Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 16(8): 1377-1389, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34338505

RESUMO

Baculiferins are a group of marine sponge-derived polycyclic alkaloids with anti-HIV (human immunodeficiency virus) activities. To identify additional baculiferin-based congeners for SAR analysis and to investigate the mode of action, a total of 18 new baculiferin-type derivatives were synthesized. The inhibitory activities of the congeners against the HIV-1 virus were evaluated in vitro, and the relevant SAR was discussed. Compound 18 exerted the most potent activity toward VSV-G-pseudotyped HIV-1 (IC50 of 3.44 µM) and HIV-1 strain SF33 (IC50 of 2.80 µM) in vitro. To identify the cellular targets, three photoaffinity baculiferin probes were simultaneously synthesized. Photoaffinity labeling experiments together with LC-MS/MS data identified aspartate-tRNA ligase (DARS) as a putative target protein of 18. The overexpression and knockdown of DARS in HEK293T cells provided additional data to demonstrate that DARS is a potential target protein in the regulation of HIV virus infection. The modes of antiviral baculiferins 13 and 18 binding to DARS were determined by a molecular docking simulation. Thus, baculiferin 18 is considered a promising lead as a new molecular target for the development of anti-HIV agents.


Assuntos
Alcaloides/farmacologia , Fármacos Anti-HIV/farmacologia , Aspartato-tRNA Ligase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , Alcaloides/síntese química , Alcaloides/metabolismo , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/metabolismo , Aspartato-tRNA Ligase/química , Aspartato-tRNA Ligase/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Marcadores de Fotoafinidade/síntese química , Marcadores de Fotoafinidade/metabolismo , Marcadores de Fotoafinidade/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
2.
ACS Chem Biol ; 15(2): 407-415, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31869198

RESUMO

The pyrimidine-containing Trojan horse antibiotics albomycin and a recently discovered cytidine-containing microcin C analog target the class II seryl- and aspartyl-tRNA synthetases (serRS and aspRS), respectively. The active components of these compounds are competitive inhibitors that mimic the aminoacyl-adenylate intermediate. How they effectively substitute for the interactions mediated by the canonical purine group is unknown. Employing nonhydrolyzable aminoacyl-sulfamoyl nucleosides substituting the base with cytosine, uracil, and N3-methyluracil the structure-activity relationship of the natural compounds was evaluated. In vitro using E. coli serRS and aspRS, the best compounds demonstrated IC50 values in the low nanomolar range, with a clear preference for cytosine or N3-methyluracil over uracil. X-ray crystallographic structures of K. pneumoniae serRS and T. thermophilus aspRS in complex with the compounds showed the contribution of structured waters and residues in the conserved motif-2 loop in defining base preference. Utilizing the N3-methyluracil bound serRS structure, MD simulations of the fully modified albomycin base were performed to identify the interacting network that drives stable association. This analysis pointed to key interactions with a methionine in the motif-2 loop. Interestingly, this residue is mutated to a glycine in a second serRS (serRS2) found in albomycin-producing actinobacteria possessing self-immunity to this antibiotic. A comparative study demonstrated that serRS2 is poorly inhibited by the pyrimidine-containing intermediate analogs, and an equivalent mutation in E. coli serRS significantly decreased the affinity of the cytosine congener. These findings highlight the crucial role of dynamics and solvation of the motif-2 loop in modulating the binding of the natural antibiotics.


Assuntos
Antibacterianos/metabolismo , Aspartato-tRNA Ligase/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Nucleosídeos de Pirimidina/metabolismo , Serina-tRNA Ligase/antagonistas & inibidores , Sequência de Aminoácidos , Antibacterianos/química , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Inibidores Enzimáticos/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Família Multigênica , Mutação , Ligação Proteica , Nucleosídeos de Pirimidina/química , Serina-tRNA Ligase/genética , Serina-tRNA Ligase/metabolismo , Relação Estrutura-Atividade
3.
Sci Rep ; 8(1): 12664, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140040

RESUMO

Mycobacterium tuberculosis, the causative agent of tuberculosis, has surpassed HIV as the leading cause of death due to an infectious disease worldwide, being responsible for more than 1.5 million deaths in low-income countries. In response to a pandemic threat by drug resistant strains, the tuberculosis research community is searching for new chemical entities with novel mechanisms of action to avoid drug resistance and shorten treatment regimens using combinatorial chemotherapy. Herein, we have identified several novel chemical scaffolds, GSK97C (spiro-oxazolidin-2-one), GSK93A (2-amino-1,3-thiazole, GSK85A and GSK92A (enamides), which target M. tuberculosis aspartyl-tRNA synthetase (Mt-AspRS), an essential component of the protein synthesis machinery of tuberculosis, using a whole-cell target-based screening strategy against a genetically modified Mycobacterium bovis BCG strain. We also provide further evidence of protein inhibition and inhibitor profiling through a classical aminoacylation reaction and a tRNA-independent assay, respectively. Altogether, our results have identified a number of hit new molecules with novel mechanism of action for further development through medicinal chemistry as hits and leads.


Assuntos
Antituberculosos/farmacologia , Aspartato-tRNA Ligase/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Aspartato-tRNA Ligase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/enzimologia
4.
J Am Chem Soc ; 138(48): 15690-15698, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934031

RESUMO

Microcin C and related antibiotics are Trojan-horse peptide-adenylates. The peptide part is responsible for facilitated transport inside the sensitive cell, where it gets processed to release a toxic warhead-a nonhydrolyzable aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. Adenylation of peptide precursors is carried out by MccB THIF-type NAD/FAD adenylyltransferases. Here, we describe a novel microcin C-like compound from Bacillus amyloliquefaciens. The B. amyloliquefaciens MccB demonstrates an unprecedented ability to attach a terminal cytidine monophosphate to cognate precursor peptide in cellular and cell free systems. The cytosine moiety undergoes an additional modification-carboxymethylation-that is carried out by the C-terminal domain of MccB and the MccS enzyme that produces carboxy-SAM, which serves as a donor of the carboxymethyl group. We show that microcin C-like compounds carrying terminal cytosines are biologically active and target aspartyl-tRNA synthetase, and that the carboxymethyl group prevents resistance that can occur due to modification of the warhead. The results expand the repertoire of known enzymatic modifications of peptides that can be used to obtain new biological activities while avoiding or limiting bacterial resistance.


Assuntos
Antibacterianos/farmacologia , Aspartato-tRNA Ligase/antagonistas & inibidores , Bacillus amyloliquefaciens/química , Bacteriocinas/farmacologia , Inibidores Enzimáticos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Bacteriocinas/química , Bacteriocinas/isolamento & purificação , Biologia Computacional , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Estrutura Molecular
6.
J Mol Model ; 20(6): 2266, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24842326

RESUMO

Lymphatic filariasis (LF) is a vector borne infectious disease caused by the nematode Wuchereria bancrofti, Brugia malayi, and Brugia timori. Over 120 million people are affected by LF in the world, of which two-thirds are in Asia. The infection restricts the normal flow of lymph from the infected area resulting in swelling of the extremities and causing permanent disability. As the available drugs for the treatment of LF are becoming ineffective due to the development of resistance, there is an urgent need to find new leads for drug development. In this study, asparaginyl-tRNA synthetase (AsnRS; PDB ID: 2XGT) essential for the protein bio-synthesis in the filarial nematode was used to carry out virtual screening (VS) of plant constituents from traditional Chinese medicine (TCM) database. Docking as well as E-pharmacophore based VS were carried out to identify the hits. The top scoring hits, Agri 1 (1,3,8-trihydroxy-4,5-dimethoxyxanthen-9-one-3-O-beta-D-glucopyranoside) and Agri 2 (5,7-dihydroxy-2-propylchromone 7-O-beta-D-glucopyranoside), constituents of Agrimonia pilosa, were selected for molecular dynamics (MD) simulation study for 10 ns. MD simulation showed that both the glycosides Agri 1 and Agri 2 were forming stable interactions with the target protein. Moreover, docking and MD simulation of the lead A (1,3,8-trihydroxy-4,5-dimethoxyxanthen-9-one; Mol. Wt.: 304.25; CLogP: 3.07) and lead B (5,7-dihydroxy-2-propylchromone; Mol. Wt.: 220.22; CLogP: 3.02), the aglycones of Agri 1 and Agri 2, respectively, were carried out with the target AsnRS. The in silico investigations of the aglycones suggest that the lead B could be a suitable fragment-like lead molecule for anti-filarial drug discovery.


Assuntos
Aspartato-tRNA Ligase/antagonistas & inibidores , Brugia Malayi/efeitos dos fármacos , Bases de Dados de Produtos Farmacêuticos , Medicamentos de Ervas Chinesas/farmacologia , Filariose Linfática/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Filaricidas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Aminoacil-RNA de Transferência/antagonistas & inibidores , Wuchereria bancrofti/efeitos dos fármacos , Animais , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Sítios de Ligação , Brugia Malayi/enzimologia , Desenho Assistido por Computador , Desenho de Fármacos , Medicamentos de Ervas Chinesas/química , Filariose Linfática/diagnóstico , Filariose Linfática/parasitologia , Inibidores Enzimáticos/química , Filaricidas/química , Humanos , Ligantes , Estrutura Molecular , Terapia de Alvo Molecular , Ligação Proteica , Conformação Proteica , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Relação Estrutura-Atividade , Wuchereria bancrofti/enzimologia
7.
PLoS One ; 8(11): e79234, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223911

RESUMO

Microcin C analogues were recently envisaged as important compounds for the development of novel antibiotics. Two issues that may pose problems to these potential antibiotics are possible acquisition of resistance through acetylation and in vivo instability of the peptide chain. N-methylated aminoacyl sulfamoyladenosines were synthesized to investigate their potential as aminoacyl tRNA synthetase inhibitors and to establish whether these N-alkylated analogues would escape the natural inactivation mechanism via acetylation of the alpha amine. It was shown however, that these compounds are not able to effectively inhibit their respective aminoacyl tRNA synthetase. In addition, we showed that (D)-aspartyl-sulfamoyladenosine (i.e. with a (D)-configuration for the aspartyl moiety), is a potent inhibitor of aspartyl tRNA synthetase. However, we also showed that the inhibitory effect of (D)- aspartyl-sulfamoyladenosine is relatively short-lasting. Microcin C analogues with (D)-amino acids throughout from positions two to six proved inactive. They were shown to be resistant against metabolism by the different peptidases and therefore not able to release the active moiety. This observation could not be reversed by incorporation of (L)-amino acids at position six, showing that none of the available peptidases exhibit endopeptidase activity.


Assuntos
Aminoácidos/química , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Bacteriocinas/química , Bacteriocinas/farmacologia , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacologia , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Aspartato-tRNA Ligase/antagonistas & inibidores , Aspartato-tRNA Ligase/química , Aspartato-tRNA Ligase/metabolismo , Biocatálise/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Estrutura Molecular , Sulfonamidas/química , Sulfonamidas/farmacologia , Fatores de Tempo
8.
Org Lett ; 14(18): 4946-9, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22967068

RESUMO

Lymphatic filariasis is caused by the Brugia malayi parasite. Three new congeners of the depsipeptide WS9326A (1), WS9326C (2), WS9326D (3), and WS9326E (4), were isolated from Streptomyces sp. 9078 by using a B. malayi asparaginyl-tRNA synthetase (BmAsnRS) inhibition assay. WS9326D specifically inhibits the BmAsnRS, kills the adult B. malayi parasite, and does not exhibit significant general cytotoxicity to human hepatic cells, representing a new lead scaffold for antifilarial drug discovery.


Assuntos
Aspartato-tRNA Ligase/antagonistas & inibidores , Brugia Malayi/imunologia , Filariose/imunologia , Hepatócitos/efeitos dos fármacos , Lactonas , Peptídeos Cíclicos , Aminoacil-RNA de Transferência/antagonistas & inibidores , Animais , Brugia Malayi/enzimologia , Humanos , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Estrutura Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Estereoisomerismo , Streptomyces/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-21888539

RESUMO

The natural compound Microcin C (McC) is a Trojan horse inhibitor of aspartyl tRNA synthetases endowed with strong antibacterial properties, in which a heptapeptide moiety is responsible for active transport of the inhibitory metabolite part into the bacterial cell. The intracellularly formed aspartyl AMP analogue carries a chemically more stable phosphoramidate linkage, in comparison to the labile aspartyl-adenylate, and in addition is esterified with a 3-aminopropyl moiety. Therefore, this compound can target aspartyl-tRNA synthetase. The biochemical production and secretion of McC, and the possibilities to develop new classes of antibiotics using the McC Trojan horse concept in combination with sulfamoylated adenosine analogues will be discussed briefly.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Aspartato-tRNA Ligase/antagonistas & inibidores , Bacteriocinas/química , Bacteriocinas/metabolismo , Enterobacteriaceae/metabolismo , Adenosina/análogos & derivados , Enterobacteriaceae/química
10.
Org Lett ; 13(8): 2034-7, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21405052

RESUMO

Lymphatic filariasis is caused by the parasitic nematodes Brugia malayi and Wuchereria bancrofti, and asparaginyl-tRNA synthetase (AsnRS) is considered an excellent antifilarial target. The discovery of three new tirandamycins (TAMs), TAM E (1), F (2), and G (3), along with TAM A (4) and B (5), from Streptomyces sp. 17944 was reported. Remarkably, 5 selectively inhibits the B. malayi AsnRS and efficiently kills the adult B. malayi parasite, representing a new lead scaffold to discover and develop antifilarial drugs.


Assuntos
Aminoglicosídeos/química , Antibacterianos/química , Aspartato-tRNA Ligase/antagonistas & inibidores , Brugia Malayi/efeitos dos fármacos , Inibidores Enzimáticos/química , Aminoacil-RNA de Transferência/antagonistas & inibidores , Streptomyces/química , Animais , Brugia Malayi/enzimologia , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Estrutura Molecular
11.
J Biol Chem ; 285(49): 37944-52, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20876530

RESUMO

The heptapeptide-nucleotide microcin C (McC) is a potent inhibitor of enteric bacteria growth. Inside a sensitive cell, McC is processed by aminopeptidases, which release a nonhydrolyzable aspartyl-adenylate, a strong inhibitor of aspartyl-tRNA synthetase. The mccABCDE operon is sufficient for McC production and resistance of the producing cell to McC. An additional gene, mccF, which is adjacent to but not part of the mccABCDE operon, also provides resistance to exogenous McC. MccF is similar to Escherichia coli LdcA, an L,D-carboxypeptidase whose substrate is monomeric murotetrapeptide L-Ala-D-Glu-meso-A(2)pm-D-Ala or its UDP-activated murein precursor. The mechanism by which MccF provides McC resistance remained unknown. Here, we show that MccF detoxifies both intact and processed McC by cleaving an amide bond between the C-terminal aspartate and the nucleotide moiety. MccF also cleaves the same bond in nonhydrolyzable aminoacyl sulfamoyl adenosines containing aspartyl, glutamyl, and, to a lesser extent, seryl aminoacyl moieties but is ineffective against other aminoacyl adenylates.


Assuntos
Bacteriocinas/farmacologia , Farmacorresistência Bacteriana/fisiologia , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Peptídeo Hidrolases/metabolismo , Aspartato-tRNA Ligase/antagonistas & inibidores , Bacteriocinas/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Óperon/fisiologia , Peptídeo Hidrolases/genética , Peptidoglicano/genética , Peptidoglicano/metabolismo
12.
J Biol Chem ; 285(17): 12662-9, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20159968

RESUMO

The heptapeptide-nucleotide microcin C (McC) is a potent inhibitor of enteric bacteria growth. McC is excreted from producing cells by the MccC transporter. The residual McC that remains in the producing cell can be processed by cellular aminopeptidases with the release of a non-hydrolyzable aspartyl-adenylate, a strong inhibitor of aspartyl-tRNA synthetase. Accumulation of processed McC inside producing cells should therefore lead to translation inhibition and cessation of growth. Here, we show that a product of another gene of the McC biosynthetic cluster, mccE, acetylates processed McC and converts it into a non-toxic compound. MccE also makes Escherichia coli resistant to albomycin, a Trojan horse inhibitor unrelated to McC that, upon processing, gives rise to a serine coupled to a thioxylofuranosyl pyrimidine, an inhibitor of seryl-tRNA synthetase. We speculate that MccE and related cellular acetyltransferases of the Rim family may detoxify various aminoacyl-nucleotides, either exogenous or those generated inside the cell.


Assuntos
Acetiltransferases/metabolismo , Bacteriocinas/farmacologia , Farmacorresistência Bacteriana/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Família Multigênica/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Acetiltransferases/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Aspartato-tRNA Ligase/antagonistas & inibidores , Ácido Aspártico/análogos & derivados , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Bacteriocinas/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacologia , Ferricromo/análogos & derivados , Ferricromo/farmacologia , Biossíntese de Proteínas/fisiologia
13.
Biochimie ; 91(5): 596-603, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19254750

RESUMO

Human mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), the enzymes which esterify tRNAs with the cognate specific amino acid, form mainly a different set of proteins than those involved in the cytosolic translation machinery. Many of the mt-aaRSs are of bacterial-type in regard of sequence and modular structural organization. However, the few enzymes investigated so far do have peculiar biochemical and enzymological properties such as decreased solubility, decreased specific activity and enlarged spectra of substrate tRNAs (of same specificity but from various organisms and kingdoms), as compared to bacterial aaRSs. Here the sensitivity of human mitochondrial aspartyl-tRNA synthetase (AspRS) to small substrate analogs (non-hydrolysable adenylates) known as inhibitors of Escherichia coli and Pseudomonas aeruginosa AspRSs is evaluated and compared to the sensitivity of eukaryal cytosolic human and bovine AspRSs. L-aspartol-adenylate (aspartol-AMP) is a competitive inhibitor of aspartylation by mitochondrial as well as cytosolic mammalian AspRSs, with K(i) values in the micromolar range (4-27 microM for human mt- and mammalian cyt-AspRSs). 5'-O-[N-(L-aspartyl)sulfamoyl]adenosine (Asp-AMS) is a 500-fold stronger competitive inhibitor of the mitochondrial enzyme than aspartol-AMP (10nM) and a 35-fold lower competitor of human and bovine cyt-AspRSs (300 nM). The higher sensitivity of human mt-AspRS for both inhibitors as compared to either bacterial or mammalian cytosolic enzymes, is not correlated with clear-cut structural features in the catalytic site as deduced from docking experiments, but may result from dynamic events. In the scope of new antibacterial strategies directed against aaRSs, possible side effects of such drugs on the mitochondrial human aaRSs should thus be considered.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Aspartato-tRNA Ligase/antagonistas & inibidores , Aspartato-tRNA Ligase/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Animais , Aspartato-tRNA Ligase/metabolismo , Domínio Catalítico , Bovinos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
14.
J Bacteriol ; 191(7): 2380-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19168611

RESUMO

Microcin C (McC), an inhibitor of the growth of enteric bacteria, consists of a heptapeptide with a modified AMP residue attached to the backbone of the C-terminal aspartate through an N-acyl phosphamidate bond. Here we identify maturation intermediates produced by cells lacking individual mcc McC biosynthesis genes. We show that the products of the mccD and mccE genes are required for attachment of a 3-aminopropyl group to the phosphate of McC and that this group increases the potency of inhibition of the McC target, aspartyl-tRNA synthetase.


Assuntos
Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Inibidores da Síntese de Proteínas/metabolismo , Aspartato-tRNA Ligase/antagonistas & inibidores , Aspartato-tRNA Ligase/metabolismo , Bacteriocinas/química , Bacteriocinas/genética , Bacteriocinas/isolamento & purificação , Vias Biossintéticas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Modelos Moleculares , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/isolamento & purificação
15.
J Bacteriol ; 190(7): 2607-10, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18223070

RESUMO

The heptapeptide-nucleotide microcin C (McC) targets aspartyl-tRNA synthetase. Upon its entry into a susceptible cell, McC is processed to release a nonhydrolyzable aspartyl-adenylate that inhibits aspartyl-tRNA synthetase, leading to the cessation of translation and cell growth. Here, we surveyed Escherichia coli cells with singly, doubly, and triply disrupted broad-specificity peptidase genes to show that any of three nonspecific oligopeptidases (PepA, PepB, or PepN) can effectively process McC. We also show that the rate-limiting step of McC processing in vitro is deformylation of the first methionine residue of McC.


Assuntos
Bacteriocinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeo Hidrolases/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Aminopeptidases/genética , Aminopeptidases/metabolismo , Aspartato-tRNA Ligase/antagonistas & inibidores , Aspartato-tRNA Ligase/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Espectrometria de Massas , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Estrutura Molecular , Mutação , Peptídeo Hidrolases/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
16.
J Enzyme Inhib Med Chem ; 22(1): 77-82, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17373551

RESUMO

Asparaginyl-tRNA formation in Pseudomonas aeruginosa PAO1 involves a nondiscriminating aspartyl-tRNA synthetase (ND-AspRS) which forms Asp-tRNA(Asp) and Asp-tRNA(Asn), and a tRNA-dependent amidotransferase which transamidates the latter into Asn-tRNA(Asn). We report here that the inhibition of this ND-AspRS by L-aspartol adenylate (Asp-ol-AMP), a stable analog of the natural reaction intermediate L-aspartyl adenylate, is biphasic because the aspartylation of the two tRNA substrates of ND-AspRS, tRNA(Asp) and tRNA(Asn), are inhibited with different Ki values (41 microM and 215 microM, respectively). These results reveal that the two tRNA substrates of ND-AspRS interact differently with its active site. Yeast tRNA(Asp) transcripts with some identity elements replaced by those of tRNA(Asn) have their aspartylation inhibited with Ki values different from that for the wild-type transcript. Therefore, aminoacyl adenylate analogs, which are competitive inhibitors of their cognate aminoacyl-tRNA synthetase, can be used to probe rapidly the role of various structural elements in positioning the tRNA acceptor end in the active site.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Aspartato-tRNA Ligase/antagonistas & inibidores , Ácido Aspártico/análogos & derivados , Inibidores Enzimáticos/farmacologia , RNA de Transferência de Asparagina/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo , Monofosfato de Adenosina/farmacologia , Ácido Aspártico/farmacologia , Sequência de Bases , Sítios de Ligação , Primers do DNA , Conformação de Ácido Nucleico , RNA de Transferência de Asparagina/química , RNA de Transferência de Ácido Aspártico/química
17.
J Bacteriol ; 189(5): 2114-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17158672

RESUMO

Microcin C (McC), a peptide-nucleotide Trojan horse antibiotic, targets aspartyl-tRNA synthetase. We present the results of a systematic mutational study of the 7-amino-acid ribosomally synthesized peptide moiety of McC. Our results define amino acid positions important for McC maturation and cell uptake and processing and open the way for creation of more potent McC-based inhibitors.


Assuntos
Antibacterianos/farmacologia , Aspartato-tRNA Ligase/antagonistas & inibidores , Bacteriocinas/farmacologia , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Relação Estrutura-Atividade
18.
J Comput Aided Mol Des ; 20(3): 159-78, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16645791

RESUMO

SLIDE software, which models the flexibility of protein and ligand side chains while docking, was used to screen several large databases to identify inhibitors of Brugia malayi asparaginyl-tRNA synthetase (AsnRS), a target for anti-parasitic drug design. Seven classes of compounds identified by SLIDE were confirmed as micromolar inhibitors of the enzyme. Analogs of one of these classes of inhibitors, the long side-chain variolins, cannot bind to the adenosyl pocket of the closed conformation of AsnRS due to steric clashes, though the short side-chain variolins identified by SLIDE apparently bind isosterically with adenosine. We hypothesized that an open conformation of the motif 2 loop also permits the long side-chain variolins to bind in the adenosine pocket and that their selectivity for Brugia relative to human AsnRS can be explained by differences in the sequence and conformation of this loop. Loop flexibility sampling using Rigidity Optimized Conformational Kinetics (ROCK) confirms this possibility, while scoring of the relative affinities of the different ligands by SLIDE correlates well with the compounds' ranks in inhibition assays. Combining ROCK and SLIDE provides a promising approach for exploiting conformational flexibility in structure-based screening and design of species selective inhibitors.


Assuntos
Aspartato-tRNA Ligase/antagonistas & inibidores , Aspartato-tRNA Ligase/química , Brugia Malayi/enzimologia , Inibidores Enzimáticos/química , Filaricidas/química , Aminoacil-RNA de Transferência/antagonistas & inibidores , Aminoacil-RNA de Transferência/química , Animais , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/classificação , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica
19.
J Biol Chem ; 281(26): 18033-42, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16574659

RESUMO

Microcin C is a ribosome-synthesized heptapeptide that contains a modified adenosine monophosphate covalently attached to the C-terminal aspartate. Microcin C is a potent inhibitor of bacterial cell growth. Based on the in vivo kinetics of inhibition of macromolecular synthesis, Microcin C targets translation, through a mechanism that remained undefined. Here, we show that Microcin C is a subject of specific degradation inside the sensitive cell. The product of degradation, a modified aspartyl-adenylate containing an N-acylphosphoramidate linkage, strongly inhibits translation by blocking the function of aspartyl-tRNA synthetase.


Assuntos
Antibacterianos/farmacocinética , Aspartato-tRNA Ligase/antagonistas & inibidores , Bacteriocinas/farmacocinética , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Aminoacilação , Antibacterianos/química , Aspartato-tRNA Ligase/metabolismo , Bacteriocinas/química , Escherichia coli/genética , Hidrólise , Técnicas In Vitro
20.
J Biol Chem ; 271(46): 29295-303, 1996 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-8910590

RESUMO

Cytoplasmic aspartyl-tRNA synthetase from mammals is one of the components of a multienzyme complex comprising nine synthetase activities. The presence of an amino-terminal extension composed of about 40 residues is a characteristic of the eukaryotic enzyme. We report here the expression in the yeast Saccharomyces cerevisiae of a native form of rat aspartyl-tRNA synthetase and of two truncated derivatives lacking 20 or 36 amino acid residues from their amino-terminal polypeptide extension. The three recombinant enzyme species were purified to homogeneity. They behave as alpha2 dimers and display catalytic parameters in the tRNA aminoacylation reaction identical to those determined for the native, complex-associated form of aspartyl-tRNA synthetase isolated from rat liver. Because the dimer dissociation constant of rat AspRS is much higher than that of its bacterial and yeast counterparts, we could establish a direct correlation between dissociation of the dimer and inactivation of the enzyme. Our results clearly show that the monomer is devoid of amino acid activation and tRNA aminoacylation activities, indicating that dimerization is essential to confer an active conformation on the catalytic site. The two NH2-terminal truncated derivatives were fully active, but proved to be more unstable than the recombinant native enzyme, suggesting that the polypeptide extension fulfills structural rather than catalytic requirements.


Assuntos
Aspartato-tRNA Ligase/metabolismo , Animais , Aspartato-tRNA Ligase/antagonistas & inibidores , Aspartato-tRNA Ligase/genética , Clonagem Molecular , Estabilidade Enzimática , Fígado/enzimologia , Conformação Proteica , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...