Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 510
Filtrar
1.
Arch Virol ; 168(11): 276, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864004

RESUMO

A new virulent phage, SWEP2, infecting the Arthrobacter sp. 5B strain, was isolated from black soil samples in northeastern China. SWEP2 has a latent period of 80 min and a burst size of 45 PFU (evaluated at an MOI of 0.1). Genomic analysis revealed that the 43,398-bp dsDNA genome of phage SWEP2 contains 64 open reading frames (ORFs) and one tRNA gene. Phylogenetic analysis indicated a close relationship between SWEP2 and Arthrobacter phage Liebe, with 82.98% identity and a query coverage of 48%. Based on its distinct phenotypic and genetic characteristics, SWEP2 is identified as a novel Arthrobacter phage.


Assuntos
Arthrobacter , Bacteriófagos , Arthrobacter/genética , Filogenia , Genoma Viral , Genômica , Fases de Leitura Aberta
2.
Pol J Microbiol ; 72(3): 277-283, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725900

RESUMO

Uricase (or Urate oxidase), a key enzyme involved in purine metabolism, is commonly used in treating conditions such as gout, hyperuricemia, and tumor lysis syndrome. In this study, a uricase-producing strain (named CSAJ-16) was isolated from the soil sample of Cangshan Mountain, Yunnan Province, China. This strain was identified as Arthrobacter sp. CSAJ-16. Based on the gene sequence alignment, the uricase gene (named aruox) of Arthrobacter sp. CSAJ-16 was amplified and heterologously expressed. The recombinant uricase (ArUOX) was about 32 kDa. The optimal pH and temperature of ArUOX were pH 7 and 20°C, respectively. The ArUOX remained above 50% relative activity after incubation at 37°C for 100 min or at pH 6.0-8.6 for 24 h. Moreover, metal ions such as K+, Mg2+, Ca2+, Ba2+ and Pb2+ can significantly enhance the activity of ArUOX (> 200%). These enzymatic properties indicate that ArUOX has potential applications in pharmaceutical enzymes and uric acid detection kits.


Assuntos
Arthrobacter , Arthrobacter/genética , China , Urato Oxidase/genética , Alinhamento de Sequência , Clonagem Molecular
3.
Curr Microbiol ; 80(3): 92, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725813

RESUMO

A Gram-staining-positive, catalase positive and oxidase negative, non-motile, non-flagellated, and oval-shaped bacterium, was designated as I2-34 T, isolated from wetland in Soul South Korea. Colonies were round, entire, raised, and cream colored after two days of incubation on R2A agar plates at 25 °C. Based on genomes (both 16S rRNA gene and draft genome) sequence analysis, strain I2-34 T belongs to the genus Arthrobacter and was most closely related to Arthrobacter deserti YIM CS25T (98.0%). The strain I2-34 T had a circular genome with length of 5,186,447 base pairs (67 contigs) and 4830 total genes. Out of 4696 were protein-coding genes, 54 tRNA and 4 rRNA genes. The chemotaxonomic analysis indicates iso-C16:0, anteiso-C15:0, and anteiso-C17:0 as major fatty acids, phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), and two unidentified glycolipids (GL1, GL2) as major polar lipids. The predominant quinone was MK-8(H2). The peptidoglycan type was A3α with an. L-Lys-L-Ala interpeptide bridge. Thus, the experimental data demonstrated here show that the novel isolate shares the similar major fatty acids, major polar lipid PG, DPG, and GLs, major and major quinone MK8-(H2) with the described members of the genus Arthrobacter. However, the low 16S rRNA gene sequence (98.0%), and some physiological and biochemical characteristics differentiate the I2-34 T from its closest phylogenetic neighbors. As a result, the isolate represents a novel species in within the genus Arthrobacter and family Micrococcaceae for which the name Arthrobacter hankyongi sp. nov. is proposed. The type strain is I2-34 T (= KACC 22217 T, LMG 32197 T).


Assuntos
Arthrobacter , Arthrobacter/genética , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Hibridização de Ácido Nucleico , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Vitamina K 2 , Ácidos Graxos , Fosfolipídeos
4.
Chemosphere ; 313: 137575, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563729

RESUMO

Herbicide atrazine restricts nutrient accumulation and thus inhibits the growth of sensitive crops. The application of organic fertilizer is a common measure that contributes to modulating abiotic tolerance of crops and providing nutrients, but its advantages in combination with atrazine degrading microorganisms as bio-organic fertilizer to alleviate atrazine stress on sensitive crops and the associated mechanisms are unknown. We investigated the beneficial effects of organic and bio-organic fertilizer (named DNBF10) containing Arthrobacter sp. DNS10 applications on growth, leaf nitrogen accumulation, root surface structure and root physiological properties of soybean seedlings exposed to 20 mg kg-1 atrazine in soil. Compared with organic fertilizer, bio-organic fertilizer DNBF10 exhibited more reduction in soil atrazine residue and plant atrazine accumulation, as well as alleviation in atrazine-induced root oxidative stress and damaged cells of soybean roots. Transcriptome analysis revealed that DNBF10 application enhanced nitrogen utilization by improving the expression of genes involved in nitrogen metabolism in soybean leaves. Besides, genes expression of cytochrome P450 and ABC transporters involved in atrazine detoxification and transport in soybean leaves were also down-regulated by DNBF10 to diminish phytotoxicity of atrazine to soybean seedlings. These results illustrate the molecular mechanism by which the application of DNBF10 alleviates soybean seedlings growth under atrazine stress, providing a step forward for mitigate the atrazine induced inhibition on soybean seedlings growth through decreasing atrazine residues as well as enhancing damaged root repair and nitrogen accumulation.


Assuntos
Arthrobacter , Atrazina , Atrazina/toxicidade , Atrazina/análise , Arthrobacter/genética , Arthrobacter/metabolismo , Fertilizantes/análise , Glycine max/metabolismo , Nitrogênio/análise , Solo/química , Plântula/metabolismo
5.
Appl Microbiol Biotechnol ; 106(21): 7301-7314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36198866

RESUMO

Dehydrogenation reaction at C1(2) positions is typical and representative of industrial production of steroid drugs. Anti-inflammatory activity can be doubled when the nucleus of the anti-inflammatory steroid hormone drug introduces double bonds at the C1(2) positions. Arthrobacter simplex is currently the most widely studied and used strain for C1(2) dehydrogenation. Therefore, breeding Arthrobacter simplex with high-efficiency dehydrogenation ability is of great significance. In order to obtain high-efficiency strains, the research proposed a new screening strategy based on image process technique: firstly, a color reaction between 2,4-dinitrophenylhydrazine (DNPH) and 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD) was established to characterize the dehydrogenation ability of the strain; secondly, the color data of strains mutated by atmospheric and room temperature plasma (ARTP) in the "color reaction" were automated and analyzed for dehydrogenation ability prediction using optimized support vector machine model. Result showed that the prediction accuracy reached as high as 96% in verification experiments. After a series of mutagenesis, including breaking the bottleneck of a single mutation in ARTP, the dominant strain ARLU-146 was finally obtained from 5168 strains. Its initial conversion rate was 0.8059 g/L/h, with a conversion of 94.41% at 24 h, compared to the original strain ASP which increased the transformation rate by more than 10%. By further process optimization, a high conversion (94.34% within 20 h) with high substrate (85 g/L cortisone acetate) was achieved. According to literature research, it is the highest conversion at this substrate concentration. KEY POINTS: • A high-throughput screening method was developed by using image processing and machine learning technique. • "Mutation bottleneck" of single ARTP mutagenesis was surpassed by complex mutagenesis. • A high substrate (85 g/L CA) and high transformation rate craft (94.34% within 20 h) were built.


Assuntos
Actinobacteria , Arthrobacter , Cortisona , Ensaios de Triagem em Larga Escala , Arthrobacter/genética , Mutagênese , Cetosteroides
6.
Chemosphere ; 307(Pt 2): 135904, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35940415

RESUMO

The viable and degradation potential of the strains which adhered to soil minerals are essential for eliminating organic pollutants from soil. Herein, the interaction (growth, biofilm formation and survive) of Arthrobacter sp. DNS10, an atrazine degrading strain, with three kinds of typical soil minerals, such as montmorillonite, kaolinite and goethite, as well as the atrazine degradation gene (trzN) expression of the strain in the minerals system were studied. The results showed that montmorillonite had significant promotion effect on the growth of strain DNS10, followed by kaolinite, but goethite significantly inhibited the growth of strain DNS10. In contrast, goethite notably promoted the biofilm formation and there was less biofilm detected in montmorillonite containing system. The percentage of the survival bacteria in the biofilm that formed on montmorillonite, kaolinite and goethite was 53.8%, 40.8% and 28.2%. In addition, there were more reactive oxygen species (ROS) were detected in the cells that exposed to goethite than those of the cells exposed to kaolinite and montmorillonite. These results suggest that the electrostatic repulsion between kaolinite/montmorillonite and strain DNS10 prevents them from contacting each other and facilitates bacterial growth by allowing the strain to obtain more nutrients. Oppositely, the needle-like morphology of goethite might damage the strain DNS10 cell when they were combined by electrostatic attraction, and the goethite induced ROS also aggravate the cytotoxicity of goethite on strain DNS10. In addition, the relative transcription of trzN in the cells contacted with montmorillonite, kaolinite and goethite was 0.94-, 0.27- and 0.20- fold of the no mineral exposure treatment. Briefly, this research suggests that the minerals with different structure and/or physicochemical characteristics might cause various trend for the biofilm formation and degradation potential of the bacteria.


Assuntos
Arthrobacter , Atrazina , Poluentes do Solo , Arthrobacter/genética , Arthrobacter/metabolismo , Atrazina/análise , Bentonita/química , Biofilmes , Compostos de Ferro , Caulim/química , Minerais/química , Espécies Reativas de Oxigênio/metabolismo , Solo/química , Poluentes do Solo/análise
7.
Curr Genet ; 68(5-6): 565-579, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35927361

RESUMO

Cold habitat is considered a potential source for detergent industry enzymes. This study aims at the metagenomic investigation of Tsomgo lake for taxonomic and functional annotation, unveiling the deterzome potential of the residing microbiota at this site. The present investigation revealed molecular profiling of microbial community structure and functional potential of the high-altitude Tsomgo lake samples of two different temperatures, harvested during March and August. Bacteria were found to be the most dominant phyla, with traces of genomic pieces of evidence belonging to archaea, viruses, and eukaryotes. Proteobacteria and Actinobacteria were noted to be the most abundant bacterial phyla in the cold lake. In-depth metagenomic investigation of the cold aquatic habitat revealed novel genes encoding detergent enzymes, amylase, protease, and lipase. Further, metagenome-assembled genomes (MAGs) belonging to the psychrophilic bacterium, Arthrobacter alpinus, were constructed from the metagenomic data. The annotation depicted the presence of detergent enzymes and genes for low-temperature adaptation in Arthrobacter alpinus. Psychrophilic microbial isolates were screened for lipase, protease, and amylase activities to further strengthen the metagenomic findings. A novel strain of Acinetobacter sp. was identified with the dual enzymatic activity of protease and amylase. The bacterial isolates exhibited hydrolyzing activity at low temperatures. This metagenomic study divulged novel genomic resources for detergent industry enzymes, and the bacterial isolates secreting cold-active amylase, lipase, and protease enzymes. The findings manifest that Tsomgo lake is a potential bioresource of cold-active enzymes, vital for various industrial applications.


Assuntos
Arthrobacter , Metagenoma , Lagos/microbiologia , Detergentes , Arthrobacter/genética , Lipase/genética , Peptídeo Hidrolases/genética , Amilases/genética
8.
World J Microbiol Biotechnol ; 38(10): 172, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35908235

RESUMO

Leucaena leucocephala growing in the tropics and subtropics serves as potential forage for livestock because its foliage is rich in protein, fiber, and minerals. However, its use for livestock feed has been hindered by toxic nonprotein amino acid mimosine. Therefore, it is necessary to develop a method to reduce or eliminate mimosine from foliage. A previous study found that the fermentation of L. leucocephala foliage reduced the mimosine content and prompted the authors to isolate potent mimosine degrading microorganisms and characterize the mimosinase for the complete elimination of mimosine in the L. leucocephala foliage. The soil screening of the L. leucocephala tree surroundings led to the isolation of Arthrobacter sp. Ryudai-S1, which can degrade and assimilate mimosine as a nitrogen and carbon source. Mimosinase in this strain was found to be thermostable and showed strong activity. Docking model's inspection and the interaction energy calculation between mimosine-pyridoxal-5'-phosphate (PLP) complex and the active site of this enzyme identified 11 important amino acid residues that stabilized the binding. Of these amino acid residues, mutation experiment suggested that Tyr-263' and Phe-34 stabilizes the substrate binding and play a critical role in guiding the substrate to proper positions to accomplish high catalytic efficacy and selectivity. These observations suggest that Arthrobacter sp. Ryudai-S1 could be potentially useful for the development of L. leucocephala feed with reduced mimosine content.


Assuntos
Arthrobacter , Fabaceae , Arthrobacter/genética , Domínio Catalítico , Fabaceae/genética , Hidrolases/metabolismo , Mimosina/química , Mimosina/metabolismo , Fosfato de Piridoxal/metabolismo
9.
Curr Microbiol ; 79(7): 199, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595842

RESUMO

Pink-pigmented Arthrobacter species produce the rare C50 carotenoid bacterioruberin, which is suspected to be part of the cold adaptation mechanism. In silico analysis of the repertoire of genes encoded by the Arthrobacter agilis and Arthrobacter bussei genome revealed the biosynthetic pathway of bacterioruberin. Although genetic analysis is an essential tool for studying the physiology of Arthrobacter species, genetic manipulation of Arthrobacter is always time and labor intensive due to the lack of genetic engineering tools. Here we report the construction and application of a CRISPR/deadCas9 system (pCasiART) for gene silencing in Arthrobacter species. The engineered system pCasiART is suitable for the Golden Gate assembly of spacers, enabling rapid and accurate construction of adapted systems. In addition, pCasiART has been developed to provide an efficient transcription inhibition system for genome-wide gene silencing. The gene silencing of the phytoene synthase (CrtB), the first enzyme in bacterioruberin biosynthesis, suppressed bacterioruberin biosynthesis in Arthrobacter agilis and Arthrobacter bussei, resulting in a lack of pink pigmentation, reduction of biomass production, and growth rates at low temperatures.


Assuntos
Arthrobacter , Arthrobacter/genética , Arthrobacter/metabolismo , Sistemas CRISPR-Cas , Carotenoides/metabolismo , Temperatura
10.
An Acad Bras Cienc ; 94(suppl 1): e20210459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35293946

RESUMO

Industrial sectors are searching for new compounds to improve the preservation of food and blood, human tissues, and fuels used at low temperatures. Antarctic microorganisms have mechanisms to overcome injuries caused by low temperatures, making them sources of compounds with antifreeze activity. However, it is mandatory that such compounds do not pose a risk to human health. The present study evaluated the potential of Antarctic bacteria to resist freezing, produce virulence factors, their tolerance to physiological pHs/temperature and resistance to antibiotics. Sixty-five isolates were tested for antifreeze compound production, among which, 31 grew after the test. Of these, 3 strains of Arthrobacter sp. (356, 358 and 443), one Psychromonas arctica (ESH238) and one unidentified strain (363) showed positive results for hemolytic activity. Psychrobacter sp. 456 showed proteinase activity. None of the isolates showed resistance to the antibiotics. All isolates were able to grow in one of the three pHs (4, 7 and 8) and/or temperature (36, 38 and 40 ºC). Antarctic bacterial present potential for the production of antifreeze compounds and may be considered safe in industrial processes. The characterization of the genes responsible for virulence factors should be carried out to reinforce the potential applicability of such bacteria.


Assuntos
Antibacterianos , Arthrobacter , Regiões Antárticas , Arthrobacter/genética , Congelamento , Humanos , Filogenia
11.
Bioresour Technol ; 349: 126870, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35192947

RESUMO

Bioremediation systems coupled to efficient microbial enzymes have emerged as an attractive approach for the in-situ removal of hazardous organophosphates (OPs) pesticides from the polluted environment. However, the role of engineered enzymes in OPs-degradation is rarely studied. In this study, the potential OPs-hydrolase (opdH) gene (Arthrobacter sp. HM01) was isolated, cloned, expressed, and purified. The recombinant organophosphate hydrolase (ropdH) was âˆ¼29 kDa; which catalyzed a broad-range of OPs-pesticides in organic-solvent (∼99 % in 30 min), and was found to increase the catalytic efficiency by 10-folds over the native enzyme (kcat/Km: 107 M-1s-1). The degraded metabolites were analyzed using HPLC/GCMS. Through site-directed mutagenesis, it was confirmed that, conserved metal-bridged residue (Lys-127), plays a crucial role in OPs-degradation, which shows âˆ¼18-folds decline in OPs-degradation. Furthermore, the catalytic activity and its stability has been enhanced by >2.0-fold through biochemical optimization. Thus, the study suggests that ropdH has all the required properties for OPs bioremediation.


Assuntos
Arthrobacter , Praguicidas , Arthrobacter/genética , Arthrobacter/metabolismo , Compostos Organofosforados/metabolismo , Praguicidas/química , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Piperidinas
12.
Arch Microbiol ; 204(3): 193, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35201431

RESUMO

Sulfoglycolysis pathways enable the breakdown of the sulfosugar sulfoquinovose and environmental recycling of its carbon and sulfur content. The prototypical sulfoglycolytic pathway is a variant of the classical Embden-Meyerhof-Parnas (EMP) pathway that results in formation of 2,3-dihydroxypropanesulfonate and was first described in gram-negative Escherichia coli. We used enrichment cultures to discover new sulfoglycolytic bacteria from Australian soil samples. Two gram-positive Arthrobacter spp. were isolated that produced sulfolactate as the metabolic end-product. Genome sequences identified a modified sulfoglycolytic EMP gene cluster, conserved across a range of other Actinobacteria, that retained the core sulfoglycolysis genes encoding metabolic enzymes but featured the replacement of the gene encoding sulfolactaldehyde (SLA) reductase with SLA dehydrogenase, and the absence of sulfoquinovosidase and sulfoquinovose mutarotase genes. Excretion of sulfolactate by these Arthrobacter spp. is consistent with an aerobic saprophytic lifestyle. This work broadens our knowledge of the sulfo-EMP pathway to include soil bacteria.


Assuntos
Arthrobacter , Arthrobacter/genética , Arthrobacter/metabolismo , Austrália , Glicólise/genética , Família Multigênica , Enxofre/metabolismo
13.
Environ Microbiol ; 24(2): 894-904, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35072982

RESUMO

Superoxide and other reactive oxygen species (ROS) shape microbial communities and drive the transformation of metals and inorganic/organic matter. Taxonomically diverse bacteria and phytoplankton produce extracellular superoxide during laboratory cultivation. Understanding the physiological reasons for extracellular superoxide production by aerobes in the environment is a crucial question yet not fully solved. Here, we showed that iron-starving Arthrobacter sp. QXT-31 (A. QXT-31) secreted a type of siderophore [deferoxamine (DFO)], which provoked extracellular superoxide production by A. QXT-31 during carbon sources-level fluctuation. Several other siderophores also demonstrated similar effects to A. QXT-31. RNA-Seq data hinted that DFO stripped iron from iron-bearing proteins in electron transfer chain (ETC) of metabolically active A. QXT-31, resulting in electron leakage from the electron-rich (resulting from carbon sources metabolism by A. QXT-31) ETC and superoxide production. Considering that most aerobes secrete siderophore(s) and undergo carbon sources-level fluctuation, the superoxide-generation pathway is likely a common pathway by which aerobes produce extracellular superoxide in the environment, thus influencing the microbial community and cycling of elements. Our results pointed that the ubiquitous siderophore might be the potential driving force for the microbial generation of superoxide and other ROS and revealed the important role of iron physiology in microbial ROS generation.


Assuntos
Arthrobacter , Sideróforos , Arthrobacter/genética , Arthrobacter/metabolismo , Carbono/metabolismo , Ferro/metabolismo , Sideróforos/metabolismo , Superóxidos/metabolismo
14.
PLoS One ; 17(1): e0262556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025964

RESUMO

Bacteriophages exhibit a vast spectrum of relatedness and there is increasing evidence of close genomic relationships independent of host genus. The variability in phage similarity at the nucleotide, amino acid, and gene content levels confounds attempts at quantifying phage relatedness, especially as more novel phages are isolated. This study describes three highly similar novel Arthrobacter globiformis phages-Powerpuff, Lego, and YesChef-which were assigned to Cluster AZ using a nucleotide-based clustering parameter. Phages in Cluster AZ, Microbacterium Cluster EH, and the former Microbacterium singleton Zeta1847 exhibited low nucleotide similarity. However, their gene content similarity was in excess of the recently adopted Microbacterium clustering parameter, which ultimately resulted in the reassignment of Zeta1847 to Cluster EH. This finding further highlights the importance of using multiple metrics to capture phage relatedness. Additionally, Clusters AZ and EH phages encode a shared integrase indicative of a lysogenic life cycle. In the first experimental verification of a Cluster AZ phage's life cycle, we show that phage Powerpuff is a true temperate phage. It forms stable lysogens that exhibit immunity to superinfection by related phages, despite lacking identifiable repressors typically required for lysogenic maintenance and superinfection immunity. The ability of phage Powerpuff to undergo and maintain lysogeny suggests that other closely related phages may be temperate as well. Our findings provide additional evidence of significant shared phage genomic content spanning multiple actinobacterial host genera and demonstrate the continued need for verification and characterization of life cycles in newly isolated phages.


Assuntos
Arthrobacter/virologia , Bacteriófagos/genética , Microbacterium/virologia , Arthrobacter/genética , Bacteriófagos/classificação , Análise por Conglomerados , Variação Genética , Genoma Viral , Genômica , Microbacterium/genética , Filogenia
15.
J Hazard Mater ; 421: 126811, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34388933

RESUMO

There is an urgent requirement to treat cellulose present in papermaking black liquor since it induces severe economic wastes and causes environmental pollution. We characterized cellulase activity at different temperatures and pH to seek thermo-alkali-stable cellulase-producing bacteria, a natural consortium of Serratia sp. AXJ-M and Arthrobacter sp. AXJ-M1 was used to improve the degradation of cellulose. Notably, the enzyme activities and the degradation rate of cellulose were increased by 30%-70% and 30% after co-culture, respectively. In addition, the addition of cosubstrates increased the degradation rate of cellulose beyond 30%. The thermo-alkali-stable endoglucanase (bcsZ) gene was derived from the strain AXJ-M and was cloned and expressed. The purified bcsZ displayed the maximum activity at 70 °C and pH 9. Mn2+, Ca2+, Mg2+ and Tween-20 had beneficial effects on the enzyme activity. Structurally, bcsZ potentially catalyzed the degradation of cellulose. The co-culture with ligninolytic activities significantly decreased target the parameters (cellulose 45% and COD 95%) while using the immobilized fluidized bed reactors (FBRs). Finally, toxicological tests and antioxidant enzyme activities indicated that the co-culture had a detoxifying effect on black liquor. Our study showed that Serratia sp. AXJ-M acts synergistically with Arthrobacter sp. AXJ-M1 may be potentially useful for bioremediation for black liquor.


Assuntos
Arthrobacter , Celulase , Álcalis , Arthrobacter/genética , Celulase/genética , Celulose , Serratia/genética
16.
Bioresour Technol ; 347: 126434, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34838969

RESUMO

Vanillin is a natural flavoring agent that is widely used in the bioengineering industry. To enable sustainable development, joint consideration of bacterial performance and negative environmental impacts are critical to vanillin biosynthesis. In this study, a cold shock protein (csp) gene was upregulated for maintaining stable growth in Arthrobacter sp. C2 responding to vanillin and cold stress. Furthermore, the recombinant strain C2 was constructed by simultaneously deleting the xylC gene encoding benzaldehyde dehydrase and overexpressing the pchF gene encoding vanillyl alcohol oxidase and achieved a maximum vanillin productivity of 0.85 mg/g DCW/h with alkaline lignin as the substrate. Finally, this process generated an environmental impact value of 25.05, which was the lowest environmental impact achieved according to life cycle assessment (LCA). Improvement strategies included reducing electricity consumption and replacing chemicals. This study achieved the development of an effective strategy, and future studies should focus on precise vanillin biosynthesis methods for large-scale application.


Assuntos
Arthrobacter , Lignina , Animais , Arthrobacter/genética , Benzaldeídos , Estágios do Ciclo de Vida
17.
J Agric Food Chem ; 69(43): 12773-12784, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694802

RESUMO

Due to its superior Δ1-dehydrogenation ability, Arthrobacter simplex has been widely used for the biotransformation of cortisone acetate (CA) into prednisone acetate (PA) in the steroid industry. However, its molecular fundamentals are still unclear. Herein, the genome organization, gene regulation, and previously unreported genes involved in Δ1-dehydrogenation are revealed through genome and transcriptome analysis. A comparative study of transcriptomes of an industrial strain induced by CA or at different biotransformation periods was performed. By overexpression, the roles of six genes in CA conversion were confirmed, among which sufC and hsaA behaved better by reinforcing catalytic enzyme activity and substrate transmembrane transport. Additionally, GroEL endowed cells with the strongest stress tolerance by alleviating oxidative damage and enhancing energy levels. Finally, an optimal strain was created by coexpressing three genes, achieving 46.8 and 70.6% increase in PA amount and productivity compared to the initial values, respectively. Our study expanded the understanding of the Δ1-dehydrogenation mechanism and offered an effective approach for excellent steroid-transforming strains.


Assuntos
Actinobacteria , Arthrobacter , Cortisona , Arthrobacter/genética , Transcriptoma
18.
Biotechnol Lett ; 43(12): 2223-2231, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34676500

RESUMO

OBJECTIVES: When citrate and pyruvate were utilized to strengthen ATP generation for high cAMP production, oxidative stress became more severe in cells resulting in lower cell viability and cAMP formation at the late fermentation phase. To further improve cAMP biosynthesis, the effects of polyphosphate on cAMP fermentation performance together with intracellular ATP and oxidation levels were investigated under high oxidative stress condition and then high efficient cAMP fermentation process based on polyphosphate and salvage synthesis was developed and studied. RESULTS: With 2 g/L-broth sodium hexametaphosphate added at 24 h was determined as the optimal condition for cAMP production by Arthrobacter sp. CCTCC 2013431 in shake flasks. Under high oxidative stress condition caused by adding 15 mg/L-broth menadione, cAMP contents and cell viability were improved greatly due to hexametaphosphate addition and also exceeded those of control (without hexametaphosphate and menadione added) when fermentations were conducted in a 7 L bioreactor. Meanwhile, ATP levels and antioxidant capacity were improved obviously by hexametaphosphate as well. Moreover, a fermentation process with hexametaphosphate and hypoxanthine coupling added was developed by which cAMP concentration reached 7.25 g/L with an increment of 87.1% when compared with only hypoxanthine added batch and the high ROS contents generated from salvage synthesis were reduced significantly. CONCLUSION: Polyphosphate could improve intracellular ATP levels and antioxidant capacity significantly under high oxidative stress condition resulting in enhanced cell viability and cAMP fermentation production no matter by de novo synthesis or salvage synthesis.


Assuntos
Antioxidantes/metabolismo , Arthrobacter/genética , AMP Cíclico/biossíntese , Polifosfatos/metabolismo , Trifosfato de Adenosina/metabolismo , Antioxidantes/química , Arthrobacter/metabolismo , AMP Cíclico/genética , Fosfatos/farmacologia
19.
PLoS One ; 16(9): e0257449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34529734

RESUMO

Despite the formation of biofilms on catheters for extracorporeal membrane oxygenation (ECMO), some patients do not show bacteremia. To elucidate the specific linkage between biofilms and bacteremia in patients with ECMO, an improved understanding of the microbial community within catheter biofilms is necessary. Hence, we aimed to evaluate the biofilm microbiome of ECMO catheters from adults with (n = 6) and without (n = 15) bacteremia. The microbiomes of the catheter biofilms were evaluated by profiling the V3 and V4 regions of bacterial 16s rRNA genes using the Illumina MiSeq sequencing platform. In total, 2,548,172 reads, with an average of 121,341 reads per sample, were generated. Although alpha diversity was slightly higher in the non-bacteremic group, the difference was not statistically significant. In addition, there was no difference in beta diversity between the two groups. We found 367 different genera, of which 8 were present in all samples regardless of group; Limnohabitans, Flavobacterium, Delftia, Massilia, Bacillus, Candidatus, Xiphinematobacter, and CL0-1 showed an abundance of more than 1% in the sample. In particular, Arthrobacter, SMB53, Neisseria, Ortrobactrum, Candidatus Rhabdochlamydia, Deefgae, Dyella, Paracoccus, and Pedobacter were highly abundant in the bacteremic group. Network analysis indicated that the microbiome of the bacteremic group was more complex than that of the non-bacteremic group. Flavobacterium and CL0.1, which were abundant in the bacteremic group, were considered important genera because they connected different subnetworks. Biofilm characteristics in ECMO catheters varied according to the presence or absence of bacteremia. There were no significant differences in diversity between the two groups, but there were significant differences in the community composition of the biofilms. The biofilm-associated community was dynamic, with the bacteremic group showing very complex network connections within the microbiome.


Assuntos
Bacteriemia/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Oxigenação por Membrana Extracorpórea/instrumentação , Microbiota , Arthrobacter/genética , Arthrobacter/isolamento & purificação , Arthrobacter/fisiologia , Bacteriemia/patologia , Bactérias/genética , Bactérias/isolamento & purificação , Biofilmes , Infecções Relacionadas a Cateter/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neisseria/genética , Neisseria/isolamento & purificação , Neisseria/fisiologia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Estudos Retrospectivos
20.
Bioresour Technol ; 340: 125634, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34325393

RESUMO

The bacterial degradation of isoprene is important for maintaining its atmospheric concentration in unpolluted environment. It may be possible to use natural isoprene degrading bacteria in engineered systems to eliminate or limit isoprene emissions from various sources. Biodegradation of isoprene by Arthrobacter sp. strain BHU FT2 was investigated. The genome was found to contain 4151545 bp long chromosome having 3747 coding genes, and coded potential isoprene degrading enzymes. The molecular docking of monooxygenases with isoprene displayed a higher binding energy (-4.59 kcal/mol) for WP_015938387.1 monooxygenase. Analysis of the identified monooxygenases with the known isoprene monooxygenases revealed 67% sequence identity of WP_015938387.1 (Locus tag JHV56_10705) monooxygenase of the considered strain with the OPX16961.1 monooxygenase of Gordonia sp. i37 isoprene degrading starin. These results provided a strong evidence for the high isoprene degrading potential of the Arthrobacter sp. BHU FT2 which could be efficiently exploited for isoprene degradation in large scale bio-filtration units.


Assuntos
Arthrobacter , Arthrobacter/genética , Biodegradação Ambiental , Butadienos , Genômica , Hemiterpenos , Simulação de Acoplamento Molecular , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...