Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
FEMS Microbiol Lett ; 368(19)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34724043

RESUMO

The issue of food contamination by fungi and aflatoxins; constitutes a serious concern not only for human/animal health but also for agriculture and the economy. Aflatoxins are secondary metabolites produced by certain filamentous fungi and contaminate a variety of foodstuffs. In this context, control of fungal growth and aflatoxin contamination appears to be important. The present study aimed to investigate new Cu(I) and Cu(II)-quinoxaline complexes, namely [Cu(2,2´-pq)(NO3)](NO3) (1), [Cu(2,2´-pq)2(NO3)](NO3)·6H2O (2) and [Cu(2,2΄-pq)2](BF4) (3), where 2,2´-pq is 2-(2'-pyridyl quinoxaline), as antifungal agents against Aspergillus parasiticus. All complexes, the ligand and the starting material Cu(NO3)2-3H2O, regardless of the concentration used, caused inhibition of A. parasiticus growth ranged from 8.52 to 33.33%. The fungal growth inhibition was triggered when irradiation in visible (λ > 400 nm) was continuously applied (range 18.36-57.20%). The highest inhibitory activity was exhibited by the complex [Cu(2,2´-pq)2(NO3)](NO3)·6H2O and for this reason, it was selected to be studied for its ability to suppress aflatoxin B1 produced by A. parasiticus. AFB1 production after the irradiation process was found to be suppressed by 25% compared to AFB1 produced in dark conditions.


Assuntos
Antifúngicos , Aspergillus , Aflatoxina B1/química , Aflatoxinas/antagonistas & inibidores , Animais , Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Aspergillus/efeitos da radiação , Cobre/química , Humanos , Luz , Quinoxalinas/farmacologia
2.
J Photochem Photobiol B ; 221: 112242, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34214837

RESUMO

The aim of this work is to understand the inactivation efficiency of medium pressure mercury lamps, measured in terms of growth inhibition as well as cell death, damage and response, using three strains from three different Aspergillus species (A. fumigatus, A. niger and, A. terreus) spiked in filtered surface water. A complete characterization of the effect of the treatment on each strain of the fungal species was assessed considering spores' morphology, cell wall integrity and enzymatic activity, the formation of pyrimidine dimers in the DNA and proteome analysis. Results showed that, when subjected to medium pressure mercury lamps, A. niger is the most resistant to inactivation, that both A. fumigatus and A. niger suffer more morphological changes and present a higher number of damaged spores and A. terreus presented more dead spores. DNA damages detected in A. niger were able to be repaired to some extent, under both light and dark conditions. Finally, proteome analysis showed that the UV radiation treatment triggered different types of stress response, including cell wall reorganization and DNA repair in A. fumigatus and A. terreus, and oxidative stress responses like the increase in production of citric acid and itaconic acid in A. niger and A. terreus, respectively.


Assuntos
Aspergillus/efeitos da radiação , Luz , Mercúrio/química , Microbiologia da Água , Aspergillus/fisiologia , Dano ao DNA/efeitos da radiação , Permeabilidade/efeitos da radiação , Proteoma/efeitos da radiação , Esporos Fúngicos/efeitos da radiação
3.
Int J Food Microbiol ; 333: 108773, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32739634

RESUMO

The present work aimed to evaluate and to model the influence of UV-C light treatments with different irradiances (6.5, 13, 21, and 36 W/m2) on Aspergillus fischeri and Paecilomyces niveus ascospores inactivation in clarified apple juice. Approximately 5.0 and 6.0 log CFU/mL spores of P. niveus and A. fischeri, respectively, were suspended in 30 mL of clarified apple juice (pH 3.8, 12 ± 0.1°Brix) and exposed to UV-C light at different irradiances (as above) and exposure times (0 to 30 min). The first-order biphasic model was able to describe the experimental data with good statistical indices (RMSE = 0.296 and 0.308, R2 = 0.96 and 0.98, for P. niveus and A. fischeri respectively). At the highest irradiance level tested (36 W/m2), the UV-C light allowed the reduction of 5.7 and 4.2 log-cycles of A. fischeri and P. niveus ascospores, respectively, in approximately 10 min. P. niveus was the most UV-C resistant mould. The results showed that, to a defined UV-C fluence, a change in the level of either time or UV-C irradiance did not affect the effectiveness of UV-C light for A. fischeri and P. niveus inactivation. Thus, the modeling of the inactivation as a function of the UV-C fluence allowed the estimation of the primary model parameters with all experimental data and, consequently, no secondary models were needed. The model parameters were validated with experiments of variable UV-C fluences. Accordingly, experimental results allowed to conclude that UV-C treatment at the irradiances tested is a promising application for preventing A. fischeri and P. niveus spoilage of juices.


Assuntos
Aspergillus/efeitos da radiação , Sucos de Frutas e Vegetais/microbiologia , Paecilomyces/efeitos da radiação , Esporos Fúngicos/efeitos da radiação , Raios Ultravioleta , Byssochlamys/classificação , Microbiologia de Alimentos , Malus/microbiologia , Neosartorya/classificação
4.
Artigo em Inglês | MEDLINE | ID: mdl-31917640

RESUMO

This study investigated the antifungal effect of ultraviolet-C (UV-C) against Aspergillus flavus and Aspergillus parasiticus on roasted coffee beans. Also, any changes in the quality of the roasted coffee beans were measured after UV-C irradiation. As UV-C irradiation time increased (0-2 h), the number of surviving A. flavus and A. parasiticus spores significantly (P < .05) decreased. The reduction values of A. flavus in round part, crack part, and whole roasted coffee beans were 2.16, 0.71, and 1.58 log10 CFU g-1, respectively, and the reduction values of A. parasiticus in round part, crack part, and whole roasted coffee beans were 1.03, 0.37, and 0.72 log10 CFU g-1, respectively, after 2 h of UV-C irradiation. Field emission scanning electron microscopy showed that the morphology of A. flavus and A. parasiticus spores included expanded wrinkles that were deformed by UV-C irradiation. The Hunter colours were significantly reduced (P < .05). There was no significant change (P > .05) in moisture content, but the pH was significantly decreased (P < .05). Most of the sensory parameters did not change, but there was a significant difference (P < .05) in flavour. Based on this study, 2 h of UV-C irradiation was effective in reducing 90% of A. flavus, but it was not effective against A. parasiticus present on roasted coffee beans. Also, Hunter colour, pH, and sensory parameters (flavour) were changed by UV-C irradiation.


Assuntos
Aspergillus flavus/efeitos da radiação , Aspergillus/efeitos da radiação , Café , Irradiação de Alimentos , Inocuidade dos Alimentos , Micotoxinas/análise , Manipulação de Alimentos , Sementes , Raios Ultravioleta
5.
Int J Food Microbiol ; 295: 33-40, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30784857

RESUMO

Cellulose nanocrystals (CNCs) reinforced chitosan based antifungal films were prepared by encapsulating essential oils (EOs) nanoemulsion. Vapor phase assays of the chitosan-based nanocomposite films loaded with thyme-oregano, thyme-tea tree and thyme-peppermint EO mixtures showed significant antifungal activity against Aspergillus niger, Aspergillus flavus, Aspergillus parasiticus, and Penicillium chrysogenum, reducing their growth by 51-77%. Combining the bioactive chitosan films loaded with thyme and oregano EOs produced ~2 log reduction in fungal growth in inoculated rice during 8 weeks of storage at 28 °C. The bioactive films showed a slow release (26%) of volatile components over 12 weeks of storage. Sensorial evaluation of rice samples packed with the bioactive films showed no significant change in odor, taste, color and general appreciation compared with untreated rice. Incorporation of cellulose nanocrystals (CNCs) with the chitosan matrix played an important role in stabilizing the physicochemical and release properties of the nanocomposite films. In addition, combining the bioactive chitosan films with a dose of 750 Gy of ionizing radiation showed significantly higher antifungal and mechanical properties than treatment with the bioactive film or irradiation alone.


Assuntos
Antifúngicos/farmacologia , Aspergillus , Quitosana/química , Nanocompostos/química , Óleos Voláteis/farmacologia , Penicillium chrysogenum , Radiação Ionizante , Animais , Aspergillus/efeitos dos fármacos , Aspergillus/efeitos da radiação , Origanum/química , Oryzias/microbiologia , Penicillium chrysogenum/efeitos dos fármacos , Penicillium chrysogenum/efeitos da radiação , Thymus (Planta)/química
6.
Braz. j. microbiol ; 49(4): 865-871, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974297

RESUMO

ABSTRACT The ability of four Aspergillus strains for biosynthesis of kojic acid was evaluated among which Aspergillus terreus represented the highest level (2.21 g/L) of kojic acid production. Improvement kojic acid production ability of A. terreus by random mutagenesis using different exposure time to ultraviolet light (5-40 min) was then performed to obtain a suitable mutant of kojic acid production (designated as C5-10, 7.63 g/L). Thereafter, design of experiment protocol was employed to find medium components (glucose, yeast extract, KH2PO4 (NH4)2SO4, and pH) influences on kojic acid production by the C5-10 mutant. A 25-1 fractional factorial design augmented to central composite design showed that glucose, yeast extract, and KH2PO4 were the most considerable factors within the tested levels (p < 0.05). The optimum medium composition for the kojic acid production by the C5-10 mutant was found to be glucose, 98.4 g/L; yeast extract, 1.0 g/L; and KH2PO4, 10.3 mM which was theoretically able to produce 120.2 g/L of kojic acid based on the obtained response surface model for medium optimization. Using these medium compositions an experimental maximum Kojic acid production (109.0 ± 10 g/L) was acquired which verified the efficiency of the applied method.


Assuntos
Pironas/metabolismo , Aspergillus/efeitos da radiação , Aspergillus/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/genética , Raios Ultravioleta , Mutagênese , Meios de Cultura/metabolismo , Fermentação , Glucose/metabolismo
7.
Braz J Microbiol ; 49(4): 865-871, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29728342

RESUMO

The ability of four Aspergillus strains for biosynthesis of kojic acid was evaluated among which Aspergillus terreus represented the highest level (2.21g/L) of kojic acid production. Improvement kojic acid production ability of A. terreus by random mutagenesis using different exposure time to ultraviolet light (5-40min) was then performed to obtain a suitable mutant of kojic acid production (designated as C5-10, 7.63g/L). Thereafter, design of experiment protocol was employed to find medium components (glucose, yeast extract, KH2PO4 (NH4)2SO4, and pH) influences on kojic acid production by the C5-10 mutant. A 25-1 fractional factorial design augmented to central composite design showed that glucose, yeast extract, and KH2PO4 were the most considerable factors within the tested levels (p<0.05). The optimum medium composition for the kojic acid production by the C5-10 mutant was found to be glucose, 98.4g/L; yeast extract, 1.0g/L; and KH2PO4, 10.3mM which was theoretically able to produce 120.2g/L of kojic acid based on the obtained response surface model for medium optimization. Using these medium compositions an experimental maximum Kojic acid production (109.0±10g/L) was acquired which verified the efficiency of the applied method.


Assuntos
Aspergillus/metabolismo , Aspergillus/efeitos da radiação , Pironas/metabolismo , Aspergillus/genética , Aspergillus/crescimento & desenvolvimento , Meios de Cultura/metabolismo , Fermentação , Glucose/metabolismo , Mutagênese , Raios Ultravioleta
8.
Toxins (Basel) ; 10(1)2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304012

RESUMO

Fungi respond to light irradiation by forming conidia and occasionally synthesizing mycotoxins. Several light wavelengths, such as blue and red, affect the latter. However, the relationship between light irradiation and mycotoxin synthesis varies depending on the fungal species or strain. This study focused on aflatoxin (AF), which is a mycotoxin, and the types of light irradiation that increase AF synthesis. Light-irradiation tests using the visible region indicated that blue wavelengths in the lower 500 nm region promoted AF synthesis. In contrast, red wavelengths of 660 nm resulted in limited significant changes compared with dark conditions. Irradiation tests with different intensity levels indicated that a low light intensity increased AF synthesis. For one fungal strain, light irradiation decreased the AF synthesis under all wavelength conditions. However, the decrease was mitigated by 525 nm low intensity irradiation. Thus, blue-green low intensity irradiation may increase AF synthesis in fungi.


Assuntos
Aflatoxinas/biossíntese , Aspergillus/efeitos da radiação , Luz , Aspergillus/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento
9.
J Gen Appl Microbiol ; 63(6): 339-346, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29046501

RESUMO

Aspergillus luchuensis is a kuro (black) koji fungus that has been used as a starch degrader for the awamori- and shochu-making industries in Japan. In this study, we investigated the effect of ion beam irradiation on A. luchuensis RIB2601 and obtained a high starch-degrading mutant strain U1. Strain U1 showed reduced growth rate, whereas it showed higher α-amylase, glucoamylase, and α-glucosidase activities on a mycelial mass basis than the wild type (wt) strain both on agar plates and in rice koji. In addition, strain U1 showed higher N-acetylglucosamine content in the cell wall and higher sensitivity to calcofluor white, suggesting a deficiency in cell wall composition. Interestingly, produced protein showed higher expression of acid-labile α-amylase (AmyA) and glucoamylase (GlaA) in strain U1, although real-time RT-PCR indicated no significant change in the transcription of the amyA or glaA gene. These results suggested that the high amylolytic activity of strain U1 is attributable to a high AmyA and GlaA production level, but the elevated production is not due to transcriptional regulation of the corresponding genes. Furthermore, RNA-seq analysis indicated that strain U1 shows transcriptional changes in at least 604 genes related to oxidation-reduction, transport, and glucosamine-containing compound metabolic processes, which may be involved in the deficient cell wall composition of strain U1.


Assuntos
Aspergillus/enzimologia , Aspergillus/genética , Glicosídeo Hidrolases/metabolismo , Mutação/efeitos da radiação , Amido/metabolismo , Transcrição Gênica/efeitos da radiação , Acetilglucosamina/análogos & derivados , Aspergillus/crescimento & desenvolvimento , Aspergillus/efeitos da radiação , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/genética , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/genética , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
10.
Lett Appl Microbiol ; 65(4): 274-280, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741678

RESUMO

Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. SIGNIFICANCE AND IMPACT OF THE STUDY: There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future.


Assuntos
Aspergillus/genética , Clostridium/genética , Íons Pesados , Transferência Linear de Energia/fisiologia , Microalgas/genética , Mutagênese/genética , Trichoderma/genética , Aspergillus/efeitos da radiação , Cruzamento , Clostridium/efeitos da radiação , Microalgas/efeitos da radiação , Mutação/genética , Fenótipo , Radiação Ionizante , Trichoderma/efeitos da radiação
11.
Methods Mol Biol ; 1625: 23-30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28584980

RESUMO

Fungal infections continue to rise worldwide. Antifungal therapy has long been a mainstay for the treatment of these infections, but often can fail for a number of reasons. These include acquired or innate drug resistance of the causative agent, poor drug penetration into the affected tissues, lack of cidal activity of the drug and drug toxicities that limit therapy. In some instances, such as coccidioidal meningitis, therapy is life-long. In addition, few new antifungal drugs are under development. In light of this information a preventative vaccine is highly desirable. Although numerous investigators have worked toward the development of fungal vaccines, none have become commercially available for use in humans. In the course of our studies, we have discovered that heat-killed yeast (HKY) of Saccharomyces cerevisiae can be used as a vaccine and have shown that it has efficacy in the prevention and reduction of five different fungal infections when used experimentally in mice, which raises the possibility of a pan-fungal vaccine preparation. In our studies we grow S. cerevisiae in broth and heat-kill the organism at 70 ° C for 3 h. The number of dead yeast cells is adjusted and mice are vaccinated subcutaneously beginning 3-7 weeks prior to infection. After infection, efficacy is assessed on the basis of survival and residual burden of the fungus in the target organs. Alternatively, efficacy can be assessed solely on fungal burden at a predetermined time postinfection. Although itself it is unlikely to be moved toward commercialization, HKY can be used a positive control vaccine for studies on specific molecular entities as vaccines, and as a guidepost for the key elements of potential, more purified, pan-fungal vaccine preparations.


Assuntos
Vacinas Fúngicas/imunologia , Temperatura Alta , Vacinas Atenuadas/imunologia , Leveduras/imunologia , Leveduras/efeitos da radiação , Animais , Antígenos de Fungos/imunologia , Aspergilose/imunologia , Aspergilose/prevenção & controle , Aspergillus/imunologia , Aspergillus/efeitos da radiação , Modelos Animais de Doenças , Feminino , Imunização , Camundongos , Micoses/imunologia , Micoses/prevenção & controle , Saccharomyces cerevisiae/imunologia , Saccharomyces cerevisiae/efeitos da radiação
12.
Int J Food Microbiol ; 249: 27-34, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28271854

RESUMO

Radio frequency (RF) heating has been proposed and tested to achieve a required anti-fungal efficacy on various food samples due to its advantage of deeper penetration depth and better heating uniformity. The purpose of this study was to validate applications of RF treatments for controlling Aspergillus parasiticus in corn while maintaining product quality. A pilot-scale, 27.12MHz, 6kW RF heating system together with hot air heating was used to rapidly pasteurize 3.0kg corn samples. Results showed that the pasteurizing effect of RF heating on Aspergillus parasiticus increased with increasing heating temperature and holding time, and RF heating at 70°C holding in hot air for at least 12min resulted in 5-6 log reduction of Aspergillus parasiticus in corn samples with the moisture content of 15.0% w.b. Furthermore, thermal resistance of Aspergillus parasiticus decreased with increasing moisture content (MC) of corn samples. Quality (MC, water activity - aw, protein, starch, ash, fat, fatty acid, color, electrical conductivity and germination rate) of RF treated corn met the required quality standard used in cereal industry. Therefore, RF treatments can provide an effective and rapid heating method to control Aspergillus parasiticus and maintain acceptable corn quality.


Assuntos
Aspergillus/efeitos da radiação , Grão Comestível/microbiologia , Calefação/métodos , Pasteurização/métodos , Ondas de Rádio , Zea mays/microbiologia , Água
13.
Food Microbiol ; 62: 112-123, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27889137

RESUMO

The effects of microwave-integrated cold plasma (CP) treatments against spores of Bacillus cereus and Aspergillus brasiliensis and Escherichia coli O157:H7 on onion powder were investigated. The growth of B. cereus, A. brasiliensis, and E. coli O157:H7 in the treated onion powder was assessed during storage at 4 and 25 °C, along with the physicochemical and sensory properties of the powder. Onion powder inoculated with B. cereus was treated with CP using helium as a plasma-forming gas, with simultaneous exposure to low microwave density at 170 mW m-2 or high microwave density at 250 mW m-2. High microwave density-CP treatment (HMCPT) was more effective than low microwave density-CP treatment (LMCPT) in inhibiting B. cereus spores, but induced the changes in the volatile profile of powder. Increase in treatment time in HMCPT yielded greater inhibition of B. cereus spores. Vacuum drying led to greater inhibition of spores of B. cereus and A. brasiliensis than hot-air drying. HMCPT at 400 W for 40 min, determined as the optimum conditions for B. cereus spore inhibition, initially reduced the numbers of B. cereus, A. brasiliensis, and E. coli O157:H7 by 2.1 log spores/cm2, 1.6 log spores/cm2, and 1.9 CFU/cm2, respectively. The reduced number of B. cereus spores remained constant, while the number of A. brasiliensis spores in the treated powder increased gradually during storage at 4 and 25 °C and was not different from the number of spores in untreated samples by the end of storage at 4 °C. The E. coli counts in the treated powder fell below the level of detection after day 21 at both temperatures. HMCPT did not affect the color, antioxidant activity, or quercetin concentration of the powder during storage at both temperatures. The microwave-integrated CPTs showed potential for nonthermal decontamination of onion powder.


Assuntos
Descontaminação/métodos , Microbiologia de Alimentos , Micro-Ondas , Cebolas/microbiologia , Gases em Plasma , Pós/análise , Esporos Bacterianos/efeitos da radiação , Aspergillus/química , Aspergillus/crescimento & desenvolvimento , Aspergillus/efeitos da radiação , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/efeitos da radiação , Contagem de Colônia Microbiana , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/efeitos da radiação , Conservação de Alimentos , Inocuidade dos Alimentos/métodos , Hélio , Temperatura Alta , Cebolas/química , Pós/química , Quercetina/análise
14.
J Prev Med Hyg ; 58(4): E315-E319, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29707663

RESUMO

We investigated the effect of ultraviolet germicidal irradiation (UVI) from a low-pressure mercury lamp on several pathogenic Aspergillus spp. including A. flavipes, A. flavus, A. fumigatus, A. glaucus, A. nidulans, A. niger, A. terreus, A. ustus and A. versicolor suspended in tap water under laboratory-scale conditions. It was shown that within 10 s of exposure, time species such as A. glaucus, A. niudulans and A. ustus were completely inactivated, while 40 s were needed for the elimination of all the species tested. A. flavus and A. niger were found to be less susceptible than other species. Based on these results we conclude that UV disinfection could effectively inactivate Aspergillus spp. in tap water. Such disinfection could be used to reduce potential exposure of high-risk patients to fungal aerosols, particularly in hospital settings, where point-of-use (POU) UV light devices could be installed to provide safe water at a very low cost.


Assuntos
Aspergillus/efeitos da radiação , Desinfecção/métodos , Raios Ultravioleta , Microbiologia da Água , Aspergillus flavus , Aspergillus fumigatus , Aspergillus nidulans , Aspergillus niger , Humanos
15.
Fungal Biol ; 120(5): 679-89, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27109365

RESUMO

The Antarctic fungal strain Aspergillus glaucus 363 produces cold-active (CA) Cu/Zn-superoxide dismutase (SOD). The strain contains at least one gene encoding Cu/Zn-SOD that exhibited high homology with the corresponding gene of other Aspergillus species. To our knowledge, this is the first nucleotide sequence of a CA Cu/Zn-SOD gene in fungi. An effective laboratory technology for A. glaucus SOD production in 3 L bioreactors was developed on the basis of transient cold-shock treatment. The temperature downshift to 10 °C caused 1.4-fold increase of specific SOD activity compared to unstressed culture. Maximum enzyme productivity was 64 × 10(3) U kg(-1) h(-1). Two SOD isoenzymes (Cu/Zn-SODI and Cu/Zn-SODII) were purified to electrophoretic homogeneity. The specific activity of the major isoenzyme, Cu/Zn-SODII, after Q-Sepharose chromatography was 4000 U mg(-1). The molecular mass of SODI (38 159 Da) and of SODII (15 835 Da) was determined by electrospray quadropole time-of-flight (ESI-Q-TOF) mass spectrometry and dynamic light scattering (DLS). The presence of Cu and Zn were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). The N-terminal amino acid sequence of Cu/Zn-SODII revealed a high degree of structural homology with Cu/Zn-SOD from other fungi, including Aspergillus species.


Assuntos
Aspergillus/enzimologia , Temperatura Baixa , Superóxido Dismutase/isolamento & purificação , Superóxido Dismutase/metabolismo , Regiões Antárticas , Aspergillus/genética , Aspergillus/isolamento & purificação , Aspergillus/efeitos da radiação , Sequência Conservada , Cobre/análise , Espectrometria de Massas , Peso Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/química , Superóxido Dismutase/genética , Zinco/análise
16.
Fungal Biol ; 120(5): 745-51, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27109370

RESUMO

The effects of light at different wavelengths and photoperiod on growth and ochratoxin A production of Aspergillus carbonarius and Aspergillus westerdijkiae were studied: far-red (740 nm), red (625 nm), blue (445 nm), and UV-A (366 nm). Fungal growth was not significantly affected by photoperiod or light wavelength; the only exception was A. westerdijkiae which showed reduced growth under UV-A light (366 nm). Short-wavelength blue light (445 nm) and UV-A light caused a reduction in ochratoxin A production of both fungal species. However, long-wavelength red light (625 nm) and far-red light (740 nm) reduced ochratoxin A production only in A. westerdijkiae but not in A. carbonarius. It is believed that this difference in reactivity to light is due to differences in the melanin content of the two fungal species: A. carbonarius is a black fungus with higher melanin content than A. westerdijkiae, a yellow fungus. Other possible explanations for the reduction of ochratoxin A production by light were also discussed.


Assuntos
Aspergillus/crescimento & desenvolvimento , Aspergillus/efeitos da radiação , Luz , Ocratoxinas/metabolismo , Raios Ultravioleta , Aspergillus/metabolismo
17.
Curr Microbiol ; 72(3): 248-58, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26612034

RESUMO

The present study emphasizes the potential of gamma radiation in enhancing zinc tolerance of Aspergillus terreus. Gamma-exposed A. terreus could tolerate 1.13 times more Zn, reflecting higher growth (in terms of CFU) under Zn stress and enhanced Zn removal efficacies than their unirradiated counterparts. Radiation-induced upregulation of antioxidative system (SOD, CAT, GSH and MT) of A. terreus is responsible for radiation-induced enhancement of Zn tolerance. FTIR spectra reveals the involvement of functional groups in Zn biosorption; SEM study divulges the structural changes due to metal and gamma exposure and SEM-EDX depicts the Zn uptake by A. terreus (both in gamma-exposed and unexposed conditions). This work sheds light toward utilizing low doses of ionizing radiation for making more metal-tolerant fungi and the possible mechanisms adopted by A. terreus for being more metallo-resistant.


Assuntos
Aspergillus/efeitos dos fármacos , Aspergillus/efeitos da radiação , Tolerância a Medicamentos , Raios gama , Zinco/toxicidade , Antioxidantes/metabolismo , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Contagem de Colônia Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Espectrometria por Raios X
18.
J Sci Food Agric ; 96(6): 2249-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26178018

RESUMO

BACKGROUND: Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. RESULTS: Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. CONCLUSION: Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia.


Assuntos
Aspergillus/classificação , Aspergillus/efeitos da radiação , Esporos Fúngicos/efeitos da radiação , Temperatura , Raios Ultravioleta
19.
Braz J Microbiol ; 46(4): 1269-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691490

RESUMO

A thermohalophilic fungus, Aspergillus terreus AUMC 10138, isolated from the Wadi El-Natrun soda lakes in northern Egypt was exposed successively to gamma and UV-radiation (physical mutagens) and ethyl methan-sulfonate (EMS; chemical mutagen) to enhance alkaline cellulase production under solid state fermentation (SSF) conditions. The effects of different carbon sources, initial moisture, incubation temperature, initial pH, incubation period, inoculum levels and different concentrations of NaCl on production of alkaline filter paper activity (FPase), carboxymethyl cellulase (CMCase) and ß-glucosidase by the wild-type and mutant strains of A. terreus were evaluated under SSF. The optimum conditions for maximum production of FPase, CMCase and ß-glucosidase were found to be the corn stover: moisture ratio of 1:3(w/v), temperature 45 °C, pH range, 9.0-11.0, and fermentation for 4, 4 and 7 day, respectively. Inoculum levels of 30% for ß-glucosidase and 40% for FPase, CMCase gave the higher cellulase production by the wild-type and mutant strains, respectively. Higher production of all three enzymes was obtained at a 5% NaCl. Under the optimized conditions, the mutant strain A. terreus M-17 produced FPase (729 U/g), CMCase (1,783 U/g), and ß-glucosidase (342 U/g), which is, 1.85, 1.97 and 2.31-fold higher than the wild-type strain. Our results confirmed that mutant strain M-17 could be a promising alkaline cellulase enzyme producer employing lignocellulosics especially corn stover.


Assuntos
Aspergillus/enzimologia , Aspergillus/metabolismo , Celulases/metabolismo , Mutagênese , Zea mays/metabolismo , Aspergillus/efeitos dos fármacos , Aspergillus/efeitos da radiação , Meios de Cultura/química , Egito , Metanossulfonato de Etila , Concentração de Íons de Hidrogênio , Lagos/microbiologia , Técnicas Microbiológicas , Cloreto de Sódio/metabolismo , Temperatura , Raios Ultravioleta
20.
Braz. j. microbiol ; 46(4): 1269-1277, Oct.-Dec. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-769645

RESUMO

Abstract A thermohalophilic fungus, Aspergillus terreus AUMC 10138, isolated from the Wadi El-Natrun soda lakes in northern Egypt was exposed successively to gamma and UV-radiation (physical mutagens) and ethyl methan-sulfonate (EMS; chemical mutagen) to enhance alkaline cellulase production under solid state fermentation (SSF) conditions. The effects of different carbon sources, initial moisture, incubation temperature, initial pH, incubation period, inoculum levels and different concentrations of NaCl on production of alkaline filter paper activity (FPase), carboxymethyl cellulase (CMCase) and β-glucosidase by the wild-type and mutant strains of A. terreus were evaluated under SSF. The optimum conditions for maximum production of FPase, CMCase and β-glucosidase were found to be the corn stover: moisture ratio of 1:3(w/v), temperature 45 °C, pH range, 9.0–11.0, and fermentation for 4, 4 and 7 day, respectively. Inoculum levels of 30% for β-glucosidase and 40% for FPase, CMCase gave the higher cellulase production by the wild-type and mutant strains, respectively. Higher production of all three enzymes was obtained at a 5% NaCl. Under the optimized conditions, the mutant strain A. terreus M-17 produced FPase (729 U/g), CMCase (1,783 U/g), and β-glucosidase (342 U/g), which is, 1.85, 1.97 and 2.31-fold higher than the wild-type strain. Our results confirmed that mutant strain M-17 could be a promising alkaline cellulase enzyme producer employing lignocellulosics especially corn stover.


Assuntos
Aspergillus/enzimologia , Aspergillus/metabolismo , Celulases/metabolismo , Mutagênese , Zea mays/metabolismo , Aspergillus/efeitos dos fármacos , Aspergillus/efeitos da radiação , Meios de Cultura/química , Egito , Metanossulfonato de Etila , Concentração de Íons de Hidrogênio , Lagos/microbiologia , Técnicas Microbiológicas , Cloreto de Sódio/metabolismo , Temperatura , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...