Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 645
Filtrar
1.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731556

RESUMO

Red rice, a variety of pigmented grain, serves dual purposes as both a food and medicinal resource. In recent years, we have witnessed an increasing interest in the dermatological benefits of fermented rice extracts, particularly their whitening and hydrating effects. However, data on the skincare advantages derived from fermenting red rice with Aspergillus oryzae remain sparse. This study utilized red rice as a substrate for fermentation by Aspergillus oryzae, producing a substance known as red rice Aspergillus oryzae fermentation (RRFA). We conducted a preliminary analysis of RRFA's composition followed by an evaluation of its skincare potential through various in vitro tests. Our objective was to develop a safe and highly effective skincare component for potential cosmetic applications. RRFA's constituents were assessed using high-performance liquid chromatography (HPLC), Kjeldahl nitrogen determination, the phenol-sulfuric acid method, and enzyme-linked immunosorbent assay (ELISA). We employed human dermal fibroblasts (FB) to assess RRFA's anti-aging and antioxidative properties, immortalized keratinocytes (HaCaT cells) and 3D epidermal models to examine its moisturizing and reparative capabilities, and human primary melanocytes (MCs) to study its effects on skin lightening. Our findings revealed that RRFA encompasses several bioactive compounds beneficial for skin health. RRFA can significantly promote the proliferation of FB cells. And it markedly enhances the mRNA expression of ECM-related anti-aging genes and reduces reactive oxygen species production. Furthermore, RRFA significantly boosts the expression of Aquaporin 3 (AQP3), Filaggrin (FLG), and Hyaluronan Synthase 1 (HAS1) mRNA, alongside elevating moisture levels in a 3D epidermal model. Increases were also observed in the mRNA expression of Claudin 1 (CLDN1), Involucrin (IVL), and Zonula Occludens-1 (ZO-1) in keratinocytes. Additionally, RRFA demonstrated an inhibitory effect on melanin synthesis. Collectively, RRFA contains diverse ingredients which are beneficial for skin health and showcases multifaceted skincare effects in terms of anti-aging, antioxidant, moisturizing, repairing, and whitening capabilities in vitro, highlighting its potential for future cosmetic applications.


Assuntos
Aspergillus oryzae , Fermentação , Proteínas Filagrinas , Oryza , Aspergillus oryzae/metabolismo , Oryza/química , Oryza/metabolismo , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Células HaCaT , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/efeitos dos fármacos , Higiene da Pele/métodos , Pele/metabolismo
2.
Org Lett ; 26(15): 3158-3163, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38588324

RESUMO

We uncovered the biosynthetic pathway of the lethal mycotoxin 3-nitropropanoic acid (3-NPA) from koji mold Aspergillus oryzae. The biosynthetic gene cluster (BGC) of 3-NPA, which encodes an amine oxidase and a decarboxylase, is conserved in many fungi used in food processing, although most of the strains have not been reported to produce 3-NPA. Our discovery will lead to efforts that improve the safety profiles of these indispensable microorganisms in making food, alcoholic beverages, and seasoning.


Assuntos
Aspergillus oryzae , Micotoxinas , Micotoxinas/metabolismo , Nitrocompostos , Propionatos , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo
3.
J Am Chem Soc ; 146(18): 12723-12733, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38654452

RESUMO

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.


Assuntos
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aspergillus oryzae/enzimologia , Aspergillus oryzae/metabolismo , Família Multigênica , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
4.
Nat Commun ; 15(1): 2099, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485948

RESUMO

Filamentous fungi are critical in the transition to a more sustainable food system. While genetic modification of these organisms has promise for enhancing the nutritional value, sensory appeal, and scalability of fungal foods, genetic tools and demonstrated use cases for bioengineered food production by edible strains are lacking. Here, we develop a modular synthetic biology toolkit for Aspergillus oryzae, an edible fungus used in fermented foods, protein production, and meat alternatives. Our toolkit includes a CRISPR-Cas9 method for gene integration, neutral loci, and tunable promoters. We use these tools to elevate intracellular levels of the nutraceutical ergothioneine and the flavor-and color molecule heme in the edible biomass. The strain overproducing heme is red in color and is readily formulated into imitation meat patties with minimal processing. These findings highlight the promise of synthetic biology to enhance fungal foods and provide useful genetic tools for applications in food production and beyond.


Assuntos
Aspergillus oryzae , Biologia Sintética , Biologia Sintética/métodos , Edição de Genes , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Micélio/genética , Heme/metabolismo
5.
J Biosci Bioeng ; 137(5): 381-387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429186

RESUMO

The adjunct product with enzymatic activity from Aspergillus oryzae is beneficial for flavor enrichment in the ripened cheese. However, an excessive lipolytic reaction leads to the release of volatile free fatty acids. Accordingly, a strong off-flavor (i.e., rancidity) has been detected when A. oryzae AHU 7139 is used. To identify the rancidity-related lipase from this strain, we evaluated the substrate specificity and lipase distribution using five mutants cultured on a whey-based solid medium under different initial pH conditions. The results showed a higher diacylglycerol lipase activity than triacylglycerol lipase activity. Moreover, an initial pH of 6.5 for the culture resulted in higher lipolytic activity than a pH of 4.0, and most of the activity was found in the extracellular fraction. Based on the gene expression analysis by real-time polymerase chain reaction and location and substrate specificity, five genes (No. 1, No. 19, mdlB, tglA, and cutL) were selected among 25 annotated lipase genes to identify the respective knockout strains. Because ΔtglA and ΔmdlB showed an outstanding involvement in the release of free fatty acids, these strains were applied to in vitro cheese curd experiments. In conclusion, we posit that triacylglycerol lipase (TglA) plays a key role as the trigger of rancidity and the resulting diglycerides have to be exposed to diacylglycerol lipase (MdlB) to stimulate rancidity in cheese made with A. oryzae AHU 7139. This finding could help screen suitable A.oryzae strains as cheese adjuncts to prevent the generation of the rancid-off flavor.


Assuntos
Aspergillus oryzae , Queijo , Lipase Lipoproteica/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipase/genética , Lipase/metabolismo
6.
J Biosci Bioeng ; 137(4): 281-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331655

RESUMO

The white koji fungus Aspergillus luchuensis mut. kawachii secretes substantial amounts of citric acid through the expression of the citric acid exporter CexA, a member of the DHA1 family. In this study, we aimed to characterize 11 CexA homologs (Chl proteins) encoded in the genome of A. luchuensis mut. kawachii to identify novel transporters useful for organic acid production. We constructed overexpression strains of chl genes using a cexA disruptant of the A. luchuensis mut. kawachii as the host strain, which prevented excessive secretion of citric acid into the culture supernatant. Subsequently, we evaluated the effects of overexpression of chl on producing organic acids by analyzing the culture supernatant. All overexpression strains did not exhibit significant citric acid accumulation in the culture supernatant, indicating that Chl proteins are not responsible for citric acid export. Furthermore, the ChlH overexpression strain displayed an accumulation of 2-oxoglutaric and fumaric acids in the culture supernatant, while the ChlK overexpression strain exhibited the accumulation of 2-oxoglutaric, malic and succinic acids. Notably, the ChlH and ChlK overexpression led to a substantial increase in the production of 2-oxoglutaric acid, reaching approximately 25 mM and 50 mM, respectively. Furthermore, ChlH and ChlK overexpression also significantly increased the secretory production of dicarboxylic acids, including 2-oxoglutaric acid, in the yellow koji fungus, Aspergillus oryzae. Our study demonstrates that overexpression of DHA1 family gene results in enhanced secretion of organic acids in koji fungi of the genus Aspergillus.


Assuntos
Aspergillus oryzae , Aspergillus , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Ácidos Dicarboxílicos , Ácidos Cetoglutáricos , Ácido Cítrico/metabolismo
7.
J Biosci Bioeng ; 137(4): 231-238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346913

RESUMO

Nitrogen source assimilation is important for the biological functions of fungi, and its pathway has been deeply studied. Aspergillus oryzae mutants defective in nitrogen source assimilation are known to grow poorly on Czapek-Dox (CD) medium. In this study, we found an industrial strain of A. oryzae that grew very poorly on a CD medium containing sodium nitrate as a nitrogen source. We used media with various nitrogen components to examine the steps affecting the nitrogen source assimilation pathway of this strain. The strain grew well on the CD medium supplied with nitrite salt or ammonium salt, suggesting that the strain was defective in nitrate assimilation step. To ascertain the gene causing the defect of nitrate assimilation, a gene expression vector harboring either niaD or crnA of A. oryzae RIB40 was introduced into the industrial strain. The industrial strain containing the crnA vector recovered its growth. This is the first report that a mutation of crnA causes poor growth on CD medium in an industrial strain of A. oryzae, and crnA can be used as a transformation marker for crnA deficient strains.


Assuntos
Aspergillus oryzae , Nitratos , Nitratos/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , RNA Complementar , Nitrogênio/metabolismo , Mutação
8.
Mar Drugs ; 22(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38393045

RESUMO

The natural product α-cyclopiazonic acid (α-CPA) is a very potent Ca2+-ATPase inhibitor. The CPA family of compounds comprise over 80 chemical entities with at least five distinct skeletons. While α-CPA features a canonical 6/5/6/5/5 skeleton, the 6/5/6/5 skeleton is the most prevalent among the CPA family. However, the origin of the unique tetracyclic skeleton remains unknown. The 6/5/6/5-type CPAs may derive from a precursor of acetoacetyl-l-tryptophan (AATrp) generated from a hypothetic thioesterase-like pathway. Alternatively, cleavage of the tetramic acid ring would also result in the formation of the 6/5/6/5 scaffold. Aspergillus oryzae HMP-F28 is a marine sponge-associated filamentous fungus known to produce CPAs that act as primary neurotoxins. To elucidate the origin of this subfamily of CPAs, we performed homologous recombination and genetic engineering experiments on strain HMP-F28. Our results are supportive of the ring cleavage pathway through which the tetracyclic 6/5/6/5-type CPAs are generated from 6/5/6/5/5-type pentacyclic CPAs.


Assuntos
Aspergillus oryzae , Indóis , Indóis/química , Aspergillus oryzae/metabolismo
9.
J Biosci Bioeng ; 137(3): 204-210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242757

RESUMO

Filamentous fungi produce numerous industrially important enzymes. Among them, Aspergillus oryzae-derived enzymes are widely used in various fermentation applications. In this study, we constructed self-cloning strains that overproduce multiple biomass-degrading enzymes under the control of a strong promoter of α-amylase-coding gene (amyB) using the industrial strain A. oryzae AOK11. Two strains (strains 2-4 and 3-26) were introduced with different combinations of genes encoding xylanase (xynG1), phytase (phyA), pectin lyase (pelA), and polygalacturonase (pgaB). These strains had at least one copy of each enzyme gene derived from the expression cassette in the genome. The transcription levels of enzyme-coding genes introduced were more than 100-fold higher than those in the parent strain. Reflecting the high transcription levels, the activities of the enzymes derived from the expression cassettes of these two strains were significantly higher than those of the parent strain in both liquid and solid-state cultures. Even in ventilated solid-state cultures that were scaled up using mechanical equipment for practical applications, the two strains showed significantly higher enzyme activity than the parent strain. These results indicate that these strains constructed using a safe self-cloning technique represent industrially valuable practical strains that can be used in the food and livestock industries.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/metabolismo , Biomassa , Regiões Promotoras Genéticas , Clonagem Molecular
10.
Biosci Biotechnol Biochem ; 88(4): 381-388, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38211972

RESUMO

Aspergillus oryzae, also known as the yellow koji mold, produces various hydrolytic enzymes that are widely used in different industries. Its high capacity to produce secretory proteins makes this filamentous fungus a suitable host for heterologous protein production. Amylolytic gene promoter is widely used to express heterologous genes in A. oryzae. The expression of this promoter is strictly regulated by several transcription factors, whose activation involves various factors. Furthermore, the expression levels of amylolytic and heterologous genes are post-transcriptionally regulated by mRNA degradation mechanisms in response to aberrant transcriptional termination or endoplasmic reticulum stress. This review discusses the transcriptional and post-transcriptional regulatory mechanisms controlling the expression of genes encoding secretory proteins in A. oryzae.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/metabolismo , Estresse do Retículo Endoplasmático , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/metabolismo
11.
J Agric Food Chem ; 72(2): 1114-1123, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166364

RESUMO

Natural products are a rich resource for the discovery of innovative drugs. Microbial cocultivation enables discovery of novel natural products through tandem enzymatic catalysis between different fungi. In this study, Monascus purpureus, as a food fermentation strain capable of producing abundant natural products, was chosen as an example of a cocultivation pair strain. Cocultivation screening revealed that M. purpureus and Aspergillus oryzae led to the production of two novel cyclohexyl-furans, Monaspins A and B. Optimization of the cocultivation mode and media enhanced the production of Monaspins A and B to 1.2 and 0.8 mg/L, respectively. Monaspins A and B were structurally elucidated by HR-ESI-MS and NMR. Furthermore, Monaspin B displayed potent antiproliferative activity against the leukemic HL-60 cell line by inducing apoptosis, with a half-maximal inhibitory concentration (IC50) of 160 nM. Moreover, in a mouse leukemia model, Monaspin B exhibited a promising in vivo antileukemic effect by reducing white blood cell, lymphocyte, and neutrophil counts. Collectively, these results indicate that Monaspin B is a promising candidate agent for leukemia therapy.


Assuntos
Aspergillus oryzae , Produtos Biológicos , Leucemia , Monascus , Animais , Camundongos , Monascus/metabolismo , Aspergillus oryzae/metabolismo , Técnicas de Cocultura , Fermentação , Furanos/metabolismo , Produtos Biológicos/metabolismo , Leucemia/tratamento farmacológico , Pigmentos Biológicos/metabolismo
12.
Food Microbiol ; 119: 104435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225047

RESUMO

Aspergillus flavus and Aspergillus oryzae are closely related fungal species with contrasting roles in food safety and fermentation. To comprehensively investigate their phylogenetic, genomic, and metabolic characteristics, we conducted an extensive comparative pangenome analysis using complete, dereplicated genome sets for both species. Phylogenetic analyses, employing both the entirety of the identified single-copy orthologous genes and six housekeeping genes commonly used for fungal classification, did not reveal clear differentiation between A. flavus and A. oryzae genomes. Upon analyzing the aflatoxin biosynthesis gene clusters within the genomes, we observed that non-aflatoxin-producing strains were dispersed throughout the phylogenetic tree, encompassing both A. flavus and A. oryzae strains. This suggests that aflatoxin production is not a distinguishing trait between the two species. Furthermore, A. oryzae and A. flavus strains displayed remarkably similar genomic attributes, including genome sizes, gene contents, and G + C contents, as well as metabolic features and pathways. The profiles of CAZyme genes and secondary metabolite biosynthesis gene clusters within the genomes of both species further highlight their similarity. Collectively, these findings challenge the conventional differentiation of A. flavus and A. oryzae as distinct species and highlight their phylogenetic, genomic, and metabolic homogeneity, potentially indicating that they may indeed belong to the same species.


Assuntos
Aflatoxinas , Aspergillus oryzae , Aspergillus flavus/metabolismo , Filogenia , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Aflatoxinas/genética , Genômica
13.
Bioprocess Biosyst Eng ; 47(1): 39-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962643

RESUMO

Phytase enzyme found in plants, animals, and microorganisms is mainly involved in catalyzing the systematic removal of a phosphate group from phytic acid. Enzyme immobilization is one of the cost-effective methods for the wide usage of enzymes in the industrial sector. This paper reports the covalent immobilization of phytase on glutaraldehyde-activated aluminum oxide beads. The immobilization yield, efficiency, and activation energy were found to be 47.8%, 71.5%, and 15.78 J/mol, respectively. The bound enzyme displayed a shift in pH optima from 5.5 to 4.5, which is more beneficial to increase digestibility in comparison with the free enzyme. Immobilized phytase retained 42.60% of its activity after 1.0 h incubation at 80 °C, whereas free enzyme retained only 4.20% of its activity. Thermodynami increase in half-lives, D-values, enthalpy and free energy change after covalent immobilization could be credited to the enhanced stability. Immobilized phytase could be reused for five consecutive cycles retaining 51% of its initial activity with sodium phytate. The immobilized phytase was also found effective to hydrolyze the soybean meal, thus increasing the digestibility of poultry feed. The hydrolyzing reaction of soybean meal was carried out for six consecutive cycles and immobilized phytase retained nearly 50% of activity till the fifth cycle. The amount of phosphorus released after treatment with immobilized phytase was far higher than that from free phytase. Immobilization on this support is significant, as this support can sustain high mechanical resistance at high pH and temperature. This considerable stability and reusability of the bound enzyme may be advantageous for its industrial application.


Assuntos
6-Fitase , Aspergillus oryzae , 6-Fitase/química , Aspergillus oryzae/metabolismo , Células Imobilizadas/metabolismo , Farinha , Glycine max , Fosfatos , Ácido Fítico/metabolismo
14.
Biosci Biotechnol Biochem ; 88(3): 276-282, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38066701

RESUMO

Plants synthesize large amounts of stored and structural polysaccharides. Aspergillus oryzae is used in traditional Japanese fermentation and produces many types of plant polysaccharide degradation-related enzymes. The carbohydrate-active enzymes of A. oryzae are important in the fermentation process and biotechnological applications. Because plant polysaccharides have a complex structure, cooperative and synergistic actions of enzymes are crucial for the degradation of plant polysaccharides. For example, the cooperative action of isoprimeverose-producing oligoxyloglucan hydrolase, ß-galactosidase, and α-xylosidase is important for the degradation of xyloglucan, and A. oryzae coordinates these enzymes at the expression level. In this review, I focus on the plant polysaccharide degradation-related enzymes identified in A. oryzae.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/metabolismo , Glicosídeo Hidrolases/química , Polissacarídeos/metabolismo
15.
Biosci Biotechnol Biochem ; 88(2): 220-224, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37977852

RESUMO

In Aspergillus oryzae, the tyrosinase-encoding gene melB causes undesirable browning of sake and sake lees. This gene is known to be expressed specifically in solid-state culture; however, its expression mechanisms remain unknown. Here, we evaluated the possible factors affecting the transcription of melB and found that the copper ion (Cu2+) significantly enhanced the transcription level of melB in solid-state culture.


Assuntos
Aspergillus oryzae , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Cobre/metabolismo
16.
Proteins ; 92(2): 236-245, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37818702

RESUMO

The subsequent biochemical and structural investigations of the purified recombinant α-l-rhamnosidase from Aspergillus oryzae expressed in Pichia pastoris, designated as rAoRhaA, were performed. The specific activity of the rAoRhaA wild-type was higher toward hesperidin and narirutin, where the l-rhamnose residue was α-1,6-linked to ß-d-glucoside, than toward neohesperidin and naringin with an α-1,2-linkage to ß-d-glucoside. However, no activity was detected toward quercitrin, myricitrin, and epimedin C. rAoRhaA kinetic analysis indicated that Km values for neohesperidin, naringin, and rutin were lower compared to those for hesperidin and narirutin. kcat values for hesperidin and narirutin were higher than those for neohesperidin, naringin, and rutin. High catalytic efficiency (kcat /Km ) toward hesperidin and narirutin was a result of a considerably high kcat value, while Km values for hesperidin and narirutin were higher than those for naringin, neohesperidin, and rutin. The crystal structure of rAoRhaA revealed that the catalytic domain was represented by an (α/α)6 -barrel with the active site located in a deep cleft and two ß-sheet domains were also present in the N- and C-terminal sites of the catalytic domain. Additionally, five asparagine-attached N-acetylglucosamine molecules were observed. The catalytic residues of AoRhaA were suggested to be Asp254 and Glu524, and their catalytic roles were confirmed by mutational studies of D254N and E524Q variants, which lost their activity completely. Notably, three aspartic acids (Asp117, Asp249, and Asp261) located at the catalytic pocket were replaced with asparagine. D117N variant showed reduced activity. D249N and D261N variants activities drastically decreased.


Assuntos
Aspergillus oryzae , Hesperidina , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Especificidade por Substrato , Cinética , Asparagina , Glicosídeo Hidrolases/química , Rutina , Glucosídeos
17.
Microb Cell Fact ; 22(1): 253, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071331

RESUMO

BACKGROUND: Cordycepin (3'-deoxyadenosine) is an important bioactive compound in medical and healthcare markets. The drawbacks of commercial cordycepin production using Cordyceps spp. include long cultivation periods and low cordycepin yields. To overcome these limitations and meet the increasing market demand, the efficient production of cordycepin by the GRAS-status Aspergillus oryzae strain using a synthetic biology approach was developed in this study. RESULTS: An engineered strain of A. oryzae capable of cordycepin production was successfully constructed by overexpressing two metabolic genes (cns1 and cns2) involved in cordycepin biosynthesis under the control of constitutive promoters. Investigation of the flexibility of carbon utilization for cordycepin production by the engineered A. oryzae strain revealed that it was able to utilize C6-, C5-, and C12-sugars as carbon sources, with glucose being the best carbon source for cordycepin production. High cordycepin productivity (564.64 ± 9.59 mg/L/d) was acquired by optimizing the submerged fermentation conditions. CONCLUSIONS: This study demonstrates a powerful production platform for bioactive cordycepin production by A. oryzae using a synthetic biology approach. An efficient and cost-effective fermentation process for cordycepin production using an engineered strain was established, offering a powerful alternative source for further upscaling.


Assuntos
Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Desoxiadenosinas/metabolismo , Fermentação , Carbono/metabolismo
18.
Sci Rep ; 13(1): 19823, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963959

RESUMO

Environmental pollution due to the improper use of the chemical fungicides represents a vital ecological problem, which affects human and animal health, as well as the microbial biodiversity and abundance in the soil. In this study, an endophytic fungus Aspergillus oryzae YRA3, isolated from the wild plant Atractylis carduus (Forssk.) C.Chr, was tested for its biocontrol activity against Rhizoctonia root rot of sorghum. The antagonistic potential of A. oryzae YRA3 was tested against Rhizoctonia solani in vitro. A full inhibition in the growth of R. solani was recorded indicating a strong antagonistic potential for this endophyte. To investigate the chemical composition of its metabolites, GC/MS analysis was used and thirty-two compounds in its culture filtrate were identified. Among these metabolites, some compounds with an antifungal background were detected including palmitic acid, 2-heptanone, and 2,3-butanediol. To these antifungal metabolites the antagonistic activity of A. oryzae YRA3 can be attributed. In the greenhouse experiment, treating of the infected sorghum plants with A. oryzae YRA3 significantly reduced severity of the Rhizoctonia root rot by 73.4%. An upregulation of the defensive genes (JERF3), (POD) and (CHI II) was recorded in sorghum roots when were inoculated with A. oryzae YRA3. In addition, an increment in the activity of peroxidase and polyphenol oxidase, as well as the total phenolic content in the sorghum roots was also recorded. Furthermore, the results obtained from the greenhouse experiment revealed a growth-promoting effect for inoculating the sorghum plants with A. oryzae YRA3. It can be concluded that A. oryzae YRA3 can be a probable biological agent to control this disease in sorghum. However, its evaluation under field conditions is highly needed in the future studies.


Assuntos
Aspergillus oryzae , Sorghum , Animais , Humanos , Antifúngicos/farmacologia , Endófitos/fisiologia , Sorghum/metabolismo , Antioxidantes/farmacologia , Aspergillus oryzae/metabolismo , Transcriptoma , Rhizoctonia/fisiologia , Grão Comestível/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
19.
Bioprocess Biosyst Eng ; 46(12): 1777-1790, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919523

RESUMO

The use of chicken waste can contribute to the development of new processes and obtaining molecules with high added value. An experimental design was applied to evaluate the effect of moisture, temperature, and inoculum size on the production of antioxidant peptides and proteases by A. oryzae IOC3999 through solid-state fermentation (SSF) of chicken viscera meal. As a result, the process conditions strongly influenced protease production and antioxidant activity of the fermented products. A global analysis of the results indicated that the most adequate conditions for SSF were (assay 9): 40% initial moisture, 30 °C as the incubation temperature, 5.05 × 106 spores/g as the inoculum size, and 48-h fermentation as the fermentation time. Under this condition, the antioxidant activities for the ABTS- and DPPH-radicals inhibition and ferric reducing antioxidant power (FRAP) methods were 376.16, 153.29, and 300.47 (µmol TE/g), respectively, and the protease production reached 428.22 U/g. Ultrafiltration of the crude extract obtained under optimized fermentation conditions was performed, and the fraction containing peptides with molecular mass lower than 3 kDa showed the highest antioxidant activity. The proteases were biochemically characterized and showed maximal activity at pH values ranging from 5.0 to 6.0 and a temperature of 50 °C. The thermodynamic parameters indicated that the process of thermal protease inactivation is not spontaneous (ΔG*d > 88.78 kJ/mol), increasing with temperature (ΔH*d 27.01-26.88 kJ/mol), and with reduced disorder in the system (ΔS*d < - 197.74 kJ/mol) probably caused by agglomeration of partially denatured enzymes.


Assuntos
Aspergillus oryzae , Animais , Aspergillus oryzae/metabolismo , Peptídeo Hidrolases , Antioxidantes , Galinhas/metabolismo , Vísceras/metabolismo , Temperatura , Endopeptidases , Peptídeos , Fermentação
20.
Commun Biol ; 6(1): 1009, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794162

RESUMO

Regulated Ire1-dependent decay (RIDD) is a feedback mechanism in which the endoribonuclease Ire1 cleaves endoplasmic reticulum (ER)-localized mRNAs encoding secretory and membrane proteins in eukaryotic cells under ER stress. RIDD is artificially induced by chemicals that generate ER stress; however, its importance under physiological conditions remains unclear. Here, we demonstrate the occurrence of RIDD in filamentous fungus using Aspergillus oryzae as a model, which secretes copious amounts of amylases. α-Amylase mRNA was rapidly degraded by IreA, an Ire1 ortholog, depending on its ER-associated translation when mycelia were treated with dithiothreitol, an ER-stress inducer. The mRNA encoding maltose permease MalP, a prerequisite for the induction of amylolytic genes, was also identified as an RIDD target. Importantly, RIDD of malP mRNA is triggered by inducing amylase production without any artificial ER stress inducer. Our data provide the evidence that RIDD occurs in eukaryotic microorganisms under physiological ER stress.


Assuntos
Amilases , Aspergillus oryzae , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...