Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.944
Filtrar
1.
Cell Signal ; 119: 111164, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583745

RESUMO

The development of resistance to cisplatin (CDDP) in bladder cancer presents a notable obstacle, with indications pointing to the substantial role of circular RNAs (circRNAs) in this resistance. Nevertheless, the precise mechanisms through which circRNAs govern resistance are not yet fully understood. Our findings demonstrate that circUGGT2 is significantly upregulated in bladder cancer, facilitating cancer cell migration and invasion. Additionally, our analysis of eighty patient outcomes revealed a negative correlation between circUGGT2 expression levels and prognosis. Using circRNA pull-down assays, mass spectrometry analyses, and RNA Immunoprecipitation (RIP), it was shown that circUGGT2 interacts with the KU heterodimer, consisting of KU70 and KU80. Both KU70 and KU80 are critical components of the non-homologous end joining (NHEJ) pathway, which plays a role in CDDP resistance. Flow cytometry was utilized in this study to illustrate the impact of circUGGT2 on the sensitivity of bladder cancer cell lines to CDDP through its interaction with KU70 and KU80. Additionally, a reduction in the levels of DNA repair factors associated with the NHEJ pathway, such as KU70, KU80, DNA-PKcs, and XRCC4, was observed in chromatin of bladder cancer cells following circUGGT2 knockdown post-CDDP treatment, while the levels of DNA repair factors in total cellular proteins remained constant. Thus, the promotion of CDDP resistance by circUGGT2 is attributed to its facilitation of repair factor recruitment to DNA breaks via interaction with the KU heterodimer. Furthermore, our study demonstrated that knockdown of circUGGT2 resulted in reduced levels of γH2AX, a marker of DNA damage response, in CDDP-treated bladder cancer cells, implicating circUGGT2 in the NHEJ pathway for DNA repair.


Assuntos
Cisplatino , Reparo do DNA por Junção de Extremidades , Resistencia a Medicamentos Antineoplásicos , Autoantígeno Ku , RNA Circular , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , RNA Circular/metabolismo , RNA Circular/genética , Linhagem Celular Tumoral , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Progressão da Doença
2.
Cell Death Differ ; 31(5): 683-696, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589496

RESUMO

Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.


Assuntos
Reparo do DNA por Junção de Extremidades , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteína Fosfatase 1 , Tolerância a Radiação , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Tolerância a Radiação/genética , Prognóstico , Linhagem Celular Tumoral , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Animais , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , Camundongos Nus , Feminino , Masculino , Reparo do DNA , Camundongos
3.
In Vivo ; 38(3): 1470-1476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688633

RESUMO

BACKGROUND/AIM: Automated measurement of immunostained samples can enable more convenient and objective prediction of treatment outcome from radiotherapy. We aimed to validate the performance of the QuPath image analysis software in immune cell markers detection by comparing QuPath cell counting results with those of physician manual cell counting. PATIENTS AND METHODS: CD8- and FoxP3-stained cervical, CD8-stained oropharyngeal, and Ku70-stained prostate cancer tumor sections were analyzed in 104 cervical, 92 oropharyngeal, and 58 prostate cancer patients undergoing radiotherapy at our Institution. RESULTS: QuPath and manual counts were highly correlated. When divided into two groups using ROC curves, the agreement between QuPath and manual counts was 89.4% for CD8 and 88.5% for FoxP3 in cervical cancer, 87.0% for CD8 in oropharyngeal cancer and 80.7% for Ku70 in prostate cancer. In cervical cancer, the high CD8 group based on QuPath counts had a better prognosis and the low CD8 group had a significantly worse prognosis [p=0.0003; 5-year overall survival (OS), 65.9% vs. 34.7%]. QuPath counts were more predictive than manual counts. Similar results were observed for FoxP3 in cervical cancer (p=0.002; 5-year OS, 62.1% vs. 33.6%) and CD8 in oropharyngeal cancer (p=0.013; 5-year OS, 80.2% vs. 47.2%). In prostate cancer, high Ku70 group had worse and low group significantly better outcome [p=0.007; 10-year progression-free survival (PFS), 56.0% vs. 93.8%]. CONCLUSION: QuPath showed a strong correlation with manual counting, confirming its utility and accuracy and potential applicability in clinical practice.


Assuntos
Software , Humanos , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Biomarcadores Tumorais/metabolismo , Adulto , Autoantígeno Ku/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Curva ROC , Antígenos CD8/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Neoplasias/radioterapia , Neoplasias/metabolismo , Neoplasias/patologia
4.
BMC Cancer ; 24(1): 519, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654216

RESUMO

BACKGROUND: Uveal melanoma (UVM) is the most common primary intraocular tumor in adults, with a median survival of 4-5 months following metastasis. DNA damage response (DDR) upregulation in UVM, which could be linked to its frequent activation of the PI3K/AKT pathway, contributes to its treatment resistance. We have reported that embryonic stem cell microenvironments (ESCMe) can revert cancer cells to less aggressive states through downregulation of the PI3K signaling, showing promise in modulating the DDR of UVM. METHODS: Since nonhomologous end joining (NHEJ) is the main DNA repair mechanism in UVM, this study utilized gene expression analysis and survival prognosis analysis to investigate the role of NHEJ-related genes in UVM based on public databases. Xenograft mouse models were established to assess the therapeutic potential of ESC transplantation and exposure to ESC-conditioned medium (ESC-CM) on key DNA repair pathways in UVM. Quantitative PCR and immunohistochemistry were used to analyze NHEJ pathway-related gene expression in UVM and surrounding normal tissues. Apoptosis in UVM tissues was evaluated using the TUNEL assay. RESULTS: PRKDC, KU70, XRCC5, LIG4 and PARP1 showed significant correlations with UM progression. High expression of PRKDC and XRCC5 predicted poorer overall survival, while low PARP1 and XRCC6 expression predicted better disease-free survival in UVM patients. ESCMe treatment significantly inhibited the NHEJ pathway transcriptionally and translationally and promoted apoptosis in tumor tissues in mice bearing UVM. Furthermore, ESC transplantation enhanced DDR activities in surrounding normal cells, potentially mitigating the side effects of cancer therapy. Notably, direct cell-to-cell contact with ESCs was more effective than their secreted factors in regulating the NHEJ pathway. CONCLUSIONS: Our results suggest that NHEJ-related genes might serve as prognostic markers and therapeutic targets in UVM. These findings support the therapeutic potential of ESC-based therapy in enhancing UVM sensitivity to radiochemotherapy and improving treatment outcomes while minimizing damage to healthy cells.


Assuntos
Dano ao DNA , Melanoma , Microambiente Tumoral , Neoplasias Uveais , Animais , Humanos , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/metabolismo , Neoplasias Uveais/mortalidade , Camundongos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Melanoma/terapia , Células-Tronco Embrionárias/metabolismo , Reparo do DNA por Junção de Extremidades , Linhagem Celular Tumoral , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Prognóstico , Masculino , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Transdução de Sinais , Reparo do DNA
5.
Cell Rep ; 43(4): 114001, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38547127

RESUMO

In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions identifies the presence of extremities healed by de novo telomere addition and numerous translocations between IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic precleavage complex.


Assuntos
Clivagem do DNA , Paramecium , Paramecium/genética , Paramecium/metabolismo , Quebras de DNA de Cadeia Dupla , Genoma de Protozoário , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Reparo do DNA , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Reparo do DNA por Junção de Extremidades
7.
Nucleic Acids Res ; 52(8): 4313-4327, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38407308

RESUMO

The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs's kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo's nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.


Assuntos
Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA , Endonucleases , Telômero , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , Telômero/metabolismo , Telômero/genética , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Endonucleases/genética , Reparo do DNA por Junção de Extremidades , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Ligação Proteica , Quebras de DNA de Cadeia Dupla , Fosforilação , DNA/metabolismo , DNA/química , DNA/genética
8.
Nucleic Acids Res ; 52(9): 5048-5066, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412274

RESUMO

Two DNA repair pathways, non-homologous end joining (NHEJ) and alternative end joining (A-EJ), are involved in V(D)J recombination and chromosome translocation. Previous studies reported distinct repair mechanisms for chromosome translocation, with NHEJ involved in humans and A-EJ in mice predominantly. NHEJ depends on DNA-PKcs, a critical partner in synapsis formation and downstream component activation. While DNA-PKcs inhibition promotes chromosome translocations harboring microhomologies in mice, its synonymous effect in humans is not known. We find partial DNA-PKcs inhibition in human cells leads to increased translocations and the continued involvement of a dampened NHEJ. In contrast, complete DNA-PKcs inhibition substantially increased microhomology-mediated end joining (MMEJ), thus bridging the two different translocation mechanisms between human and mice. Similar to a previous study on Ku70 deletion, DNA-PKcs deletion in G1/G0-phase mouse progenitor B cell lines, significantly impairs V(D)J recombination and generated higher rates of translocations as a consequence of dysregulated coding and signal end joining. Genetic DNA-PKcs inhibition suppresses NHEJ entirely, with repair phenotypically resembling Ku70-deficient A-EJ. In contrast, we find DNA-PKcs necessary in generating the near-exclusive MMEJ associated with Lig4 deficiency. Our study underscores DNA-PKcs in suppressing illegitimate chromosome rearrangement while also contributing to MMEJ in both species.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA , Translocação Genética , Recombinação V(D)J , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Animais , Humanos , Camundongos , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo
9.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423014

RESUMO

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Assuntos
Cromatina , Proteínas Nucleares , Animais , Cromatina/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , DNA/genética , Reparo do DNA por Junção de Extremidades , Histonas/genética , Histonas/metabolismo , Pareamento Cromossômico , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
10.
DNA Repair (Amst) ; 134: 103627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219597

RESUMO

DNA double-strand breaks (DSBs) are harmful to mammalian cells and a few of them can cause cell death. Accumulating DSBs in these cells to analyze their genomic distribution and their potential impact on chromatin structure is difficult. In this study, we used CRISPR to generate Ku80-/- human cells and arrested the cells in G1 phase to accumulate DSBs before conducting END-seq and Nanopore analysis. Our analysis revealed that DNA with high methylation level accumulates DSB hotspots in Ku80-/- human cells. Furthermore, we identified chromosome structural variants (SVs) using Nanopore sequencing and observed a higher number of SVs in Ku80-/- human cells. Based on our findings, we suggest that the high efficiency of Ku80 knockout in human HCT116 cells makes it a promising model for characterizing SVs in the context of 3D chromatin structure and studying the alternative-end joining (Alt-EJ) DSB repair pathway.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Autoantígeno Ku , Animais , Humanos , Cromatina , DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA/genética , Células HCT116 , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
11.
Sci Rep ; 14(1): 1188, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216643

RESUMO

Ku70 is a multifunctional protein with pivotal roles in DNA repair via non-homologous end-joining, V(D)J recombination, telomere maintenance, and neuronal apoptosis control. Nonetheless, its regulatory mechanisms remain elusive. Chicken Ku70 (GdKu70) cDNA has been previously cloned, and DT40 cells expressing it have significantly contributed to critical biological discoveries. GdKu70 features an additional 18 amino acids at its N-terminus compared to mammalian Ku70, the biological significance of which remains uncertain. Here, we show that the 5' flanking sequence of GdKu70 cDNA is not nearly encoded in the chicken genome. Notably, these 18 amino acids result from fusion events involving the NFE2L1 gene on chromosome 27 and the Ku70 gene on chromosome 1. Through experiments using newly cloned chicken Ku70 cDNA and specific antibodies, we demonstrated that Ku70 localizes within the cell nucleus as a heterodimer with Ku80 and promptly accumulates at DNA damage sites following injury. This suggests that the functions and spatiotemporal regulatory mechanisms of Ku70 in chickens closely resemble those in mammals. The insights and resources acquired will contribute to elucidate the various mechanisms by which Ku functions. Meanwhile, caution is advised when interpreting the previous numerous key studies that relied on GdKu70 cDNA and its expressing cells.


Assuntos
Antígenos Nucleares , Galinhas , Dano ao DNA , Autoantígeno Ku , Animais , Aminoácidos/genética , Antígenos Nucleares/metabolismo , Galinhas/genética , Galinhas/metabolismo , Clonagem Molecular , Dano ao DNA/genética , Reparo do DNA , DNA Complementar , Proteínas de Ligação a DNA/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
12.
Anticancer Drugs ; 35(2): 163-176, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948318

RESUMO

Chemotherapy is the main treatment option for acute myeloid leukemia (AML), but acquired resistance of leukemic cells to chemotherapeutic agents often leads to difficulties in AML treatment and disease relapse. High calcitonin receptor-like (CALCRL) expression is closely associated with poorer prognosis in AML patients. Therefore, this study was performed by performing CALCRL overexpression constructs in AML cell lines HL-60 and Molm-13 with low CALCRL expression. The results showed that overexpression of CALCRL in HL-60 and Molm-13 could confer resistance properties to AML cells and reduce the DNA damage and cell cycle G0/G1 phase blocking effects caused by daunorubicin (DNR) and others. Overexpression of CALCRL also reduced DNR-induced apoptosis. Mechanistically, the Cancer Clinical Research Database analyzed a significant positive correlation between XRCC5 and CALCRL in AML patients. Therefore, the combination of RT-PCR and Western blot studies further confirmed that the expression levels of XRCC5 and PDK1 genes and proteins were significantly upregulated after overexpression of CALCRL. In contrast, the phosphorylation levels of AKT/PKCε protein, a downstream pathway of XRCC5/PDK1, were significantly upregulated. In the response study, transfection of overexpressed CALCRL cells with XRCC5 siRNA significantly upregulated the drug sensitivity of AML to DNR. The expression levels of PDK1 protein and AKT/PKCε phosphorylated protein in the downstream pathway were inhibited considerably, and the expression of apoptosis-related proteins Bax and cleaved caspase-3 were upregulated. Animal experiments showed that the inhibitory effect of DNR on the growth of HL-60 cells and the number of bone marrow invasions were significantly reversed after overexpression of CALCRL in nude mice. However, infection of XCRR5 shRNA lentivirus in HL-60 cells with CALCRL overexpression attenuated the effect of CALCRL overexpression and upregulated the expression of apoptosis-related proteins induced by DNR. This study provides a preliminary explanation for the relationship between high CALCRL expression and poor prognosis of chemotherapy in AML patients. It offers a more experimental basis for DNR combined with molecular targets for precise treatment in subsequent studies.


Assuntos
Daunorrubicina , Leucemia Mieloide Aguda , Animais , Camundongos , Humanos , Daunorrubicina/farmacologia , Regulação para Cima , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células HL-60 , Apoptose , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/farmacologia , TYK2 Quinase/genética , TYK2 Quinase/metabolismo , TYK2 Quinase/farmacologia , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 1/farmacologia , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo
13.
J Mol Biol ; 436(2): 168367, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972687

RESUMO

Mycobacterium tuberculosis is the causative agent of Tuberculosis. During the host response to infection, the bacterium is exposed to both reactive oxygen species and nitrogen intermediates that can cause DNA damage. It is becoming clear that the DNA damage response in Mtb and related actinobacteria function via distinct pathways as compared to well-studied model bacteria. For example, we have previously shown that the DNA repair helicase UvrD1 is activated for processive unwinding via redox-dependent dimerization. In addition, mycobacteria contain a homo-dimeric Ku protein, homologous to the eukaryotic Ku70/Ku80 dimer, that plays roles in double-stranded break repair via non-homologous end-joining. Kuhas been shown to stimulate the helicase activity of UvrD1, but the molecular mechanism, as well as which redox form of UvrD1 is activated, is unknown. We show here that Ku specifically stimulates multi-round unwinding by UvrD1 monomers which are able to slowly unwind DNA, but at rates 100-fold slower than the dimer. We also demonstrate that the UvrD1 C-terminal Tudor domain is required for the formation of a Ku-UvrD1 protein complex and activation. We show that Mtb Ku dimers bind with high nearest neighbor cooperativity to duplex DNA and that UvrD1 activation is observed when the DNA substrate is bound with two or three Ku dimers. Our observations reveal aspects of the interactions between DNA, Mtb Ku, and UvrD1 and highlight the potential role of UvrD1 in multiple DNA repair pathways through different mechanisms of activation.


Assuntos
Proteínas de Bactérias , Reparo do DNA por Junção de Extremidades , DNA Helicases , Autoantígeno Ku , Mycobacterium tuberculosis , DNA/metabolismo , DNA Helicases/metabolismo , Autoantígeno Ku/metabolismo , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/metabolismo
14.
DNA Repair (Amst) ; 133: 103603, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029687

RESUMO

Cytoplasmic FAM21 works as a guiding protein in Wiskott-Aldrich Syndrome Protein and SCAR Homolog (WASH) complex by linking WASH complex to endosomes through its interaction with retromer. Recently, we have reported that nuclear WASH localizes to DNA double strand break (DSB) sites to promote DNA repair through non-homologous end-joining (NHEJ). However, whether FAM21, the close partner of WASH, is involved in the nuclear WASH localization and DNA repair remains to be clarified. Here, we show that FAM21 interacts with Ku and the interaction between C-terminal FAM21 and Ku is essential for its recruitment to DSB sites. Moreover, FAM21 depletion led to decreases in WASH recruitment to damaged DNA and repair capacity upon DNA damage. Taken together, these results reveal that FAM21 promotes DNA repair by orchestrating the recruitment of WASH to DSB sites, providing a mechanistic insight into WASH-dependent DNA DSB repair.


Assuntos
Reparo do DNA , Proteínas , Reparo do DNA por Junção de Extremidades , Dano ao DNA , DNA , Autoantígeno Ku
15.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139188

RESUMO

Integration of HIV-1 genomic cDNA results in the formation of single-strand breaks in cellular DNA, which must be repaired for efficient viral replication. Post-integration DNA repair mainly depends on the formation of the HIV-1 integrase complex with the Ku70 protein, which promotes DNA-PK assembly at sites of integration and its activation. Here, we have developed a first-class inhibitor of the integrase-Ku70 complex formation that inhibits HIV-1 replication in cell culture by acting at the stage of post-integration DNA repair. This inhibitor, named s17, does not affect the main cellular function of Ku70, namely its participation in the repair of double-strand DNA breaks through the non-homologous end-joining pathway. Using a molecular dynamics approach, we have constructed a model for the interaction of s17 with Ku70. According to this model, the interaction of two phenyl radicals of s17 with the L76 residue of Ku70 is important for this interaction. The requirement of two phenyl radicals in the structure of s17 for its inhibitory properties was confirmed using a set of s17 derivatives. We propose to stimulate compounds that inhibit post-integration repair by disrupting the integrase binding to Ku70 KuINins.


Assuntos
HIV-1 , HIV-1/fisiologia , Autoantígeno Ku/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA , Integrases/metabolismo , Reparo do DNA por Junção de Extremidades
16.
Nucleic Acids Res ; 51(21): 11706-11716, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37850645

RESUMO

The evolutionarily conserved DNA repair complex Ku serves as the primary sensor of free DNA ends in eukaryotic cells. Its rapid association with DNA ends is crucial for several cellular processes, including non-homologous end joining (NHEJ) DNA repair and telomere protection. In this study, we conducted a transient kinetic analysis to investigate the impact of the SAP domain on individual phases of the Ku-DNA interaction. Specifically, we examined the initial binding, the subsequent docking of Ku onto DNA, and sliding of Ku along DNA. Our findings revealed that the C-terminal SAP domain of Ku70 facilitates the initial phases of the Ku-DNA interaction but does not affect the sliding process. This suggests that the SAP domain may either establish the first interactions with DNA, or stabilize these initial interactions during loading. To assess the biological role of the SAP domain, we generated Arabidopsis plants expressing Ku lacking the SAP domain. Intriguingly, despite the decreased efficiency of the ΔSAP Ku complex in loading onto DNA, the mutant plants exhibited full proficiency in classical NHEJ and telomere maintenance. This indicates that the speed with which Ku loads onto telomeres or DNA double-strand breaks is not the decisive factor in stabilizing these DNA structures.


Assuntos
Reparo do DNA , Autoantígeno Ku , DNA/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Cinética , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo
17.
Front Endocrinol (Lausanne) ; 14: 1268009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900135

RESUMO

Introduction: The non-growing, meiotically-arrested oocytes housed within primordial follicles are exquisitely sensitive to genotoxic insults from endogenous and exogenous sources. Even a single DNA double-strand break (DSB) can trigger oocyte apoptosis, which can lead to accelerated depletion of the ovarian reserve, early loss of fertility and menopause. Therefore, repair of DNA damage is important for preserving the quality of oocytes to sustain fertility across the reproductive lifespan. This study aimed to evaluate the role of KU80 (encoded by the XRCC5 gene) - an essential component of the non-homologous end joining (NHEJ) pathway - in the repair of oocyte DNA DSBs during reproductive ageing, and following insult caused by the DNA-damaging chemotherapies cyclophosphamide and cisplatin. Methods: To investigate the importance of KU80 following endogenous and exogenous DNA damage, ovaries from conditional oocyte-specific Xrcc5 knockout (Xrcc5 cKO) and wildtype (WT) mice that were aged or exposed to DNA damage-inducing chemotherapy were compared. Ovarian follicles and oocytes were quantified, morphologically assessed and analysed via immunohistochemistry for markers of DNA damage and apoptosis. In addition, chemotherapy exposed mice were superovulated, and the numbers and quality of mature metaphase- II (MII) oocytes were assessed. Results: The number of healthy follicles, atretic (dying) follicles, and corpora lutea were similar in Xrcc5 cKO and WT mice at PN50, PN200 and PN300. Additionally, primordial follicle number and ovulation rates were similar in young adult Xrcc5 cKO and WT mice following treatment with cyclophosphamide (75mg/kg), cisplatin (4mg/kg), or vehicle control (saline). Furthermore, KU80 was not essential for the repair of exogenously induced DNA damage in primordial follicle oocytes. Discussion: These data indicate that KU80 is not required for maintenance of the ovarian reserve, follicle development, or ovulation during maternal ageing. Similarly, this study also indicates that KU80 is not required for the repair of exogenously induced DSBs in the prophase-arrested oocytes of primordial follicles.


Assuntos
Cisplatino , Autoantígeno Ku , Folículo Ovariano , Animais , Feminino , Camundongos , Ciclofosfamida/farmacologia , DNA , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Prófase , Autoantígeno Ku/genética
18.
Nucleic Acids Res ; 51(21): 11732-11747, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870477

RESUMO

The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.


Assuntos
Proteínas de Ligação a DNA , Ácido Fítico , Animais , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , Autoantígeno Ku/metabolismo , Mamíferos/genética , Humanos
19.
Nucleic Acids Res ; 51(15): 7972-7987, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37395399

RESUMO

DNA-dependent protein kinase (DNA-PK) plays a critical role in non-homologous end joining (NHEJ), the predominant pathway that repairs DNA double-strand breaks (DSB) in response to ionizing radiation (IR) to govern genome integrity. The interaction of the catalytic subunit of DNA-PK (DNA-PKcs) with the Ku70/Ku80 heterodimer on DSBs leads to DNA-PK activation; however, it is not known if upstream signaling events govern this activation. Here, we reveal a regulatory step governing DNA-PK activation by SIRT2 deacetylation, which facilitates DNA-PKcs localization to DSBs and interaction with Ku, thereby promoting DSB repair by NHEJ. SIRT2 deacetylase activity governs cellular resistance to DSB-inducing agents and promotes NHEJ. SIRT2 furthermore interacts with and deacetylates DNA-PKcs in response to IR. SIRT2 deacetylase activity facilitates DNA-PKcs interaction with Ku and localization to DSBs and promotes DNA-PK activation and phosphorylation of downstream NHEJ substrates. Moreover, targeting SIRT2 with AGK2, a SIRT2-specific inhibitor, augments the efficacy of IR in cancer cells and tumors. Our findings define a regulatory step for DNA-PK activation by SIRT2-mediated deacetylation, elucidating a critical upstream signaling event initiating the repair of DSBs by NHEJ. Furthermore, our data suggest that SIRT2 inhibition may be a promising rationale-driven therapeutic strategy for increasing the effectiveness of radiation therapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas Quinases , DNA/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Autoantígeno Ku/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/genética , Sirtuína 2/genética , Sirtuína 2/metabolismo , Humanos
20.
J Biol Chem ; 299(8): 105032, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437887

RESUMO

Radiotherapy is one of the mainstay treatments for hepatocellular carcinoma (HCC). However, a substantial number of patients with HCC develop radioresistance and eventually suffer from tumor progression or relapse, which is a major impediment to the use of radiotherapy. Therefore, elucidating the mechanisms underlying radioresistance and identifying novel therapeutic targets to improve patient prognosis are important in HCC management. In this study, using in vitro and in vivo models, laser microirradiation and live cell imaging methods, and coimmunoprecipitation assays, we report that a DNA repair enhancer, human positive cofactor 4 (PC4), promotes nonhomologous end joining-based DNA repair and renders HCC cells resistant to radiation. Mechanistically, PC4 interacts with poly (ADP-ribose) polymerase 1 and directs Ku complex PARylation, resulting in the successful recruitment of the Ku complex to damaged chromatin and increasing the efficiency of nonhomologous end joining repair. Clinically, PC4 is highly expressed in tumor tissues and is correlated with poor prognosis in patients with HCC. Taken together, our data suggest that PC4 is a DNA repair driver that can be targeted to radiosensitize HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Neoplasias Hepáticas/genética , Recidiva Local de Neoplasia , Poli ADP Ribosilação , Tolerância a Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...