxide synthase (eNOS) were determined in aorta (conductance vessel) and mesenteric arteries (resistance vessels) of non-pregnant (NP) and pregnant (P) Wistar rats and spontaneously hypertensive rats (SHR). Vascular O-GlcNAc-modified proteins, O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT) expression, and OGA activity were analyzed. Concentration-response to phenylephrine (PE) curves were constructed for arteries with and without endothelium. Arteries were treated with vehicle or PugNAc (OGA inhibitor, 100 µmol/L) in the presence of L-NAME (NOS inhibitor, 100 µmol/L). KEY FINDINGS: The content of vascular O-GlcNAc-modified proteins was lower, OGT and OGA expression did not change, and OGA activity was higher in arteries of P-Wistar rats and P-SHR compared to arteries of NP-groups. Reactivity to PE increased in arteries of P-Wistar rats treated with PugNAc compared to vehicle. O-GlcNAcylation of eNOS decreased in P-SHR compared to NP-SHR. PugNAc partially inhibited the effects of endothelium removal and L-NAME on reactivity to PE in arteries of P-Wistar rats. However, PugNAc did not alter reactivity to PE in arteries of P-SHR. Our data showed that pregnancy decreased the content of vascular O-GlcNAc-modified proteins. SIGNIFICANCE: Increased OGA activity and decreased O-GlcNAc modification of eNOS boosts eNOS activity in arteries of P-Wistar rats. In P-SHR, altered OGA activity may lower the content of O-GlcNAc-modified proteins, but decreased OGT activity seems a potential mechanism to reduce glycosylation.


Assuntos
Acetilglucosamina/química , Aorta Torácica/fisiopatologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/fisiopatologia , Processamento de Proteína Pós-Traducional , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Aorta Torácica/enzimologia , Feminino , Glicosilação , Hipertensão/enzimologia , Artérias Mesentéricas/enzimologia , N-Acetilglucosaminiltransferases , Gravidez , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , beta-N-Acetil-Hexosaminidases/química
19.
An Acad Bras Cienc ; 92(4): e20200316, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33331443

RESUMO

This study evaluated whether resistance training (RT) could prevent glucocorticoid-induced vascular changes. Wistar rats were divided into groups: control (CO), dexamethasone (DEX), and Dexamethasone+RT (DEX+RT). On the eighth week, dexamethasone was administered in the DEX and DEX+RT groups. Thereafter, the animals were sacrificed and blood samples were used to assess the lipid profile, glucose and insulin. Vascular reactivity to insulin and phenylephrine (Phe) were evaluated. The DEX+RT group presented an improvement in the lipid profile, fasting glucose, and insulin levels compared to the DEX group. In addition, vasodilation was reduced in the DEX group compared to the CO group, and was increased in the DEX+RT group. After inhibition of phosphatidylinositol 3-kinase, DEX group showed contraction, in which it was in the DEX + RT group. When nitric oxide synthase (NOS) participation was evaluated, the DEX group presented a contraction compared to the CO group, with no contractile effect in the DEX+RT group. Moreover, vasoconstriction caused by NOS inhibition was abolished by BQ123 (endothelin receptor antagonist). In respect Phe response, there was an increase in tension in the DEX group compared to the CO group, being reduced in the DEX+RT group. The results suggest that RT prevented damage to vascular reactivity.


Assuntos
Treinamento Resistido , Vasodilatação , Animais , Dexametasona/farmacologia , Humanos , Insulina , Artérias Mesentéricas , Ratos , Ratos Wistar
20.
Arq. bras. med. vet. zootec. (Online) ; 72(6): 2165-2174, Nov.-Dec. 2020. tab, graf, ilus
Artigo em Português | LILACS, VETINDEX | ID: biblio-1142295

RESUMO

Xenarthras (Mammalia, Dasypodidae) das espécies Dasypus novemcinctus e Euphractus sexcinctus tiveram sua anatomia científica estudada em relação à topografia dos intestinos delgado e grosso, suas relações peritoniais, morfologia externa e irrigação. Medidas dos diferentes segmentos intestinais e do número de vasos a eles destinados foram tomadas para fins comparativos. O método previu: fixação (formol 7%); injeção de látex; dissecação e fotodocumentação. Espacialmente, embora os intestinos sejam fixados por dupla membrana peritoneal, como em outros vertebrados, nestes a serosa conectou o duodeno, o jejuno, o íleo e os cólons em um único ligamento fixado no dorso do animal. Duodeno e pâncreas, intraperitoniais, como o reto, fixaram-se nas pelves maior e menor, respectivamente e dorsalmente. Vasos derivados do tronco celíaco mesentérico e da aorta percorreram o interior do mesoduodeno, do mesentério comum, do mesocólon e do mesorreto, estando estes, ao longo de seus trajetos, relacionados às cadeias linfonodulares intestinais. O modelo de rotação peritoneal, a morfologia externa, bem como o modelo de vascularização intestinal, foram interpretados como basais, diferindo dos vertebrados recentes, conforme o suporte literário.(AU)


Xenarthras (Mammalia, Dasypodidae) of the species Dasypus novemcinctus and Euphractus sexcinctus had their scientific anatomy studied in relation to the topography of the small and large intestines, their peritoneal relationships, external morphology and irrigation. Measurements of the different intestinal segments and the number of vessels destined for them were taken for comparative purposes. The method predicted: fixation (7% formaldehyde); latex injection; dissection and photo documentation. Spatially, the intestines, although fixed by a double peritoneal membrane, as in other vertebrates, in these, the serosa connected the duodenum, jejunum, ileum, and the colon in a single ligament fixed to the animal's back. Duodenum and pancreas, intraperitoneal, like the rectum, were fixed in the major and minor pelvis respectively and dorsally. Vessels derived from the mesenteric celiac trunk and the aorta traveled through the interior of the mesoduodenum, common mesentery, mesocolon and mesoride, being related to the lymph node chains along their pathways. The peritoneal rotation model, the external morphology as well as the model of intestinal vascularization were interpreted as basal, differing from recent vertebrates, according to literary support.(AU)


Assuntos
Animais , Peritônio/irrigação sanguínea , Membrana Serosa/irrigação sanguínea , Xenarthra/anatomia & histologia , Intestino Grosso/anatomia & histologia , Intestino Delgado/anatomia & histologia , Artérias Mesentéricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA