Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Methods Mol Biol ; 2411: 77-92, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34816399

RESUMO

Vaccines are the most effective and economic way of combating poultry viruses. However, the use of traditional live-attenuated poultry vaccines has problems such as antigenic differences with the currently circulating strains of viruses and the risk of reversion to virulence. In veterinary medicine, reverse genetics is applied to solve these problems by developing genotype-matched vaccines, better attenuated and effective live vaccines, broad-spectrum vaccine vectors, bivalent vaccines, and genetically tagged recombinant vaccines that facilitate the serological differentiation of vaccinated animals from infected animals. In this chapter, we discuss reverse genetics as a tool for the development of recombinant vaccines against economically devastating poultry viruses.


Assuntos
Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Aves Domésticas/imunologia , Genética Reversa/métodos , Vacinas Sintéticas/genética , Vacinas Virais/genética , Animais , Anticorpos Antivirais/imunologia , Galinhas/imunologia , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia
2.
Int J Biol Macromol ; 193(Pt A): 328-336, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34699893

RESUMO

RPS14 (ribosomal protein S14) gene maintains the normal physiological activities of the body by regulating the biosynthesis of ribosomes and the translation of important proteins. This study aims to explore the potential role of RPS14 in broiler ascites syndrome (BAS). We successfully prepared polyclonal antibody against RPS14 and studied the localization and expression of RPS14 protein in a variety of animal key tissues. In this experiment, the recombinant expression plasmid PET28a-RPS14 was constructed using the prokaryotic expression technology of foreign genes. Under the conditions of IPTG induction, a His-RPS14 protein with a molecular weight of about 22 kDa was expressed, and the purified recombinant protein was used as an antigen to prepare rabbit anti-chicken serum. Western blot results showed that the serum could specifically identify RPS14 protein in important tissues of broilers. Immunofluorescence combined with homology analysis showed that the antiserum had significant species specificity. Compared with other species, the expression of this protein in key tissues of broilers and ducks was more significant. More importantly, western blotting and immunofluorescence showed that BAS significantly reduced the expression level of RPS14. This further indicated that RPS14 protein can be used as one of the important entry points for BAS research.


Assuntos
Anticorpos/imunologia , Doenças das Aves Domésticas/imunologia , Aves Domésticas/imunologia , Proteínas Ribossômicas/imunologia , Animais , Especificidade de Anticorpos
3.
J Microbiol Methods ; 189: 106317, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34474104

RESUMO

Avian mycoplasmosis, mainly caused by Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) is an economically important disease of the poultry industry. The present study was aimed to develop whole cell based indirect-ELISA (i-ELISA) and DOT blot assay (DOT-ELISA) as rapid, sensitive, specific and economical sero-detection tests for MG and MS. A total of 306 blood samples were collected from birds slaughtered at local meat shops of different districts of Haryana, India to detect MG and MS antibodies. Sonicated antigens prepared from freshly grown culture of MG and MS were used to develop i-ELISA and DOT blot assay. In i-ELISA, 50.32% and 61.76% serum samples were found to be positive for MG and MS antibodies, respectively. However in DOT blot assay, 41.83% and 53.92% serum samples were found positive for MG and MS antibodies, respectively. The relative diagnostic sensitivity and specificity of DOT-ELISA were measured considering i-ELISA as a reference test. The relative diagnostic sensitivity of the DOT blot assay was found to be 69.48% and 82.01%; whereas relative diagnostic specificity was 86.18% and 91.45% for the detection of MG and MS antibodies, respectively. The developed serological assays may be used as rapid and economical diagnostic tools for large scale screening of poultry sera for MG and MS antibodies.


Assuntos
Anticorpos Antibacterianos/sangue , Ensaio de Imunoadsorção Enzimática/normas , Infecções por Mycoplasma/diagnóstico , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/imunologia , Mycoplasma synoviae/imunologia , Doenças das Aves Domésticas/diagnóstico , Animais , Galinhas/imunologia , Galinhas/microbiologia , Ensaio de Imunoadsorção Enzimática/métodos , Immunoblotting/métodos , Índia , Aves Domésticas/imunologia , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/microbiologia , Sensibilidade e Especificidade
4.
Sci Rep ; 11(1): 12666, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135356

RESUMO

Inactivated poultry vaccines are subject to routine potency testing for batch release, requiring large numbers of animals. The replacement of in vivo tests for cell-based alternatives can be facilitated by the identification of biomarkers for vaccine-induced immune responses. In this study, chicken bone marrow-derived dendritic cells were stimulated with an inactivated vaccine for infectious bronchitis virus and Newcastle disease virus, as well as inactivated infectious bronchitis virus only, and lipopolysaccharides as positive control, or left unstimulated for comparison with the stimulated samples. Next, the cells were lysed and subjected to proteomic analysis. Stimulation with the vaccine resulted in 66 differentially expressed proteins associated with mRNA translation, immune responses, lipid metabolism and the proteasome. For the eight most significantly upregulated proteins, mRNA expression levels were assessed. Markers that showed increased expression at both mRNA and protein levels included PLIN2 and PSMB1. Stimulation with infectious bronchitis virus only resulted in 25 differentially expressed proteins, which were mostly proteins containing Src homology 2 domains. Stimulation with lipopolysaccharides resulted in 118 differentially expressed proteins associated with dendritic cell maturation and antimicrobial activity. This study provides leads to a better understanding of the activation of dendritic cells by an inactivated poultry vaccine, and identified PLIN2 and PSMB1 as potential biomarkers for cell-based potency testing.


Assuntos
Células Dendríticas , Marcadores Genéticos/imunologia , Aves Domésticas/imunologia , Vacinas Virais , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Galinhas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Expressão Gênica/imunologia , Imunidade Inata , Vírus da Bronquite Infecciosa/imunologia , Doença de Newcastle/imunologia , Doença de Newcastle/prevenção & controle , Perilipina-2/imunologia , Perilipina-2/metabolismo , Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/farmacologia , Vacinas Virais/imunologia , Vacinas Virais/farmacologia
5.
Poult Sci ; 100(2): 973-981, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518151

RESUMO

It is known that nutrition and immunity are connected, but the mechanism is not very clear. Endogenous retroviruses (ERV) account for 8 to 10% of the human and mouse genomes and play an important role in some biological processes of animals. Recent studies indicate that the activation of ERV can affect the expression of the immunity- or inflammation-related genes, and the activities of ERV are subjected to regulation of many factors including nutritional factors. Therefore, we hypothesize that nutritional status can affect the expression of the immunity- or inflammation-related genes via ERV. To verify this hypothesis, the nutritional status of animals was altered by fasting or overfeeding, and the expression of intact ERV (ERVK18P, ERVK25P) and immunity- or inflammation-related genes (DDX41, IFIH1, IFNG, IRF7, STAT3) in the liver was determined by quantitative PCR, followed by overexpressing ERVK25P in goose primary hepatocytes and determining the expression of the immunity- or inflammation-related genes. The data showed that compared with the control group (no fasting), the expression of ERV and the immunity- or inflammation-related genes was increased in the liver of the fasted chickens but decreased in the liver of the fasted geese. Moreover, compared with the control group (routinely fed), the expression of ERV and the immunity- or inflammation-related genes was increased in the liver of the overfed geese. In addition, overexpression of ERVK25P in goose primary hepatocytes can induce the expression of the immunity- or inflammation-related genes. In conclusion, these findings suggest that ERV mediate the effects of fasting and overfeeding on the expression of the immunity- or inflammation-related genes, the mediation varied with poultry species, and ERV and the immunity- or inflammation-related genes may be involved in the development of goose fatty liver. This study provides a potential mechanism for the connection between nutrition and immunity.


Assuntos
Retrovirus Endógenos/fisiologia , Jejum/fisiologia , Hiperfagia/genética , Aves Domésticas/genética , Animais , Galinhas , Hiperfagia/imunologia , Hiperfagia/patologia , Imunidade/fisiologia , Inflamação/genética , Inflamação/veterinária , Fígado/imunologia , Fígado/patologia , Camundongos , Aves Domésticas/imunologia
6.
Poult Sci ; 99(11): 5625-5636, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142480

RESUMO

L-theanine (γ-Glutamylethylamide) is a nonprotein water soluble amino acid (AA) mostly found in leaves of Camellia sinensis (green tea). This is a key component of green tea and is considered as the most abundant form of total AAs in green tea (i.e., about 50%). L-theanine is an exclusive taste ingredient of tea producing an attractive flavor and aroma in tea. It has biological effects such as antioxidant, growth promoter, immune booster, anti-stresser, hepatoprotective, antitumor, antiaging, antimicrobial, anti-inflammatory, and antianxiety activities that are worth noticing. It could reduce the oxidative impairment by reducing the synthesis of reactive oxygen species, oxidative parameters, and lipid damage as well as increasing the activity of antioxidant enzymes. The oral ingestion of L-theanine enhanced γδ T-cell proliferation. Therefore, it is being considered an essential compound of green tea that has the ability to improve immune function. The L-theanine can be used as a potential treatment for hepatic injury and immune-related liver diseases via the downregulation of the inflammatory response through the initiation of nitric oxide synthesis and glutathione production which are likely to be critical for the control of hepatic diseases as well as for the improvement of immune function. In addition, it could be used as a best natural feed additive with a potent antistressor by decreasing the levels of corticosterone, dopamine, and noradrenaline. After systematically reviewing the literature, it is noticed that most studies were carried out on mice, pig, human, and butterfly; while dietary supplementation studies of L-theanine in animal and poultry especially among broilers are very limited because of less awareness of this AA. So, the aim of this review is to encourage the veterinarian and poultry researchers to conduct more research at the molecular level about this AA to expose its more beneficial effects and its mechanism of absorption for potential use of this unique green tea AA in poultry nutrition.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Glutamatos , Aves Domésticas , Aminoácidos/imunologia , Animais , Galinhas , Dieta/veterinária , Glutamatos/imunologia , Camundongos , Aves Domésticas/imunologia , Suínos
7.
Virus Res ; 290: 198188, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045306

RESUMO

Understanding the dynamics of the selection of influenza A immune escape variants by serum antibody is critical for designing effective vaccination programs for animals, especially poultry where large populations have a short generation time and may be vaccinated with high frequency. In this report, immune-escape mutants of A/turkey/New York/4450/1994 H7N2 low pathogenic avian influenza virus, were selected by serially passaging the virus in the presence of continuously increasing concentrations of homologous chicken polyclonal sera. Amino acid mutations were identified by sequencing the parental hemagglutinin (HA) gene and every 10 passages by both Sanger and deep sequencing, and the antigenic distance of the mutants to the parent strain was determined. Progressively, a total of five amino acid mutations were observed over the course of 30 passages. Based on their absence from the parental virus with deep sequencing, the mutations appear to have developed de novo. The antigenic distance between the selected mutants and the parent strain increased as the number of amino acid mutations accumulated and the concentration of antibodies had to be periodically increased to maintain the same reduction in virus titer during selection. This selection system demonstrates how H7 avian influenza viruses behave under selection with homologous sera, and provides a glimpse of their evolutionary dynamics, which can be applied to developing vaccination programs that maximize the effectiveness of a vaccine over time.


Assuntos
Variação Antigênica/genética , Evasão da Resposta Imune , Soros Imunes , Vírus da Influenza A Subtipo H7N2/genética , Vírus da Influenza A Subtipo H7N2/imunologia , Influenza Aviária/virologia , Mutação , Aves Domésticas/virologia , Aminoácidos/genética , Animais , Anticorpos Antivirais/sangue , Variação Antigênica/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H7N2/patogenicidade , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Aves Domésticas/imunologia , Organismos Livres de Patógenos Específicos , Vacinação
8.
Poult Sci ; 99(10): 4758-4768, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988510

RESUMO

Sheep red blood cells (SRBC) are commonly employed by scientists to address humoral immune responses in poultry. While SRBC are closely related to the study of humoral immunity in poultry, the initial purpose of much research did not focus on the mechanisms involved. Here, we provide a qualitative approach and utilize scientometric techniques, including trend analyses, scientific collaborations and mapping, and word co-occurrence evaluations, to summarize the role of SRBC in the poultry studies. First, a search strategy on Web of Science (WoS) was conducted to find publications that included SRBC in the poultry studies. Publications were partitioned into 4 categories: nutrition, genetics, microbiology, and physiology. For scientometric evaluation, scientific maps and networks were produced to clarify the occurrence of SRBC in the poultry studies. Data used included 702 publications over a period of 50 y (1968-2018) that were retrieved from the WoS database. About 95% of the publications were published in English language. Indigenous, experimental, and commercial chickens, quail, and medicinal plants field/topics were the main subjects of publications. In recent years, authors have used SRBC to study humoral immune response as a secondary aim of their research, especially when poultry production/performance was studied. This was especially the case in recent decades for studies in poultry nutrition. Analysis of keywords co-occurrence showed that the phrase SRBC mostly occurred with chickens, immune response, and especially with broilers. Moreover, the "medicinal plants" are becoming important especially for research on broilers and the reduced use of antibiotics in feed. Consequently, in addition to studying the medicinal plants, finding antibiotic replacements, and/or growth performance in the birds, humoral immunity is suggested to be investigated using SRBC. Moreover, interdisciplinary studies with the cooperation of scientists from agriculture, veterinary, immunology, biochemistry and molecular biology, and toxicology will develop in the future.


Assuntos
Testes de Hemaglutinação , Imunidade Humoral , Aves Domésticas , Animais , Formação de Anticorpos/imunologia , Eritrócitos , Testes de Hemaglutinação/tendências , Testes de Hemaglutinação/veterinária , Imunidade Humoral/imunologia , Aves Domésticas/imunologia , Ovinos
9.
Front Immunol ; 11: 1099, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582185

RESUMO

Antimicrobial resistance (AMR) is a significant problem in health care, animal health, and food safety. To limit AMR, there is a need for alternatives to antibiotics to enhance disease resistance and support judicious antibiotic usage in animals and humans. Immunomodulation is a promising strategy to enhance disease resistance without antibiotics in food animals. One rapidly evolving field of immunomodulation is innate memory in which innate immune cells undergo epigenetic changes of chromatin remodeling and metabolic reprogramming upon a priming event that results in either enhanced or suppressed responsiveness to secondary stimuli (training or tolerance, respectively). Exposure to live agents such as bacille Calmette-Guerin (BCG) or microbe-derived products such as LPS or yeast cell wall ß-glucans can reprogram or "train" the innate immune system. Over the last decade, significant advancements increased our understanding of innate training in humans and rodent models, and strategies are being developed to specifically target or regulate innate memory. In veterinary species, the concept of enhancing the innate immune system is not new; however, there are few available studies which have purposefully investigated innate training as it has been defined in human literature. The development of targeted approaches to engage innate training in food animals, with the practical goal of enhancing the capacity to limit disease without the use of antibiotics, is an area which deserves attention. In this review, we provide an overview of innate immunomodulation and memory, and the mechanisms which regulate this long-term functional reprogramming in other animals (e.g., humans, rodents). We focus on studies describing innate training, or similar phenomenon (often referred to as heterologous or non-specific protection), in cattle, sheep, goats, swine, poultry, and fish species; and discuss the potential benefits and shortcomings of engaging innate training for enhancing disease resistance.


Assuntos
Resistência à Doença/imunologia , Peixes/imunologia , Imunomodulação/imunologia , Gado/imunologia , Aves Domésticas/imunologia , Animais , Sistema Imunitário
10.
Sci Rep ; 10(1): 9436, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523096

RESUMO

Korean government has selected and stocked five type antigens of two clades as Korean national antigen bank having high possibility of introduction to Korea. We aimed to evaluate the efficacy of the clade 2.3.2.1c and 2.3.4.4c H5Nx vaccines from the Korean avian influenza (AI) national antigen bank for emergency preparedness for their potency and protective efficacy against lethal homologous and heterologous viruses in layer and breeder chickens practically. The PD50 (dose of vaccine that protects 50% of chickens from viral challenge) of all vaccinated groups was >50, which was satisfied with minimum antigen requirement of OIE, and the PD50 levels of the two vaccines differed depending on strain and chicken breed. In homologous challenge, all vaccinated groups exhibited 100% survival with no clinical symptoms and high levels of pre-challenge protective immunity (7.2-8.5 log2), although they did not completely prevent virus shedding. On the other hand, against heterologous virus challenge, vaccinated animals exhibited 62.5-80% survival with lower antibody titers (2.3-3.4 log2) and a longer period of virus shedding (14 days post infection [dpi]). Our results suggest that the clade 2.3.2.1c and 2.3.4.4c H5Nx vaccines are good candidates for emergency vaccination of commercial chickens and support the idea that close genetic matching between vaccine and challenge virus provides the best protection.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Antivirais/imunologia , Galinhas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/genética , Influenza Aviária/virologia , Aves Domésticas/imunologia , República da Coreia/epidemiologia , Vacinação/métodos , Vacinas de Produtos Inativados/farmacologia
11.
Vet Microbiol ; 244: 108683, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32402336

RESUMO

In order to evaluate the influence of the vertical transmission of avian leukosis virus (ALV) from J subgroup (ALV-J) positive parents on the vaccine efficacy of Marek's disease virus (MDV), ALV-J positive male breeders × female breeders of Three-yellow chickens and the ALV negative male breeder × the negative female breeders were used respectively for crossbreeding to produce eggs and the hatching offspring. The commercial CVI988/Rispens vaccine was used to vaccinate the crossbred offspring at 1-day-old. At 7-days-old, the birds were inoculated with the inactivated oil-emulsion vaccines (OEVs) AIV-H5 monovalent and NDV + AIV-H9 bivalent, respectively. Then the birds were challenged with a Chinese very virulent (vv) MDV field strain GXY2 at 14-day-old. The results showed that the viral load of the challenged GXY2 in the offspring from the ALV-J positive breeders was significantly higher than that from the ALV-negative breeders' (P < 0.05), and the mortality and tumor incidence of offspring from the ALV-J positive breeders were higher than those of the ALV-negative breeders. Also the offspring of the ALV-J positive breeders exhibited a significant negative effect on the development of the immune organs (P < 0.05) and lower antibody responses to the vaccinations with the commercial OEVs (P<0.05). The MD vaccine protective index in the offspring from the ALV-J positive breeders was lower than that from the ALV-negative breeders. The results of the study demonstrated that the vertical transmission of ALV from the ALV-J positive parents caused severe immunosuppression and significantly reduced the Marek's disease vaccine efficacy in Three-yellow chickens.


Assuntos
Leucose Aviária/imunologia , Leucose Aviária/transmissão , Terapia de Imunossupressão/veterinária , Transmissão Vertical de Doenças Infecciosas , Vacinas contra Doença de Marek/imunologia , Animais , Vírus da Leucose Aviária/patogenicidade , Cruzamento , Galinhas/imunologia , Galinhas/virologia , Feminino , Masculino , Doença de Marek/imunologia , Doença de Marek/prevenção & controle , Aves Domésticas/imunologia , Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Potência de Vacina , Carga Viral
12.
Sci Rep ; 10(1): 6779, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32322086

RESUMO

Novel disease emergence is often associated with changes in pathogen traits that enable pathogen colonisation, persistence and transmission in the novel host environment. While understanding the mechanisms underlying disease emergence is likely to have critical implications for preventing infectious outbreaks, such knowledge is often based on studies of viral pathogens, despite the fact that bacterial pathogens may exhibit very different life histories. Here, we investigate the ability of epizootic outbreak strains of the bacterial pathogen, Mycoplasma gallisepticum, which jumped from poultry into North American house finches (Haemorhous mexicanus), to interact with model avian cells. We found that house finch epizootic outbreak strains of M. gallisepticum displayed a greater ability to adhere to, invade, persist within and exit from cultured chicken embryonic fibroblasts, than the reference virulent (R_low) and attenuated (R_high) poultry strains. Furthermore, unlike the poultry strains, the house finch epizootic outbreak strain HF_1994 displayed a striking lack of cytotoxicity, even exerting a cytoprotective effect on avian cells. Our results suggest that, at epizootic outbreak in house finches, M. gallisepticum was particularly adept at using the intra-cellular environment, which may have facilitated colonisation, dissemination and immune evasion within the novel finch host. Whether this high-invasion phenotype is similarly displayed in interactions with house finch cells, and whether it contributed to the success of the host shift, remains to be determined.


Assuntos
Tentilhões/imunologia , Especificidade de Hospedeiro/imunologia , Mycoplasma gallisepticum/imunologia , Aves Domésticas/imunologia , Animais , Linhagem Celular , Tentilhões/microbiologia , Interações entre Hospedeiro e Microrganismos/imunologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Mycoplasma gallisepticum/fisiologia , Aves Domésticas/microbiologia
13.
J Anim Sci ; 98(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206781

RESUMO

Stress is a biological adaptive response to restore homeostasis, and occurs in every animal production system, due to the multitude of stressors present in every farm. Heat stress is one of the most common environmental challenges to poultry worldwide. It has been extensively demonstrated that heat stress negatively impacts the health, welfare, and productivity of broilers and laying hens. However, basic mechanisms associated with the reported effects of heat stress are still not fully understood. The adaptive response of poultry to a heat stress situation is complex and intricate in nature, and it includes effects on the intestinal tract. This review offers an objective overview of the scientific evidence available on the effects of the heat stress response on different facets of the intestinal tract of poultry, including its physiology, integrity, immunology, and microbiota. Although a lot of knowledge has been generated, many gaps persist. The development of standardized models is crucial to be able to better compare and extrapolate results. By better understanding how the intestinal tract is affected in birds subjected to heat stress conditions, more targeted interventions can be developed and applied.


Assuntos
Bem-Estar do Animal , Microbioma Gastrointestinal , Resposta ao Choque Térmico , Aves Domésticas/fisiologia , Animais , Fazendas , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Aves Domésticas/imunologia , Aves Domésticas/microbiologia
14.
Methods Mol Biol ; 2123: 211-225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32170691

RESUMO

Avian influenza (AI) vaccines for poultry are based on hemagglutinin (HA) proteins, and protection is specific to the subtype. An estimated 313 billion doses have been used between 2002 and 2018 for high pathogenicity AI control. No universal vaccines are currently available. The majority of AI vaccines are inactivated whole influenza viruses that are grown in embryonating chicken eggs, emulsified in oil adjuvant systems, and injected subcutaneously or intramuscularly. Live virus-vectored vaccines such as recombinant viruses of fowl pox, Newcastle disease, and herpesvirus of turkeys containing inserts of AI virus HA genes have been used on a more limited basis. Also, vaccines have been licensed or registered based on baculovirus and defective replicating alphavirus (RNA particles) expressing HA protein or DNA vaccine with HA gene insert. In studies to evaluate vaccine efficacy and potency, the protocol design and its implementation should address the biosafety level needed for the work, provide information required for approval by Institutional Biosafety and Animal Care Committees, contain information on seed strain selection, provide needed information on animal subjects and their relevant parameters, and address the selection and use of challenge viruses. Various metrics have been used to directly measure vaccine-induced protection, including prevention of death, clinical signs, and lesions; prevention of decreases in egg production and alterations in egg quality; quantification of the reduction in virus replication and shedding from the respiratory tract and gastrointestinal tracts; and prevention of contact transmission in in vivo poultry experiments. In addition, indirect measures of vaccine potency and protection have been developed and validated against the direct measures and include serological assays in vaccinated poultry and the assessment of the content of HA antigen in the vaccine. These indirect assessments of protection are useful in determining if vaccine batches have a consistent ability to protect. For adequate potency, vaccines should contain 50 mean protective doses of antigen per dose, which corresponds to 0.3-7.8 µg of HA protein in inactivated vaccines, depending on immunogenicity and antigenic relatedness of individual seed strains.


Assuntos
Vacinas contra Influenza/imunologia , Laboratórios , Licenciamento , Aves Domésticas/imunologia , Aves Domésticas/virologia , Animais , Contenção de Riscos Biológicos , Resultado do Tratamento
15.
Dev Comp Immunol ; 104: 103565, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31830703

RESUMO

In poultry production conditions today, birds are surrounded by viral, bacterial, and parasitic agents. DCs are the main antigen-presenting cells located in tissues of the body, and their role involves recognizing antigen structures, engulfing and processing them, and subsequently presenting antigen peptides on their surface by major histocompatibility complex, where T cells and B cells are stimulated and can begin appropriate cellular and antibody immune response. This unique function indicates that these cells can be used in producing vaccines, but first it is necessary to culture DCs in vitro to identify the principles of their interactions with pathogens. The following review summarizes our current knowledge about avian dendritic cells and their interactions with pathogens. It provides a basis for future studies of these unique cells and their use in vaccine development.


Assuntos
Linfócitos B/imunologia , Doenças das Aves/imunologia , Aves/imunologia , Células Dendríticas/imunologia , Infecções/imunologia , Aves Domésticas/imunologia , Linfócitos T/imunologia , Vacinas/imunologia , Animais , Apresentação de Antígeno , Interações Hospedeiro-Patógeno , Imunidade Humoral , Camundongos
17.
PLoS One ; 14(2): e0197721, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30753181

RESUMO

Necrotic enteritis is an economically important poultry disease caused by the bacterium Clostridium perfringens. There are currently no necrotic enteritis vaccines commercially available for use in broiler birds, the most important target population. Salmonella-vectored vaccines represent a convenient and effective option for controlling this disease. We used a single attenuated Salmonella vaccine strain, engineered to lyse within the host, to deliver up to three C. perfringens antigens. Two of the antigens were toxoids, based on C. perfringens α-toxin and NetB toxin. The third antigen was fructose-1,6-bisphosphate aldolase (Fba), a metabolic enzyme with an unknown role in virulence. Oral immunization with a single Salmonella vaccine strain producing either Fba, α-toxoid and NetB toxoid, or all three antigens, was immunogenic, inducing serum, cellular and mucosal responses against Salmonella and the vectored C. perfringens antigens. All three vaccine strains were partially protective against virulent C. perfringens challenge. The strains delivering Fba only or all three antigens provided the best protection. We also demonstrate that both toxins and Fba are present on the C. perfringens cell surface. The presence of Fba on the cell surface suggests that Fba may function as an adhesin.


Assuntos
Clostridium perfringens/imunologia , Enterite/prevenção & controle , Aves Domésticas/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos/imunologia , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/metabolismo , Galinhas/imunologia , Infecções por Clostridium/microbiologia , Enterite/imunologia , Enterite/veterinária , Enterotoxinas/imunologia , Vetores Genéticos/efeitos dos fármacos , Imunização , Necrose/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Salmonella/metabolismo , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/genética , Vacinação , Vacinas Atenuadas/imunologia
18.
Genes (Basel) ; 10(2)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678299

RESUMO

Despite successful control by vaccination, Marek's disease (MD) has continued evolving to greater virulence over recent years. To control MD, selection and breeding of MD-resistant chickens might be a suitable option. MHC-congenic inbred chicken lines, 61 and 72, are highly resistant and susceptible to MD, respectively, but the cellular and genetic basis for these phenotypes is unknown. Marek's disease virus (MDV) infects macrophages, B-cells, and activated T-cells in vivo. This study investigates the cellular basis of resistance to MD in vitro with the hypothesis that resistance is determined by cells active during the innate immune response. Chicken bone marrow-derived macrophages from lines 61 and 72 were infected with MDV in vitro. Flow cytometry showed that a higher percentage of macrophages were infected in line 72 than in line 61. A transcriptomic study followed by in silico functional analysis of differentially expressed genes was then carried out between the two lines pre- and post-infection. Analysis supports the hypothesis that macrophages from susceptible and resistant chicken lines display a marked difference in their transcriptome following MDV infection. Resistance to infection, differential activation of biological pathways, and suppression of oncogenic potential are among host defense strategies identified in macrophages from resistant chickens.


Assuntos
Resistência à Doença/genética , Macrófagos/metabolismo , Doença de Marek/imunologia , Transcriptoma , Animais , Células Cultivadas , Embrião de Galinha , Doença de Marek/genética , Aves Domésticas/genética , Aves Domésticas/imunologia
19.
Vet Immunol Immunopathol ; 205: 35-48, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30459000

RESUMO

Prophylactic antimicrobials have been widely used in food animal production with the aim to prevent infectious diseases, enhance feed efficiency, and promote growth. However, the extensive use of antimicrobials in food animal production systems has led to the emergence of antimicrobial resistant pathogens, which are potential threats to human and animal health. Probiotics have been proposed to be a promising alternative of prophylactic antimicrobials, with potential beneficial effects on the host animal by improving the balance of intestinal microbiota and host immunity. Although an increasing body of evidence shows that probiotics could directly or indirectly affect gut microbiota and host immune functions, the lack of the understanding of how probiotics influence host-microbial interaction and immunity is one of the reasons for controversial findings from many animal trials, especially in food production animals. Therefore, in this review we focused on the most recent (last ten years) studies on how gut microbiota and host immune function changes in response to probiotics in food production animals (swine, poultry, and ruminant). In addition, the relationship between microbial changes and host immune function was illustrated, and how such relationship differs among animal species was further compared. Moreover, the future directions concerning the mechanisms of how probiotics modulate host-microbial interactions and host immunity were highlighted, which may assist in the optimal supplementation strategy to maximize the efficacy of probiotics to improve animal gut health and productivity.


Assuntos
Microbioma Gastrointestinal , Gado/microbiologia , Probióticos , Animais , Gado/imunologia , Aves Domésticas/imunologia , Aves Domésticas/microbiologia , Profilaxia Pré-Exposição , Suínos/imunologia , Suínos/microbiologia
20.
Front Immunol ; 9: 2518, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450097

RESUMO

The protozoan parasite Histomonas meleagridis is the causative agent of histomonosis in gallinaceous birds, predominantly in turkeys and chickens. Depending on the host species the outcome of the disease can be very severe with high mortality as observed in turkeys, whereas in chickens the mortality rates are generally lower. The disease is known for more than 100 years when in vitro and in vivo investigations started to understand histomonosis and the causative pathogen. For decades histomonosis could be well-controlled by effective drugs for prevention and therapy until the withdrawal of such chemicals for reasons of consumer protection in Europe, the USA and additional countries worldwide. Consequently, research efforts also focused to find new strategies against the disease, resulting in the development of an efficacious live-attenuated vaccine. In addition to efficacy and safety several studies were performed to obtain a deeper understanding of the immune response of the host against H. meleagridis. It could be demonstrated that antibodies accumulate in different parts of the intestine of chickens following infection with H. meleagridis which was much pronounced in the ceca. Furthermore, expression profiles of various cytokines revealed that chickens mounted an effective cecal innate immune response during histomonosis compared to turkeys. Studying the cellular immune response following infection and/or vaccination of host birds showed a limitation of pronounced changes of B cells and T-cell subsets in vaccinated birds in comparison to non-protected birds. Additionally, numbers of lymphocytes including cytotoxic T cells increased in the ceca of diseased turkeys compared to infected chickens suggesting an immunopathological impact on disease pathogenesis. The identification of type 1 and type 2 T-helper (Th) cells in infected and lymphoid organs by in situ hybridization did not show a clear separation of Th cells during infection but revealed a coherence of an increase of interferon (IFN)-γ mRNA positive cells in ceca and protection. The present review not only summarizes the research performed on the immune response of host birds in the course of histomonosis but also highlights the specific features of H. meleagridis as a model organism to study immunological principles of an extracellular organism in birds.


Assuntos
Imunidade Celular/imunologia , Imunidade Inata/imunologia , Parasitos/imunologia , Doenças das Aves Domésticas/imunologia , Aves Domésticas/imunologia , Infecções Protozoárias em Animais/imunologia , Animais , Ceco/imunologia , Ceco/parasitologia , Humanos , Aves Domésticas/parasitologia , Doenças das Aves Domésticas/parasitologia , Infecções Protozoárias em Animais/parasitologia , Vacinas Protozoárias , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...