Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Mov Disord ; 39(5): 788-797, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419144

RESUMO

BACKGROUND: With disease-modifying drugs in reach for cerebellar ataxias, fine-grained digital health measures are highly warranted to complement clinical and patient-reported outcome measures in upcoming treatment trials and treatment monitoring. These measures need to demonstrate sensitivity to capture change, in particular in the early stages of the disease. OBJECTIVE: Our aim is to unravel gait measures sensitive to longitudinal change in the-particularly trial-relevant-early stage of spinocerebellar ataxia type 2 (SCA2). METHODS: We performed a multicenter longitudinal study with combined cross-sectional and 1-year interval longitudinal analysis in early-stage SCA2 participants (n = 23, including nine pre-ataxic expansion carriers; median, ATXN2 CAG repeat expansion 38 ± 2; median, Scale for the Assessment and Rating of Ataxia [SARA] score 4.8 ± 4.3). Gait was assessed using three wearable motion sensors during a 2-minute walk, with analyses focused on gait measures of spatio-temporal variability that have shown sensitivity to ataxia severity (eg, lateral step deviation). RESULTS: We found significant changes for gait measures between baseline and 1-year follow-up with large effect sizes (lateral step deviation P = 0.0001, effect size rprb = 0.78), whereas the SARA score showed no change (P = 0.67). Sample size estimation indicates a required cohort size of n = 43 to detect a 50% reduction in natural progression. Test-retest reliability and minimal detectable change analysis confirm the accuracy of detecting 50% of the identified 1-year change. CONCLUSIONS: Gait measures assessed by wearable sensors can capture natural progression in early-stage SCA2 within just 1 year-in contrast to a clinical ataxia outcome. Lateral step deviation represents a promising outcome measure for upcoming multicenter interventional trials, particularly in the early stages of cerebellar ataxia. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Progressão da Doença , Ataxias Espinocerebelares , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/genética , Estudos Longitudinais , Estudos Transversais , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/diagnóstico , Ataxina-2/genética
2.
FEBS J ; 291(8): 1795-1812, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308810

RESUMO

Ataxin-2 (Atx2) is a polyglutamine (polyQ) protein, in which abnormal expansion of the polyQ tract can trigger protein aggregation and consequently cause spinocerebellar ataxia type 2 (SCA2), but the mechanism underlying how Atx2 aggregation leads to proteinopathy remains elusive. Here, we investigate the molecular mechanism and cellular consequences of Atx2 aggregation by molecular cell biology approaches. We have revealed that either normal or polyQ-expanded Atx2 can sequester Raptor, a component of mammalian target of rapamycin complex 1 (mTORC1), into aggregates based on their specific interaction. Further research indicates that the polyQ tract and the N-terminal region (residues 1-784) of Atx2 are responsible for the specific sequestration. Moreover, this sequestration leads to suppression of the mTORC1 activity as represented by down-regulation of phosphorylated P70S6K, which can be reversed by overexpression of Raptor. As mTORC1 is a key regulator of autophagy, Atx2 aggregation and sequestration also induces autophagy by upregulating LC3-II and reducing phosphorylated ULK1 levels. This study proposes that Atx2 sequesters Raptor into aggregates, thereby impairing cellular mTORC1 signaling and inducing autophagy, and will be beneficial for a better understanding of the pathogenesis of SCA2 and other polyQ diseases.


Assuntos
Ataxina-2 , Ataxina-2/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
3.
PLoS One ; 18(12): e0296085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38128014

RESUMO

Spinocerebellar ataxia 2 (SCA2) is a neurodegenerative disorder caused by the expansion of the poly-glutamine (polyQ) tract of Ataxin-2 (ATXN2). Other polyQ-containing proteins such as ATXN7 and huntingtin are associated with the development of neurodegenerative diseases when their N-terminal polyQ domains are expanded. Furthermore, they undergo proteolytic processing events that produce N-terminal fragments that include the polyQ stretch, which are implicated in pathogenesis. Interestingly, N-terminal ATXN2 fragments were reported in a brain extract from a SCA2 patient, but it is currently unknown whether an expanded polyQ domain contributes to ATXN2 proteolytic susceptibility. Here, we used transient expression in HEK293 cells to determine whether ATXN2 is a target for specific N-terminal proteolysis. We found that ATXN2 proteins with either normal or expanded polyQ stretches undergo proteolytic cleavage releasing an N-terminal polyQ-containing fragment. We identified a short amino acid sequence downstream of the polyQ domain that is necessary for N-terminal cleavage of full-length ATXN2 and sufficient to induce proteolysis of a heterologous protein. However, this sequence is not required for cleavage of a short ATXN2 isoform produced from an alternative start codon located just upstream of the CAG repeats encoding the polyQ domain. Our study extends our understanding of ATXN2 posttranslational regulation by revealing that this protein can be the target of specific proteolytic cleavage events releasing polyQ-containing products that are modulated by the N-terminal domain of ATXN2. N-terminal ATXN2 proteolysis of expanded polyQ domains might contribute to SCA2 pathology, as observed in other neurodegenerative disorders caused by polyQ domain expansion.


Assuntos
Ataxina-2 , Ataxias Espinocerebelares , Humanos , Ataxina-2/genética , Ataxina-2/metabolismo , Proteólise , Células HEK293 , Ataxias Espinocerebelares/patologia , Sequência de Aminoácidos
4.
Nat Commun ; 14(1): 6492, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838698

RESUMO

The TDP-43 proteinopathies, which include amyotrophic lateral sclerosis and frontotemporal dementia, are a devastating group of neurodegenerative disorders that are characterized by the mislocalization and aggregation of TDP-43. Here we demonstrate that RNA-targeting CRISPR effector proteins, a programmable class of gene silencing agents that includes the Cas13 family of enzymes and Cas7-11, can be used to mitigate TDP-43 pathology when programmed to target ataxin-2, a modifier of TDP-43-associated toxicity. In addition to inhibiting the aggregation and transit of TDP-43 to stress granules, we find that the in vivo delivery of an ataxin-2-targeting Cas13 system to a mouse model of TDP-43 proteinopathy improved functional deficits, extended survival, and reduced the severity of neuropathological hallmarks. Further, we benchmark RNA-targeting CRISPR platforms against ataxin-2 and find that high-fidelity forms of Cas13 possess improved transcriptome-wide specificity compared to Cas7-11 and a first-generation effector. Our results demonstrate the potential of CRISPR technology for TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica , Proteinopatias TDP-43 , Camundongos , Animais , Ataxina-2/genética , RNA/metabolismo , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
5.
Mol Cell ; 83(12): 2020-2034.e6, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295429

RESUMO

Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.


Assuntos
Ataxina-2 , Doenças Neurodegenerativas , Humanos , Ataxina-2/genética , Proteína I de Ligação a Poli(A) , Doenças Neurodegenerativas/metabolismo , Condensados Biomoleculares
6.
Mol Cell ; 83(12): 1961-1963, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327772

RESUMO

Ataxin-2, an RNA-binding protein that is conserved across eukaryotes, is involved in stress granule assembly and age-associated neurodegenerative diseases. In this issue of Molecular Cell, Boeynaems et al.1 identify a short linear motif in ataxin-2 as a condensation switch, providing molecular insights into its essential role in cellular stress response.


Assuntos
Ataxina-2 , Doenças Neurodegenerativas , Humanos , Ataxina-2/genética , Ataxina-2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Doenças Neurodegenerativas/genética , Ataxina-1/metabolismo
7.
Mol Neurobiol ; 60(6): 3553-3567, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36894829

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease, which belongs to the trinucleotide repeat disease group with a CAG repeat expansion in exon 1 of the ATXN2 gene resulting in an ataxin-2 protein with an expanded polyglutamine (polyQ)-stretch. The disease is late manifesting leading to early death. Today, therapeutic interventions to cure the disease or even to decelerate disease progression are not available yet. Furthermore, primary readout parameter for disease progression and therapeutic intervention studies are limited. Thus, there is an urgent need for quantifiable molecular biomarkers such as ataxin-2 becoming even more important due to numerous potential protein-lowering therapeutic intervention strategies. The aim of this study was to establish a sensitive technique to measure the amount of soluble polyQ-expanded ataxin-2 in human biofluids to evaluate ataxin-2 protein levels as prognostic and/or therapeutic biomarker in SCA2. Time-resolved fluorescence energy transfer (TR-FRET) was used to establish a polyQ-expanded ataxin-2-specific immunoassay. Two different ataxin-2 antibodies and two different polyQ-binding antibodies were validated in three different concentrations and tested in cellular and animal tissue as well as in human cell lines, comparing different buffer conditions to evaluate the best assay conditions. We established a TR-FRET-based immunoassay for soluble polyQ-expanded ataxin-2 and validated measurements in human cell lines including iPSC-derived cortical neurons. Additionally, our immunoassay was sensitive enough to monitor small ataxin-2 expression changes by siRNA or starvation treatment. We successfully established the first sensitive ataxin-2 immunoassay to measure specifically soluble polyQ-expanded ataxin-2 in human biomaterials.


Assuntos
Ataxina-2 , Ataxias Espinocerebelares , Animais , Humanos , Ataxina-2/genética , Ataxina-2/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ataxias Espinocerebelares/genética , Imunoensaio , Progressão da Doença , Ataxina-3/metabolismo , Ataxina-1/metabolismo
8.
Ophthalmic Genet ; 44(3): 246-252, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994723

RESUMO

BACKGROUND: Primary open-angle glaucoma (POAG), the world's main cause of irreversible blindness, is an asymptomatic and neurodegenerative disease of multifactorial etiology with ethnic and geographic disparities. Multiethnic genome-wide association studies (GWAS) identified single nucleotide variants (SNVs) in ATXN2, FOXC1, and TXNRD2 loci as risk factors for POAG pathophysiology and/or endophenotypes. The aim of this case-control study was to investigate the association of the variants rs7137828 (ATXN2), rs2745572 (FOXC1), and rs35934224 (TXNRD2), as risk factors for POAG development, additionally to rs7137828 association with glaucoma clinical parameters in a Brazilian cohort from the Southeast and South regions. METHODS: This investigation comprised 506 cases and 501 controls. Variants rs2745572 and rs35934224 were genotyped through TaqMan® assays and validated by Sanger sequencing. Variant rs7137828 was genotyped exclusively by Sanger sequencing. RESULTS: The primary research outcome revealed that the variant rs7137828 (ATXN2) was associated with an increased risk for the development of POAG in the presence of the TT genotype compared to the CC genotype (p = 0.006; Odds Ratio [OR] = 1.717; Confidence Interval [CI] 95% = 1.169-2.535). There was no significant association of rs2745572 and rs35934224 genotypes with POAG. The CT genotype of the rs7137828 was associated with the vertical cup-to-disk ratio (VCDR) (p = .023) but not with the age at diagnosis or the mean deviation. CONCLUSION: Our data indicate the rs7137828 associated with increased risk for the development of POAG and VCDR in a Brazilian cohort. If validated in additional populations, these findings may enable the development of relevant strategies for early diagnosis of glaucoma in the future.


Assuntos
Glaucoma de Ângulo Aberto , Doenças Neurodegenerativas , Humanos , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/diagnóstico , Estudo de Associação Genômica Ampla , Estudos de Casos e Controles , Brasil/epidemiologia , Genótipo , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Transcrição Forkhead/genética , Ataxina-2/genética , Tiorredoxina Redutase 2/genética
9.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233198

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is a rare autosomal, dominantly inherited disease, in which the affected individuals have a disease onset around their third life decade. The molecular mechanisms underlying SCA2 are not yet completely understood, for which we hypothesize that aging plays a role in SCA2 molecular pathogenesis. In this study, we performed a striatal injection of mutant ataxin-2 mediated by lentiviral vectors, in young and aged animals. Twelve weeks post-injection, we analyzed the striatum for SCA2 neuropathological features and specific aging hallmarks. Our results show that aged animals had a higher number of mutant ataxin-2 aggregates and more neuronal marker loss, compared to young animals. Apoptosis markers, cleaved caspase-3, and cresyl violet staining also indicated increased neuronal death in the aged animal group. Additionally, mRNA levels of microtubule-associated protein 1 light-chain 3B (LC3) and sequestosome-1 (SQSTM1/p62) were altered in the aged animal group, suggesting autophagic pathway dysfunction. This work provides evidence that aged animals injected with expanded ataxin-2 had aggravated SCA2 disease phenotype, suggesting that aging plays an important role in SCA2 disease onset and disease progression.


Assuntos
Ataxina-2 , Ataxias Espinocerebelares , Animais , Ataxina-2/genética , Ataxina-2/metabolismo , Ataxina-3/genética , Caspase 3/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Mensageiro , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Ataxias Espinocerebelares/patologia
10.
J Immunol Res ; 2022: 6863240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213324

RESUMO

As one of the primary therapeutic choices, chemotherapy is widely adopted for progressive gastric cancer (GC), but the development of chemoresistance has limited chemotherapy efficacy and partly contributes to poor prognosis. Immunotherapy is increasingly being applied in the clinical treatment of GC and is also benefitting patients. To ascertain whether ATXN2 affects chemotherapy efficacy in GC cells and its role in GC immune escape, we performed high-throughput sequencing to clarify genes differentially expressed between 5-FU-resistant and 5-FU-sensitive GC cells and then conducted qRT-PCR to assess ATXN2 expression in GC tissues. Furthermore, the influence of ATXN2 on resistance was studied in vitro and in vivo, ATXN2 and other protein expression levels were detected using Western blotting and immunohistochemistry (IHC), and the direct association of SP1 and ATXN2 was confirmed through luciferase reporter gene analysis. We found elevated ATXN2 in GC tumors and a negative correlation between ATXN2 levels and the prognosis of GC. Furthermore, by activating the PI3K/AKT pathway, ATXN2 was found to promote chemoresistance in GC, facilitating BCL2L1 expression. In GC cells, ATXN2 further stimulated PD-L1 expression and provided better immunotherapy efficacy. Finally, we demonstrated that SP1 transcriptionally regulated the expression of ATXN2 and prompted GC chemoresistance and immune escape. In conclusion, our study reveals the important roles of the SP1/ATXN2/PI3K-AKT/BCL2L1 signalling pathway in GC chemoresistance and of the SP1/ATXN2/PI3K-AKT/PD-L1 signalling pathway in GC immunotherapy. Our findings provide new theories and experimental references for overcoming chemotherapy resistance in GC and enhancing the efficacy of immunotherapy for GC.


Assuntos
Neoplasias Gástricas , Ataxina-2/genética , Ataxina-2/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila , Regulação Neoplásica da Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
11.
Cell Rep ; 41(4): 111508, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288714

RESUMO

Mutations in the ataxin-2 gene (ATXN2) cause the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). A therapeutic strategy using antisense oligonucleotides targeting ATXN2 has entered clinical trial in humans. Additional ways to decrease ataxin-2 levels could lead to cheaper or less invasive therapies and elucidate how ataxin-2 is normally regulated. Here, we perform a genome-wide fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in human cells and identify genes encoding components of the lysosomal vacuolar ATPase (v-ATPase) as modifiers of endogenous ataxin-2 protein levels. Multiple FDA-approved small molecule v-ATPase inhibitors lower ataxin-2 protein levels in mouse and human neurons, and oral administration of at least one of these drugs-etidronate-is sufficient to decrease ataxin-2 in the brains of mice. Together, we propose v-ATPase as a drug target for ALS and SCA2 and demonstrate the value of FACS-based screens in identifying genetic-and potentially druggable-modifiers of human disease proteins.


Assuntos
Esclerose Lateral Amiotrófica , Ataxias Espinocerebelares , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Camundongos , Ataxina-2/genética , Ataxina-2/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Preparações Farmacêuticas , Ácido Etidrônico , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética , Oligonucleotídeos Antissenso/genética
12.
Cell Rep ; 41(4): 111505, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288715

RESUMO

Gene-based therapeutic strategies to lower ataxin-2 levels are emerging for the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). Additional strategies to lower levels of ataxin-2 could be beneficial. Here, we perform a genome-wide arrayed small interfering RNA (siRNA) screen in human cells and identify RTN4R, the gene encoding the RTN4/NoGo-Receptor, as a potent modifier of ataxin-2 levels. RTN4R knockdown, or treatment with a peptide inhibitor, is sufficient to lower ataxin-2 protein levels in mouse and human neurons in vitro, and Rtn4r knockout mice have reduced ataxin-2 levels in vivo. We provide evidence that ataxin-2 shares a role with the RTN4/NoGo-Receptor in limiting axonal regeneration. Reduction of either protein increases axonal regrowth following axotomy. These data define the RTN4/NoGo-Receptor as a novel therapeutic target for ALS and SCA2 and implicate the targeting of ataxin-2 as a potential treatment following nerve injury.


Assuntos
Esclerose Lateral Amiotrófica , Ataxias Espinocerebelares , Animais , Camundongos , Humanos , Ataxina-2/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , RNA Interferente Pequeno , Receptores Nogo/metabolismo , Ataxias Espinocerebelares/genética , Camundongos Knockout , Peptídeos/metabolismo , Proteínas Nogo/genética , Proteínas Nogo/metabolismo
13.
Life Sci Alliance ; 5(12)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114004

RESUMO

Cytoplasmic polyadenylation is a mechanism to promote mRNA translation in a wide variety of biological contexts. A canonical complex centered around the conserved RNA-binding protein family CPEB has been shown to be responsible for this process. We have previously reported evidence for an alternative noncanonical, CPEB-independent complex in <i>Drosophila</i>, of which the RNA-interference factor Dicer-2 is a component. Here, we investigate Dicer-2 mRNA targets and protein cofactors in cytoplasmic polyadenylation. Using RIP-Seq analysis, we identify hundreds of potential Dicer-2 target transcripts, ∼60% of which were previously found as targets of the cytoplasmic poly(A) polymerase Wispy, suggesting widespread roles of Dicer-2 in cytoplasmic polyadenylation. Large-scale immunoprecipitation revealed Ataxin-2 and Twenty-four among the high-confidence interactors of Dicer-2. Complex analyses indicated that both factors form an RNA-independent complex with Dicer-2 and mediate interactions of Dicer-2 with Wispy. Functional poly(A)-test analyses showed that Twenty-four and Ataxin-2 are required for cytoplasmic polyadenylation of a subset of Dicer-2 targets. Our results reveal components of a novel cytoplasmic polyadenylation complex that operates during <i>Drosophila</i> early embryogenesis.


Assuntos
Ataxina-2 , Poliadenilação , Animais , Ataxina-2/genética , Ataxina-2/metabolismo , Drosophila/genética , Drosophila/metabolismo , Poliadenilação/genética , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
14.
J Biol Chem ; 298(8): 102228, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787375

RESUMO

CAG repeat expansions in the ATXN2 (ataxin-2) gene can cause the autosomal dominant disorder spinocerebellar ataxia type 2 (SCA2) as well as increase the risk of ALS. Abnormal molecular, motor, and neurophysiological phenotypes in SCA2 mouse models are normalized by lowering ATXN2 transcription, and reduction of nonmutant Atxn2 expression has been shown to increase the life span of mice overexpressing the TDP-43 (transactive response DNA-binding protein 43 kDa) ALS protein, demonstrating the potential benefits of targeting ATXN2 transcription in humans. Here, we describe a quantitative high-throughput screen to identify compounds that lower ATXN2 transcription. We screened 428,759 compounds in a multiplexed assay using an ATXN2-luciferase reporter in human embryonic kidney 293 (HEK-293) cells and identified a diverse set of compounds capable of lowering ATXN2 transcription. We observed dose-dependent reductions of endogenous ATXN2 in HEK-293 cells treated with procillaridin A, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), and heat shock protein 990 (HSP990), known inhibitors of HSP90 and Na+/K+-ATPases. Furthermore, HEK-293 cells expressing polyglutamine-expanded ATXN2-Q58 treated with 17-DMAG had minimally detectable ATXN2, as well as normalized markers of autophagy and endoplasmic reticulum stress, including STAU1 (Staufen 1), molecular target of rapamycin, p62, LC3-II (microtubule-associated protein 1A/1B-light chain 3II), CHOP (C/EBP homologous protein), and phospho-eIF2α (eukaryotic initiation factor 2α). Finally, bacterial artificial chromosome ATXN2-Q22 mice treated with 17-DMAG or HSP990 exhibited highly reduced ATXN2 protein abundance in the cerebellum. Taken together, our study demonstrates inhibition of HSP90 or Na+/K+-ATPases as potentially effective therapeutic strategies for treating SCA2 and ALS.


Assuntos
Esclerose Lateral Amiotrófica , Ataxias Espinocerebelares , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Ataxina-2/genética , Cerebelo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células HEK293 , Humanos , Proteínas de Ligação a RNA/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética
16.
Neurol Sci ; 43(10): 6087-6090, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35731316

RESUMO

BACKGROUND: ALS symptoms have been previously described only in the context of ATXN2 CAG expansions, whereas missense mutations of the gene have never been described in ALS patients. CASE PRESENTATION: We identified a novel missense mutation (c.2860C > T) of ATXN2, for which in silico analysis showed a possible pathogenic effect on protein expression, in a patient presenting an aggressive disease phenotype. DISCUSSION: Our findings raise the possibility for unknown genetic factors interacting with ATXN2 mutations, or for an autonomous pathogenic role for this specific point mutation in ATXN2 gene in driving the clinical phenotype toward ALS. We also found that stress granules in the fibroblasts from the patient entrapped higher amounts of defective ribosomal products compared to fibroblasts from three healthy subjects, suggesting that ATXN2 mutation-related toxicity may have implication in protein quality control.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Ataxina-2/genética , Humanos , Mutação , Mutação de Sentido Incorreto , Fenótipo , Proteínas/genética , Expansão das Repetições de Trinucleotídeos
18.
J Neuropathol Exp Neurol ; 81(7): 535-544, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35511239

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is caused by mutations in the ATXN2 gene in which toxic effects are triggered by expanded polyglutamine repeats within ataxin-2. SCA2 is accompanied by motor neuron degeneration as occurs in amyotrophic lateral sclerosis (ALS). We investigated the distribution patterns of ataxin-2 and transactivation-responsive DNA-binding protein 43 (TDP-43), a major disease-related protein in ALS, in the CNS of 3 SCA2 patients. Phosphorylated TDP-43 (pTDP-43)-positive lesions were widely distributed throughout the CNS and generally overlapped with 1C2 (expanded polyglutamine)-immunoreactive lesions. This distribution pattern is different from the pattern in limbic-predominant age-related TDP-43 encephalopathy. In SCA2, double immunostaining of TDP-43 and 1C2 in motor neurons revealed 3 staining patterns: cytoplasmic 1C2 and nuclear TDP-43, nucleocytoplasmic 1C2 and nuclear TDP-43, and nuclear 1C2 and cytoplasmic TDP-43, which reflect the early, active, and final stages of pathological change, respectively. The translocation of TDP-43 from the nucleus to the cytoplasm along with the translocation of 1C2 in the opposite direction indicates that nuclear accumulation of the disease-specific protein ataxin-2 affects the intracellular dynamics of TDP-43. Such a close interrelationship between mutant ataxin-2 and TDP-43 in the cell might account for the similarity of their distribution in the CNS of patients with SCA2.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ataxias Espinocerebelares , Ataxina-2/genética , Ataxina-2/metabolismo , Encéfalo/patologia , Proteínas de Ligação a DNA/genética , Humanos , Peptídeos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ativação Transcricional/genética
20.
Endocrinol Diabetes Nutr (Engl Ed) ; 69(1): 15-24, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35232555

RESUMO

INTRODUCTION: The ATXN2 gene has a VNTR (CAG)n with locus in exon1. Long alleles within the normal range (22-29 repeats) are associated with severe obesity in people from the United Kingdom, Indonesia and the Caribbean. OBJECTIVE: To analyse the influence of VNTR (CAG)n on metabolic profile in adults with obesity and pre-obesity, as well as to estimate its effect on the risk of developing diabetes. METHODS AND MATERIAL: 255 adults of Chinantec Amerindian ethnic origin were included, who underwent anthropometric and biochemical evaluation. The VNTR was amplified by end-point PCR and by 8% PAGE electrophoresis. RESULTS: Differences were found in the waist/hip circumference index and body mass index in the carriers of genotypes different to the one homozygous for 22 repeats with a Student's t-test value of 0.0041 and 0.0334, respectively. We also found an association with a family history of chronic disease. CONCLUSION: The VNTR of ATXN2 is associated with obesity in Mexican adults of Chinantec ancestry.


Assuntos
Doenças Cardiovasculares , Adulto , Ataxina-2/genética , Fatores de Risco de Doenças Cardíacas , Humanos , Obesidade/genética , Polimorfismo Genético , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...