Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.111
Filtrar
1.
BMC Psychiatry ; 24(1): 299, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641826

RESUMO

BACKGROUND: Despite ongoing research, the underlying causes of schizophrenia remain unclear. Aspartate and asparagine, essential amino acids, have been linked to schizophrenia in recent studies, but their causal relationship is still unclear. This study used a bidirectional two-sample Mendelian randomization (MR) method to explore the causal relationship between aspartate and asparagine with schizophrenia. METHODS: This study employed summary data from genome-wide association studies (GWAS) conducted on European populations to examine the correlation between aspartate and asparagine with schizophrenia. In order to investigate the causal effects of aspartate and asparagine on schizophrenia, this study conducted a two-sample bidirectional MR analysis using genetic factors as instrumental variables. RESULTS: No causal relationship was found between aspartate and schizophrenia, with an odds ratio (OR) of 1.221 (95%CI: 0.483-3.088, P-value = 0.674). Reverse MR analysis also indicated that no causal effects were found between schizophrenia and aspartate, with an OR of 0.999 (95%CI: 0.987-1.010, P-value = 0.841). There is a negative causal relationship between asparagine and schizophrenia, with an OR of 0.485 (95%CI: 0.262-0.900, P-value = 0.020). Reverse MR analysis indicates that there is no causal effect between schizophrenia and asparagine, with an OR of 1.005(95%CI: 0.999-1.011, P-value = 0.132). CONCLUSION: This study suggests that there may be a potential risk reduction for schizophrenia with increased levels of asparagine, while also indicating the absence of a causal link between elevated or diminished levels of asparagine in individuals diagnosed with schizophrenia. There is no potential causal relationship between aspartate and schizophrenia, whether prospective or reverse MR. However, it is important to note that these associations necessitate additional research for further validation.


Assuntos
Asparagina , Esquizofrenia , Humanos , Asparagina/genética , Ácido Aspártico/genética , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Estudos Prospectivos
2.
Plant Signal Behav ; 18(1): 2287883, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38019725

RESUMO

Soybean, a vital protein-rich crop, offers bioactivity that can mitigate various chronic human diseases. Nonetheless, soybean breeding poses a challenge due to the negative correlation between enhanced protein levels and overall productivity. Our previous studies demonstrated that applying gaseous phytohormone, ethylene, to soybean leaves significantly boosts the accumulation of free amino acids, particularly asparagine (Asn). Current studies also revealed that ethylene application to soybeans significantly enhanced both essential and non-essential amino acid contents in leaves and stems. Asn plays a crucial role in ammonia detoxification and reducing fatigue. However, the molecular evidence supporting this phenomenon remains elusive. This study explores the molecular mechanisms behind enhanced Asn accumulation in ethylene-treated soybean leaves. Transcriptional analysis revealed that ethylene treatments to soybean leaves enhance the transcriptional levels of key genes involved in Asn biosynthesis, such as aspartate aminotransferase (AspAT) and Asn synthetase (ASN), which aligns with our previous observations of elevated Asn levels. These findings shed light on the role of ethylene in upregulating Asn biosynthetic genes, subsequently enhancing Asn concentrations. This molecular insight into amino acid metabolism regulation provides valuable knowledge for the metabolic farming of crops, especially in elevating nutraceutical ingredients with non-genetic modification (GM) approach for improved protein content.


Assuntos
Asparagina , Glycine max , Aminoácidos/metabolismo , Asparagina/genética , Asparagina/análise , Asparagina/metabolismo , Etilenos/metabolismo , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo
3.
Epigenetics ; 18(1): 2268814, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839090

RESUMO

Asparaginase is an important agent for the treatment of acute lymphoblastic leukaemia (ALL), but it is occasionally associated with severe adverse events. Thus, for safer and more efficacious therapy, a clinical biomarker predicting asparaginase sensitivity is highly anticipated. Asparaginase depletes serum asparagine by deaminating asparagine into aspartic acid, and ALL cells are thought to be sensitive to asparaginase due to reduced asparagine synthetase (ASNS) activity. We have recently shown that allele-specific methylation of the ASNS gene is highly involved in asparaginase sensitivity in B-precursor ALL (BCP-ALL) by using next-generation sequence (NGS) analysis of bisulphite PCR products of the genomic DNA. Here, we sought to confirm the utility of methylation status of the ASNS gene evaluated with high-performance liquid chromatography (HPLC) analysis of bisulphite PCR products for future clinical applications. In the global methylation status of 23 CpG sites at the boundary region of promoter and exon 1 of the ASNS gene, a strong positive correlation was confirmed between the mean percent methylation evaluated with the HPLC method and that with the NGS method in 79 BCP-ALL cell lines (R2 = 0.85, p = 1.3 × 10-33) and in 63 BCP-ALL clinical samples (R2 = 0.84, p = 5.0 × 10-26). Moreover, methylation status of the ASNS gene evaluated with the HPLC method was significantly associated with in vitro asparaginase sensitivities as well as gene and protein expression levels of ASNS. These observations indicated that the ASNS gene methylation status evaluated with the HPLC method is a reliable biomarker for predicting the asparaginase sensitivity of BCP-ALL.


Assuntos
Aspartato-Amônia Ligase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginase/genética , Asparaginase/metabolismo , Asparaginase/uso terapêutico , Asparagina/genética , Asparagina/metabolismo , Asparagina/uso terapêutico , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Cromatografia Líquida de Alta Pressão , Farmacogenética , Metilação de DNA , Linhagem Celular Tumoral , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
4.
Cell Death Dis ; 14(8): 489, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528150

RESUMO

Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1) has been reported to play an oncogenic role in several cancers. However, the biological functions and regulatory mechanism of NUCKS1 in osteosarcoma have not been fully understood. In this study, we reported that NUCKS1 was significantly increased in osteosarcoma. Depletion of NUCKS1 decreased osteosarcoma cell proliferation and metastasis in vivo and in vitro. Overexpression of NUCKS1 accelerated osteosarcoma cell aggressiveness. Mechanistically, NUCKS1 facilitated asparagine (Asn) synthesis by transcriptionally upregulating asparagine synthetase (ASNS) expression and elevating the levels of Asn in osteosarcoma cells, leading to increased cell growth and metastasis. Inhibition of ASNS or reduction of Asn decreased osteosarcoma cell aggressiveness and impaired the promoting effects of NUCKS1 on tumorigenesis and metastasis. Furthermore, we also found that by acting as a sponge for miR-4768-3p, LINC00629 promoted NUCKS1 expression. Collectively, our findings highlight the role of NUCKS1 in regulating asparagine metabolism and reveal that LINC00629 is an important regulator of NUCKS1 that contributes to NUCKS1 upregulation in osteosarcoma.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , Linhagem Celular Tumoral , Asparagina/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação para Cima/genética , Osteossarcoma/patologia , Proliferação de Células/genética , MicroRNAs/genética , Neoplasias Ósseas/metabolismo
5.
Nat Commun ; 14(1): 4216, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452051

RESUMO

Malaria parasite lacks canonical pathways for amino acid biosynthesis and depends primarily on hemoglobin degradation and extracellular resources for amino acids. Interestingly, a putative gene for glutamine synthetase (GS) is retained despite glutamine being an abundant amino acid in human and mosquito hosts. Here we show Plasmodium GS has evolved as a unique type I enzyme with distinct structural and regulatory properties to adapt to the asexual niche. Methionine sulfoximine (MSO) and phosphinothricin (PPT) inhibit parasite GS activity. GS is localized to the parasite cytosol and abundantly expressed in all the life cycle stages. Parasite GS displays species-specific requirement in Plasmodium falciparum (Pf) having asparagine-rich proteome. Targeting PfGS affects asparagine levels and inhibits protein synthesis through eIF2α phosphorylation leading to parasite death. Exposure of artemisinin-resistant Pf parasites to MSO and PPT inhibits the emergence of viable parasites upon artemisinin treatment.


Assuntos
Artemisininas , Parasitos , Animais , Humanos , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Asparagina/genética , Aminoácidos , Glutamina/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Artemisininas/farmacologia , Parasitos/genética , Parasitos/metabolismo
6.
J Pak Med Assoc ; 73(7): 1521-1523, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37469072

RESUMO

Asparagine-linked glycosylation thirteen (ALG13) gene-related congenital disorders of glycosylation (CDGs) include early onset epileptic encephalopathy (EIEE), developmental delays (DD) with intellectual disability (ID), speech and visual abnormalities, and haematologic and endocrine dysfunctions. Worldwide there is a scarcity of available data on this. To add to this scarce data, we report the case of a young girl with this rare genetic mutation who showed remarkable improvement in her seizures by addition of ketogenic diet (KD) to her management regimen. With an already high rate of consanguineous marriages, metabolic and genetic errors are widely prevalent; hence, to bridge the huge gap in the understanding of such diseases, further research and trials are needed to be carried out to improve identification of the disease along with outcomes.


Assuntos
Dieta Cetogênica , Espasmos Infantis , Humanos , Feminino , Asparagina/genética , Glicosilação , Espasmos Infantis/genética , Mutação , N-Acetilglucosaminiltransferases/genética
7.
Cancer Res ; 83(14): 2372-2386, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37159932

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and has a poor prognosis. Pituitary tumor transforming gene 1 (PTTG1) is highly expressed in HCC, suggesting it could play an important role in hepatocellular carcinogenesis. Here, we evaluated the impact of PTTG1 deficiency on HCC development using a diethylnitrosamine (DEN)-induced HCC mouse model and a hepatitis B virus (HBV) regulatory X protein (HBx)-induced spontaneous HCC mouse model. PTTG1 deficiency significantly suppressed DEN- and HBx-induced hepatocellular carcinogenesis. Mechanistically, PTTG1 promoted asparagine synthetase (ASNS) transcription by binding to its promoter, and asparagine (Asn) levels were correspondingly increased. The elevated levels of Asn subsequently activated the mTOR pathway to facilitate HCC progression. In addition, asparaginase treatment reversed the proliferation induced by PTTG1 overexpression. Furthermore, HBx promoted ASNS and Asn metabolism by upregulating PTTG1 expression. Overall, PTTG1 is involved in the reprogramming of Asn metabolism to promote HCC progression and may serve as a therapeutic and diagnostic target for HCC. SIGNIFICANCE: PTTG1 is upregulated in hepatocellular carcinoma and increases asparagine production to stimulate mTOR activity and promote tumor progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Asparagina/genética , Asparagina/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Vírus da Hepatite B/metabolismo , Neoplasias Hepáticas/patologia , Prognóstico , Serina-Treonina Quinases TOR/metabolismo
8.
Plant Genome ; 16(4): e20335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37138544

RESUMO

Wheat (Triticum aestivum L.) is a major source of nutrients for populations across the globe, but the amino acid composition of wheat grain does not provide optimal nutrition. The nutritional value of wheat grain is limited by low concentrations of lysine (the most limiting essential amino acid) and high concentrations of free asparagine (precursor to the processing contaminant acrylamide). There are currently few available solutions for asparagine reduction and lysine biofortification through breeding. In this study, we investigated the genetic architecture controlling grain free amino acid composition and its relationship to other traits in a Robigus × Claire doubled haploid population. Multivariate analysis of amino acids and other traits showed that the two groups are largely independent of one another, with the largest effect on amino acids being from the environment. Linkage analysis of the population allowed identification of quantitative trait loci (QTL) controlling free amino acids and other traits, and this was compared against genomic prediction methods. Following identification of a QTL controlling free lysine content, wheat pangenome resources facilitated analysis of candidate genes in this region of the genome. These findings can be used to select appropriate strategies for lysine biofortification and free asparagine reduction in wheat breeding programs.


Assuntos
Aminoácidos , Triticum , Aminoácidos/genética , Mapeamento Cromossômico , Triticum/genética , Triticum/química , Asparagina/análise , Asparagina/genética , Lisina/genética , Melhoramento Vegetal , Grão Comestível/genética , Reino Unido
9.
Planta ; 257(5): 95, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036535

RESUMO

MAIN CONCLUSION: The keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced reutilization of reserves in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. Soil alkalization of farmlands is increasingly serious, adversely restricting crop growth and endangering food security. Here, based on integrated analysis of transcriptomics and metabolomics, we systematically investigated changes in cotyledon weight and young root growth in response to alkali stress in two ecotypes of wild soybean after germination to reveal alkali-resistance mechanisms in barren-tolerant wild soybean. Compared with barren-tolerant wild soybean, the dry weight of common wild soybean cotyledons under alkali stress decreased slowly and the length of young roots shortened. In barren-tolerant wild soybean, nitrogen-transport amino acids asparagine and glutamate decreased in cotyledons but increased in young roots, and nitrogen-compound transporter genes and genes involved in asparagine metabolism were significantly up-regulated in both cotyledons and young roots. Moreover, isocitric, succinic, and L-malic acids involved in the glyoxylate cycle significantly accumulated and the malate synthetase gene was up-regulated in barren-tolerant wild soybean cotyledons. In barren-tolerant wild soybean young roots, glutamate and glycine related to glutathione metabolism increased significantly and the glutathione reductase gene was up-regulated. Pyruvic acid and citric acid involved in pyruvate-citrate metabolism increased distinctly and genes encoding pyruvate decarboxylase and citrate synthetase were up-regulated. Integrated analysis showed that the keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced protein decomposition, amino acid transport, and lipolysis in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. This study provides new ideas for the exploitation and utilization of wild soybean resources.


Assuntos
Fabaceae , Glycine max , Glycine max/metabolismo , Germinação , Transcriptoma , Álcalis/metabolismo , Asparagina/genética , Asparagina/metabolismo , Antioxidantes/metabolismo , Fabaceae/genética , Nitrogênio/metabolismo , Citratos/metabolismo , Glutamatos/genética , Glutamatos/metabolismo
10.
Nutrients ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111157

RESUMO

The natural amino acid asparagine (Asn) is required by cells to sustain function and proliferation. Healthy cells can synthesize Asn through asparagine synthetase (ASNS) activity, whereas specific cancer and genetically diseased cells are forced to obtain asparagine from the extracellular environment. ASNS catalyzes the ATP-dependent synthesis of Asn from aspartate by consuming glutamine as a nitrogen source. Asparagine Synthetase Deficiency (ASNSD) is a disease that results from biallelic mutations in the ASNS gene and presents with congenital microcephaly, intractable seizures, and progressive brain atrophy. ASNSD often leads to premature death. Although clinical and cellular studies have reported that Asn deprivation contributes to the disease symptoms, the global metabolic effects of Asn deprivation on ASNSD-derived cells have not been studied. We analyzed two previously characterized cell culture models, lymphoblastoids and fibroblasts, each carrying unique ASNS mutations from families with ASNSD. Metabolomics analysis demonstrated that Asn deprivation in ASNS-deficient cells led to disruptions across a wide range of metabolites. Moreover, we observed significant decrements in TCA cycle intermediates and anaplerotic substrates in ASNS-deficient cells challenged with Asn deprivation. We have identified pantothenate, phenylalanine, and aspartate as possible biomarkers of Asn deprivation in normal and ASNSD-derived cells. This work implies the possibility of a novel ASNSD diagnostic via targeted biomarker analysis of a blood draw.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Aspartato-Amônia Ligase , Deficiência Intelectual , Microcefalia , Humanos , Asparagina/genética , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/química , Aspartato-Amônia Ligase/metabolismo , Ácido Aspártico , Deficiência Intelectual/genética , Atrofia
11.
Anal Biochem ; 668: 115099, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871622

RESUMO

Recombinant adeno-associated viral (AAV) vectors have taken center stage as gene delivery vehicles for gene therapy. Asparagine deamidation of AAV capsid proteins has been reported to reduce vector stability and potency of AAV gene therapy products. Deamidation of asparagine residue is a common post-translational modification of proteins that is detected and quantified by liquid chromatography-tandem mass spectrometry (LC-MS)-based peptide mapping. However, artificial deamidation can be spontaneously induced during sample preparation for peptide mapping prior to LC-MS analysis. We have developed an optimized sample preparation method to reduce and minimize deamidation artifacts induced during sample preparation for peptide mapping, which typically takes several hours to complete. To shorten turnaround time of deamidation results and to avoid artificial deamidation, we developed orthogonal RPLC-MS and RPLC-fluorescence detection methods for direct deamidation analysis at the intact AAV9 capsid protein level to routinely support downstream purification, formulation development, and stability testing. Similar trends of increasing deamidation of AAV9 capsid proteins in stability samples were observed at the intact protein level and peptide level, indicating that the developed direct deamidation analysis of intact AAV9 capsid proteins is comparable to the peptide mapping-based deamidation analysis and both methods are suitable for deamidation monitoring of AAV9 capsid proteins.


Assuntos
Proteínas do Capsídeo , Cromatografia de Fase Reversa , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/análise , Cromatografia de Fase Reversa/métodos , Dependovirus/genética , Dependovirus/metabolismo , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Sorogrupo
12.
J Pediatr Endocrinol Metab ; 36(4): 409-413, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36843332

RESUMO

OBJECTIVES: Asparagine-dependent glycosylation 11-congenital disorders of glycosylation (ALG11-CDG) is a rare autosomal recessive N-glycosylation defect with multisystem involvement particularly neurological symptoms such as epilepsy and neuromotor developmental delay. CASE PRESENTATION: A 31-month-old male patient admitted to our center with complaints of axial hypotonia, drug-resistant myoclonic seizures, microcephaly and deafness. The electroencephalography (EEG) showed a burst-suppression pattern without hypsarrhythmia. Basal metabolic investigations were unremarkable. Progressive cerebral atrophy, hypomyelination and corpus callosum hypoplasia were striking features in brain MRI images taken during our follow-up. Compound heterozygous mutations of the ALG11 gene were found by whole exome sequencing (WES) analysis. It was determined that the c.476T>C mutation is a novel mutation. CDG type 1 pattern was detected with the examination of carbohydrate-deficient transferrin (CDT) by capillary zone electrophoresis. CONCLUSIONS: In patients with a possible congenital defect of glycosylation, a screening test such as CDT analysis is suggested. To discover novel mutations in this rare disease group, expanded genetic analysis should be performed.


Assuntos
Asparagina , Defeitos Congênitos da Glicosilação , Humanos , Masculino , Pré-Escolar , Glicosilação , Asparagina/genética , Defeitos Congênitos da Glicosilação/genética , Mutação , Convulsões , Manosiltransferases/genética
13.
Physiol Plant ; 175(1): e13863, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36688582

RESUMO

Salt stress has become one of the main factors limiting crop yield in recent years. The post-germinative growth is most sensitive to salt stress in soybean. In this study, cultivated and wild soybeans were used for an integrated metabonomics and transcriptomics analysis to determine whether wild soybean can resist salt stress by maintaining the mobilization of stored substances in cotyledons and the balance of carbon and nitrogen in the hypocotyl/root axis (HRA). Compared with wild soybean, the growth of cultivated soybean was significantly inhibited during the post-germinative growth period under salt stress. Integrating analysis found that the breakdown products of proteins, such as glutamate, glutamic acid, aspartic acid, and asparagine, increased significantly in wild soybean cotyledons. Asparagine synthase and fumarate hydratase genes and genes encoding HSP20 family proteins were specifically upregulated. In wild soybean HRA, levels of glutamic acid, aspartic acid, asparagine, citric acid, and succinic acid increased significantly, and the glutamate decarboxylase gene and the gene encoding carbonic anhydrase in nitrogen metabolism were significantly upregulated. The metabolic model indicated that wild soybean enhanced the decomposition of stored proteins and the transport of amino acids to the HRA in cotyledons and the GABA shunt to maintain carbon and nitrogen balance in the HRA to resist salt stress. This study provided a theoretical basis for cultivating salt-tolerant soybean varieties and opened opportunities for the development of sustainable agricultural practices.


Assuntos
Fabaceae , Glycine max , Glycine max/metabolismo , Hipocótilo/metabolismo , Cotilédone/metabolismo , Tolerância ao Sal/genética , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Fabaceae/metabolismo , Ácido Glutâmico , Nitrogênio/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
14.
J Chem Inf Model ; 63(1): 270-280, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36469738

RESUMO

The l-asparaginase (l-ASNase) enzyme catalyzes the conversion of the non-essential amino acid l-asparagine into l-aspartic acid and ammonia. Importantly, the l-ASNases are used as a key part of the treatment of acute lymphoblastic leukemia (ALL); however, despite their benefits, they trigger severe side effects because they have their origin in bacterial species (Escherichia coli and Erwinia chrysanthemi). Therefore, one way to solve these side effects is the use of l-ASNases with characteristics similar to those of bacterial types, but from different sources. In this sense, Cavia porcellus l-ASNase (CpA) of mammalian origin is a promising enzyme because it possesses similarities with bacterial species. In this work, the hydrolysis reaction for C. porcellus l-asparaginase was studied from an atomistic point of view. The QM/MM methodology was employed to describe the reaction, from which it was found that the conversion mechanism of l-asparagine into l-aspartic acid occurs in four steps. It was identified that the nucleophilic attack and release of the ammonia group is the rate-limiting step of the reaction. In this step, the nucleophile (Thr19) attacks the substrate (ASN) leading to the formation of a covalent intermediate and release of the leaving group (ammonia). The calculated energy barrier is 18.9 kcal mol-1, at the M06-2X+D3(0)/6-311+G(2d,2p)//CHARMM36 level of theory, which is in agreement with the kinetic data available in the literature, 15.9 kcal mol-1 (derived from the kcat value of 38.6 s-1). These catalytic aspects will hopefully pave the way toward enhanced forms of CpA. Finally, our work emphasizes that computational calculations may enhance the rational design of mutations to improve the catalytic properties of the CpA enzyme.


Assuntos
Asparaginase , Asparagina , Animais , Cobaias/metabolismo , Amônia/química , Asparaginase/genética , Asparaginase/metabolismo , Asparaginase/uso terapêutico , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico , Mamíferos/metabolismo , Mutação
15.
Genes (Basel) ; 13(11)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36360251

RESUMO

This research aimed to investigate heat shock proteins in the tomato genome through the analysis of amino acids. The highest length among sequences was found in seq19 with 3534 base pairs. This seq19 was reported and contained a family of proteins known as HsfA that have a domain of transcriptional activation for tolerance to heat and other abiotic stresses. The values of the codon adaptation index (CAI) ranged from 0.80 in Seq19 to 0.65 in Seq10, based on the mRNA of heat shock proteins for tomatoes. Asparagine (AAT, AAC), aspartic acid (GAT, GAC), phenylalanine (TTT, TTC), and tyrosine (TAT, TAC) have relative synonymous codon usage (RSCU) values bigger than 0.5. In modified relative codon bias (MRCBS), the high gene expressions of the amino acids under heat stress were histidine, tryptophan, asparagine, aspartic acid, lysine, phenylalanine, isoleucine, cysteine, and threonine. RSCU values that were less than 0.5 were considered rare codons that affected the rate of translation, and thus selection could be effective by reducing the frequency of expressed genes under heat stress. The normal distribution of RSCU shows about 68% of the values drawn from the standard normal distribution were within 0.22 and -0.22 standard deviations that tend to cluster around the mean. The most critical component based on principal component analysis (PCA) was the RSCU. These findings would help plant breeders in the development of growth habits for tomatoes during breeding programs.


Assuntos
Aminoácidos , Solanum lycopersicum , Aminoácidos/genética , Solanum lycopersicum/genética , Proteínas de Choque Térmico/genética , Ácido Aspártico/genética , Asparagina/genética , Melhoramento Vegetal , Códon/genética , Fenilalanina/genética
16.
Nat Plants ; 8(10): 1176-1190, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36241735

RESUMO

Cold stress negatively affects maize (Zea mays L.) growth, development and yield. Metabolic adjustments contribute to the adaptation of maize under cold stress. We show here that the transcription factor INDUCER OF CBF EXPRESSION 1 (ZmICE1) plays a prominent role in reprogramming amino acid metabolome and COLD-RESPONSIVE (COR) genes during cold stress in maize. Derivatives of amino acids glutamate/asparagine (Glu/Asn) induce a burst of mitochondrial reactive oxygen species, which suppress the cold-mediated induction of DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 1 (ZmDREB1) genes and impair cold tolerance. ZmICE1 blocks this negative regulation of cold tolerance by directly repressing the expression of the key Glu/Asn biosynthesis genes, ASPARAGINE SYNTHETASEs. Moreover, ZmICE1 directly regulates the expression of DREB1s. Natural variation at the ZmICE1 promoter determines the binding affinity of the transcriptional activator ZmMYB39, a positive regulator of cold tolerance in maize, resulting in different degrees of ZmICE1 transcription and cold tolerance across inbred lines. This study thus unravels a mechanism of cold tolerance in maize and provides potential targets for engineering cold-tolerant varieties.


Assuntos
Regulação da Expressão Gênica de Plantas , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Asparagina/genética , Asparagina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glutamatos/genética , Glutamatos/metabolismo , Ligases/genética , Estresse Fisiológico/genética
17.
BMC Med Genomics ; 15(1): 222, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284275

RESUMO

INTRODUCTION AND OBJECTIVES: hepatocellular carcinoma (HCC) is the major form of liver cancer with a poor prognosis. Amino acid metabolism has been found to alter in cancers and contributes to malignant progression. However, the asparagine metabolism status and relevant mechanism in HCC were barely understood. METHODS: By conducting consensus clustering and the least absolute shrinkage and selection operator regression of HCC samples from three cohorts, we classified the HCC patients into two subtypes based on asparagine metabolism level. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set Enrichment Analysis of the differentially expressed genes between two subgroups were conducted. Immune cell infiltration was evaluated using CIBERSORT algorithm. The prognostic values of genes were analyzed by univariate and multivariate cox regression, ROC curve and Kaplan-Meier survival estimate analyses. Cell types of sing-cell RNA sequencing (scRNA-seq) data were clustered utilizing UMAP method. RESULTS: HCC patients with higher asparagine metabolism level have worse prognoses. Moreover, we found the distinct energy metabolism patterns, DNA damage response (DDR) pathway activating levels, drug sensitivities to DDR inhibitors, immune cell compositions in the tumor microenvironment and responses to immune therapy between two subgroups. Further, we identified a potential target gene, glutamic-oxaloacetic transaminase 2 (GOT2). GOT2 downregulation was associated with worse HCC prognosis and increased infiltration of T regulatory cells (Tregs). ScRNA-seq revealed the GOT2 downregulation in cancer stem cells compared with HCC cells. CONCLUSIONS: Taken together, HCC subtype which is more reliant on asparagine and glutamine metabolism has a worse prognosis, and a core gene of asparagine metabolism GOT2 is a potential prognostic marker and therapeutic target of HCC. Our study promotes the precision therapy of HCC and may improve patient outcomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Asparagina/genética , Glutamina/genética , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Prognóstico , Aspartato Aminotransferases , Microambiente Tumoral
18.
PLoS One ; 17(10): e0275367, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36251712

RESUMO

A 3-months old Chinese shar-pei puppy with ichthyosis was investigated. The dog showed generalized scaling, alopecia and footpad lesions. Histopathological examinations demonstrated a non-epidermolytic hyperkeratosis. The parents of the affected puppy did not show any skin lesions. A trio whole genome sequencing analysis identified a heterozygous de novo 3 bp deletion in the KRT1 gene in the affected dog. This variant, NM_001003392.1:c.567_569del, is predicted to delete a single asparagine from the conserved coil 1A motif within the rod domain of KRT1, NP_001003392.1:p.(Asn190del). Immunohistochemistry demonstrated normal levels of KRT1 expression in the epidermis and follicular epithelia. This might indicate that the variant possibly interferes with keratin dimerization or another function of KRT1. Missense variants affecting the homologous asparagine residue of the human KRT1 cause epidermolytic hyperkeratosis. Histologically, the investigated Chinese shar-pei showed a non-epidermolytic ichthyosis. The finding of a de novo variant in an excellent functional candidate gene strongly suggests that KRT1:p.Asn190del caused the ichthyosis phenotype in the affected Chinese shar-pei. To the best of our knowledge, this is the first description of a KRT1-related non-epidermolytic ichthyosis in domestic animals.


Assuntos
Hiperceratose Epidermolítica , Ictiose , Queratina-1 , Animais , Cães , Humanos , Lactente , Asparagina/genética , China , Hiperceratose Epidermolítica/genética , Hiperceratose Epidermolítica/patologia , Hiperceratose Epidermolítica/veterinária , Ictiose/genética , Ictiose/veterinária , Queratina-1/genética , Queratina-10/genética , Queratinas/genética , Mutação
19.
Front Immunol ; 13: 995191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248868

RESUMO

Background: Adenosine deaminase 2 (ADA2) is a homodimeric, extracellular enzyme and putative growth factor that is produced by cells of the myeloid lineage and, catalytically, deaminates extracellular adenosine to inosine. Loss-of-(catalytic)-function variants in the ADA2 gene are associated with Deficiency of ADA2 (DADA2), an autosomal recessive disease associated with an unusually broad range of inflammatory manifestations including vasculitis, hematological defects and cytopenia. Previous work by our group led to the identification of ADA2 variants of novel association with DADA2, among which was a unique c.1052T>A (p.Leu351Gln; herein referred to as L351Q) variant located in the catalytic domain of the protein. Methods: Mammalian (Flp-IN CHO) cells were engineered to stably express wild-type ADA2 and ADA2 protein variants, including the pathogenic L351Q variant identified in DADA2 patients. An enzyme assay and immunoblotting were used to assess ADA2 catalytic activity and secretion, respectively, and the outcome of experimentally induced inhibition of protein processing (Golgi transport and N-linked glycosylation) was assessed. Reverse transcription quantitative real-time PCR (RT-qPCR) was applied to determine the relative expression of Type I Interferon stimulated genes (ISGs), IFIT3 and IRF7. Results: In addition to abrogating catalytic activity, the L351Q variant impaired secretion of L351Q ADA2 resulting in an intracellular accumulation of L351Q ADA2 protein that was not observed in cells expressing wild-type ADA2 or other ADA2 protein variants. Retention of L351Q ADA2 was not attributable to impaired glycosylation on neighboring asparagine residues and did not impact cell growth or integrity. Constitutive expression of Type I ISGs IFIT3 and IRF7 was observed in cells expressing L351Q ADA2. Conclusions: The impaired secretion of L351Q ADA2 may be an important factor leading to the severe phenotype observed in patients with this variant further emphasizing the importance of assessing impacts beyond catalytic activity when evaluating genotype-phenotype relationships in DADA2.


Assuntos
Adenosina Desaminase , Interferon Tipo I , Adenosina , Adenosina Desaminase/genética , Animais , Asparagina/genética , Expressão Gênica , Inosina , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interferon Tipo I/genética , Mamíferos/genética , Mutação
20.
Oncogene ; 41(44): 4855-4865, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36182969

RESUMO

Amino acid restriction has recently emerged as a compelling strategy to inhibit tumor growth. Recent work suggests that amino acids can regulate cellular signaling in addition to their role as biosynthetic substrates. Using lymphoid cancer cells as a model, we found that asparagine depletion acutely reduces the expression of c-MYC protein without changing its mRNA expression. Furthermore, asparagine depletion inhibits the translation of MYC mRNA without altering the rate of MYC protein degradation. Of interest, the inhibitory effect on MYC mRNA translation during asparagine depletion is not due to the activation of the general controlled nonderepressible 2 (GCN2) pathway and is not a consequence of the inhibition of global protein synthesis. In addition, both the 5' and 3' untranslated regions (UTRs) of MYC mRNA are not required for this inhibitory effect. Finally, using a MYC-driven mouse B cell lymphoma model, we found that shRNA inhibition of asparagine synthetase (ASNS) or pharmacological inhibition of asparagine production can significantly reduce the MYC protein expression and tumor growth when environmental asparagine becomes limiting. Since MYC is a critical oncogene, our results uncover a molecular connection between MYC mRNA translation and asparagine bioavailability and shed light on a potential to target MYC oncogene post-transcriptionally through asparagine restriction.


Assuntos
Asparagina , Neoplasias , Camundongos , Animais , Asparagina/genética , Asparagina/metabolismo , Disponibilidade Biológica , Genes myc , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias/genética , Aminoácidos/metabolismo , Regiões 3' não Traduzidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...