Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731401

RESUMO

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Assuntos
Azadirachta , Di-Hidro-Orotato Desidrogenase , Simulação de Acoplamento Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Esquistossomose , Azadirachta/química , Animais , Esquistossomose/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Simulação de Dinâmica Molecular , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Simulação por Computador , Esquistossomicidas/farmacologia , Esquistossomicidas/química , Esquistossomicidas/uso terapêutico , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Praziquantel/farmacologia , Praziquantel/química , Praziquantel/uso terapêutico
2.
Cell Commun Signal ; 22(1): 237, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649988

RESUMO

BACKGROUND: A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS: Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of ß-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS: Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral ß-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION: NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.


Assuntos
Azadirachta , Proteínas Adaptadoras de Sinalização CARD , Células Dendríticas , Lectinas Tipo C , Camundongos Endogâmicos C57BL , NF-kappa B , Folhas de Planta , Transdução de Sinais , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Azadirachta/química , Camundongos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , NF-kappa B/metabolismo , Ligação Proteica
3.
Pestic Biochem Physiol ; 199: 105778, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458685

RESUMO

With their remarkable bioactivity and evolving commercial importance, plant secondary metabolites (PSMs) have gained significant research interest in recent years. Plant tissue culture serves as a credible tool to examine how abiotic stresses modulate the production of PSMs, enabling clear insights into plant stress responses and the prospects for controlled synthesis of bioactive compounds. Azadirachta indica, or neem has been recognized as a repository of secondary metabolites for centuries, particularly for the compound named azadirachtin, due to its bio-pesticidal and high antioxidant properties. Introducing salt stress as an elicitor makes it possible to enhance the synthesis of secondary metabolites, specifically azadirachtin. Thus, in this research, in vitro callus cultures of neem were micro-propagated and induced with salinity stress to explore their effects on the production of azadirachtin and identify potential proteins associated with salinity stress through comparative shotgun proteomics (LCMS/MS). To induce salinity stress, 2-month-old calli were subjected to various concentrations of NaCl (0.05-1.5%) for 4 weeks. The results showed that the callus cultures were able to adapt and survive in the salinity treatments, but displayed a reduction in fresh weight as the NaCl concentration increased. Notably, azadirachtin production was significantly enhanced in the salinity treatment compared to control, where 1.5% NaCl-treated calli produced the highest azadirachtin amount (10.847 ± 0.037 mg/g DW). The proteomics analysis showed that key proteins related to primary metabolism, such as defence, energy, cell structure, redox, transcriptional and photosynthesis, were predominantly differentially regulated (36 upregulated and 93 downregulated). While a few proteins were identified as being regulated in secondary metabolism, they were not directly involved in the synthesis of azadirachtin. In conjunction with azadirachtin elicitation, salinity stress treatment could therefore be successfully applied in commercial settings for the controlled synthesis of azadirachtin and other plant-based compounds. Further complementary omics approaches can be employed to enhance molecular-level modifications, to facilitate large-scale production of bioactive compounds in the future.


Assuntos
Azadirachta , Limoninas , Azadirachta/química , Azadirachta/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Proteômica , Limoninas/farmacologia
4.
Eur Rev Med Pharmacol Sci ; 27(13): 5951-5963, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37458623

RESUMO

OBJECTIVE: The aim of the present study is to determine the in vivo and in silico anti-inflammatory effect of Azadirachta indica (A. indica) in carrageenan-induced rats and its blood biomarkers. A. indica (Neem) is a widely used medicinal plant across the world, especially in Pakistan. Neem leaves have been traditionally used for the synthesis of drugs and treatment of a wide variety of diseases. MATERIALS AND METHODS: In this study, sixty albino rats (160-200 g) were divided into 4 groups: control (group I), standard (group II), ethanolic and aqueous (group III and IV) at doses of 50, 100, 200 and 400 mg/kg. RESULTS: Ethanolic and aqueous extracts showed maximum inhibition in paw size at the 5th hour (400 mg/kg). Similarly, biomarkers measured, including Interleukin-6 and C-reactive protein, exhibited significant anti-inflammatory activity at the highest dose of 400 mg/kg in both experimental groups but were more distinct in the group treated with ethanolic extracts. Correlation between C-reactive protein (CRP) and inter-leukin-6 (IL-6) showed positive correlation in group III, while negative in group IV. Similarly, positive and negative correlations were observed between CRP biomarkers and paw size in group III and IV, and the same results were also shown in the case of IL-6 and paw size. In molecular docking, the binding energy value of protein CRP and IL-1ß with the identified ligands quercetin and nimbosterol showed (-8.2 kcal/mol and -7.7 kcal/mol) the best binding affinity as compared to standard drug diclofenac with -7.0 kcal/mol binding energy respectively. CONCLUSIONS: In conclusion, in silico and in vivo analysis revealed that the extracts of A. indica leaves can be used as an effective drug to manage inflammation.


Assuntos
Azadirachta , Extratos Vegetais , Ratos , Animais , Extratos Vegetais/uso terapêutico , Interleucina-6 , Proteína C-Reativa , Azadirachta/química , Simulação de Acoplamento Molecular , Edema/induzido quimicamente , Edema/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Biomarcadores , Folhas de Planta
5.
Phytochem Anal ; 34(7): 855-868, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337376

RESUMO

INTRODUCTION: Azadirachta indica A. Juss. is a well-known medicinal plant that has been used traditionally to cure various ailments in every corner of the globe. There are many in vitro and in vivo experimental evidences in connection with the bioactivity of the extracts of this plant. Lung cancer is the deadliest form of cancer and contributes to the most cancer related deaths. The mode of action of anticancer components of this plant is still to be established explicitly. OBJECTIVE: The objective of this study is to identify druggable targets of active constituents of A. indica A. Juss. for non-small cell lung cancer (NSCLC) using network pharmacology and validation of activity through molecular docking analysis. METHODOLOGY: Targets of all the active phytochemicals from A. indica were predicted and genes related to NSCLC were retrieved. A protein-protein interaction (PPI) network of the overlapping genes were prepared. Various databases and servers were employed to analyse the disease pathway enrichment analysis of the clustered genes. Validation of the gene/protein activity was achieved by performing molecular docking, and ADMET profiling of selected phytocompounds was performed. RESULT: Gene networking revealed three key target genes as EGFR, BRAF and PIK3CA against NSCLC by the active components of A. indica. Molecular docking and ADMET analysis further validated that desacetylnimbin, nimbandiol, nimbin, nimbinene, nimbolide, salannin and vepinin are the best suited anti- NSCLC among all the phytocompounds present in this plant. CONCLUSION: The present study has provided a better understanding of the pharmacological effects of active components from A. indica and its potential therapeutic effect on NSCLC.


Assuntos
Azadirachta , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Azadirachta/química , Farmacologia em Rede , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
6.
J Ethnopharmacol ; 310: 116403, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36963474

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Azadirachta indica A. Juss (Meliaceae), popularly known as "neem", is used for the treatment of rheumatism, cancer, ulcers, diabetes, respiratory problems, among others. This species is present on six continents and contains more than 400 bioactive compounds. Practically all parts of the plant are used in the treatment of diseases. Although it is widely used, no study has evaluated the safety of this species throughout the gestational period in Wistar rats. AIM OF THE STUDY: To evaluate the genotoxicity and the effect of treatment with dried extract of leaves of Azadirachta indica on maternal toxicity and fetal development. MATERIALS AND METHODS: The dried extract of leaves of A. indica was obtained by spray drying after percolation of the plant material in 30% ethanol (w/w). The total flavonoids and rutin contents of the extract were determined by spectrophotometric method and HPLC-DAD, respectively. Pregnant Wistar rats (n = 40) were divided into four groups (n = 10/group): one control and three groups treated with dried extract of leaves of A. indica at doses of 300, 600 or 1200 mg/kg. Treatments were carried out from gestational day (GD) 0-20. During gestation, clinical signs of toxicity, weight gain, feed and water consumption of the dams were evaluated. On GD 21, rats were euthanized and cardiac blood was collected. Liver, kidneys, lung, heart, uterus, ovaries and bone marrow were collected. Reproductive performance parameters, histopathological analysis, biochemistry and genotoxicity were evaluated. Fetuses were evaluated for external morphology, skeletal and visceral changes. RESULTS: The total flavonoid content of the extract ranged from 2.64 to 3.01%, and the rutin content was 1.07%. There was no change in body mass gain, food and water consumption between the evaluated groups. There was also no difference between the groups in terms of biochemical parameters, reproductive performance, histopathological analysis of the mother's organs and genotoxicity. Supernumerary ossification sites of the sternum were observed, and other skeletal and visceral alterations were not significant. CONCLUSIONS: The treatment did not induce maternal toxicity, it was neither embryotoxic nor fetotoxic. The extract was not potentially genotoxic, and at a dose of 1200 mg/kg, it caused changes in the ossification of the sternum.


Assuntos
Azadirachta , Meliaceae , Gravidez , Feminino , Ratos , Animais , Azadirachta/química , Ratos Wistar , Extratos Vegetais/farmacologia , Rutina , Dano ao DNA , Folhas de Planta/química
7.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985821

RESUMO

Acne vulgaris is a common skin disorder with a complicated etiology. Papules, lesions, comedones, blackheads, and other skin lesions are common physical manifestations of Acne vulgaris, but the individual who has it also regularly has psychological repercussions. Natural oils are being utilized more and more to treat skin conditions since they have fewer negative effects and are expected to provide benefits. Using network pharmacology, this study aims to ascertain if neem oil has any anti-acne benefits and, if so, to speculate on probable mechanisms of action for such effects. The neem leaves (Azadirachta indica) were collected, verified, authenticated, and assigned a voucher number. After steam distillation was used to extract the neem oil, the phytochemical components of the oil were examined using gas chromatography-mass spectrometry (GC-MS). The components of the oil were computationally examined for drug-likeness using Lipinski's criteria. The Pharm Mapper service was used to anticipate the targets. Prior to pathway and protein-protein interaction investigations, molecular docking was performed to predict binding affinity. Neem oil was discovered to be a potential target for STAT1, CSK, CRABP2, and SYK genes in the treatment of Acne vulgaris. In conclusion, it was discovered that the neem oil components with PubChem IDs: ID_610088 (2-(1-adamantyl)-N-methylacetamide), ID_600826 (N-benzyl-2-(2-methyl-5-phenyl-3H-1,3,4-thiadiazol-2-yl)acetamide), and ID_16451547 (N-(3-methoxyphenyl)-2-(1-phenyltetrazol-5-yl)sulfanylpropanamide) have strong affinities for these drug targets and may thus be used as therapeutic agents in the treatment of acne.


Assuntos
Acne Vulgar , Azadirachta , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Terpenos/química , Acne Vulgar/tratamento farmacológico , Azadirachta/química
8.
Acta Trop ; 240: 106858, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36750152

RESUMO

Mosquitoes cause serious health hazards for millions of people across the globe by acting as vectors of deadly communicable diseases like malaria, filariasis, dengue and yellow fever. Use of conventional chemical insecticides to control mosquito vectors has led to the development of biological resistance in them along with adverse environmental consequences. In this light, the recent years have witnessed enormous efforts of researchers to develop eco-friendly and cost-effective alternatives with special emphasis on plant-derived mosquitocidal compounds. Neem oil, derived from neem seeds (Azadirachta indica A. Juss, Meliaceae), has been proved to be an excellent candidate against a wide range of vectors of medical and veterinary importance including mosquitoes. It is environment-friendly, and target-specific at the same time. The active ingredients of neem oil include limonoids like azadirachtin A, nimbin, salannin and numerous other substances that are still waiting to be discovered. Of these, azadirachtin has been shown to be very effective and is mainly responsible for its toxic effects. The quality of the neem oil depends on its azadirachtin content which, in turn, depends on its manufacturing process. Neem oil can be used directly or as nanoemulsions or nanoparticles or even in the form of effervescent tablets. When added to natural breeding habitat waters they exert their mosquitocidal effects by acting as ovicides, larvicides, pupicides and/or oviposition repellents. The effects are generated by impairing the physiological pathways of the immature stages of mosquitoes or directly by causing physical deformities that impede their development. Neem oil when used directly has certain disadvantages mainly related to its disintegration under atmospheric conditions rendering it ineffective. However, many of its formulations have been reported to remain stable under environmental conditions retaining its efficiency for a long time. Similarly, neem seed cake has also been found to be effective against the mosquito vectors. The greatest advantage is that the target species do not develop resistance against neem-based products mainly because of the innumerable number of chemicals present in neem and their combinations. This makes neem-based products highly potential yet unexplored candidates of mosquito control agents. The current review helps to elucidate the roles of neem oil and its various derivatives on mosquito vectors of public health concern.


Assuntos
Azadirachta , Inseticidas , Praguicidas , Humanos , Animais , Feminino , Praguicidas/farmacologia , Azadirachta/química , Controle de Mosquitos , Melhoramento Vegetal , Inseticidas/farmacologia , Extratos Vegetais/farmacologia , Larva
9.
Environ Res ; 216(Pt 2): 114641, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283439

RESUMO

In order to be used in food packaging, the study aims to develop a composite film based on microcrystalline cellulose (MCC) and coated with silver nanoparticles (AgNPs). The MCC was derived from sugar cane bagasse. Protein, starch, and poly-ethylene glycol 1500 (PEG-1500) are employed to improve the tensile strength, flexibility, and durability of the packaging film. The AgNPs was synthesized by a green route employing Azadirachtaindica leaf extract as reducing agent. The determined average crystallite size of AgNPs was seen at 20 nm. The X-ray diffraction (XRD) studies of the final film prepared have an elevated peak with a crystallinity of 37.5%. The scanning electron microscopic images (SEM) of the AgNPs and the prepared samples, reveal their surface morphology. The Fourier transform infrared spectroscopic studies (FT-IR) disclose the functional group changes during the film preparation. The antibacterial activity of the amalgamated AgNPs against five bacterial pathogens studied was found to be highly active against tested food pathogens, except for Proteus vulgari. When coated over a vegetable, the produced nanocomposite film displayed an increased shelf life for the vegetable by limiting the decay impact caused by food pathogens. According to the findings, the AgNPs-impregnated MCC/Starch/Whey protein has the potential to be employed as an antimicrobial packaging material.


Assuntos
Azadirachta , Embalagem de Alimentos , Nanopartículas Metálicas , Nanocompostos , Extratos Vegetais , Antibacterianos/farmacologia , Antibacterianos/química , Azadirachta/química , Nanopartículas Metálicas/química , Nanocompostos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Amido , Proteínas do Soro do Leite , Difração de Raios X
10.
Environ Sci Pollut Res Int ; 30(4): 8977-8986, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35507222

RESUMO

The use of jackfruit peel as a source for natural and fully biodegradable "nanocellulose" (NC) for the production of bioplastics with Azadirachta indica (A. indica) extracts and polyethylene glycol (PEG) for the antibacterial properties is investigated. The characterization of the biocomposite using FT-IR and WXRD was reported. The physicochemical properties including thickness, moisture content, water holding capacity, swelling, porosity, and biodegradability in soil were investigated. The incorporation of A. indica extract revealed an increased shelf life due to the strong antibacterial activity, and these biocomposites were degraded in soil within 60 days after the end use without any harm to the environment. Jackfruit-derived nanocellulose film blended with A. indica extract exhibited strong antibacterial activity against gram-positive and gram-negative food spoilage bacteria. Disc diffusion assay, live/dead assay, and CFU analysis confirmed the antibacterial property of the synthesized film. Moreover, the films clearly prevented the biofilm formation in bacteria. Thus, the developed bioplastics can be utilized as appropriate substitutes to food packaging materials and also for biomedical applications such as wound dressings.


Assuntos
Artocarpus , Azadirachta , Produtos Biológicos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Bactérias Gram-Negativas , Azadirachta/química
11.
Biomed Res Int ; 2022: 5714035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158879

RESUMO

A rare type of pneumonia later on referred to as COVID-19 was reported in China in December 2019. Investigations revealed that this disease is caused by a coronavirus previously identified as SARS-CoV-2, and since then, it has become a global pandemic with new strains emerging rapidly as a result of genetic mutations. Various therapeutic options are being explored in order to eradicate this pandemic even though approved vaccine candidates are being currently rolled out globally. Most medicinal plant extracts have astonishing properties, and they can therefore be used in the biosynthesis of effective antiviral nanoparticles. In this systematic review, we aimed to highlight the specific attributes that make Azadirachta indica (neem plant) a suitable candidate for the biosynthesis of anti-SARS-CoV-2 nanoparticles. A systematic investigation was therefore carried out in PubMed, Scopus, Web of Science, and AJOL databases with the keywords "Nanoparticles," "Biosynthesis," "Antivirals," "SARS-CoV-2," and "Azadirachta indica." 1216 articles were retrieved by the 21st of February 2022, but we screened studies that reported data on biomedical and antimicrobial assessment of Azadirachta indica extracts. We also screened studies that were reporting nanoparticles possessing antiviral properties against SARS-C0V-2, narrowing our results to 98 reports. Herein, the SARS-CoV-2 viral structure is briefly discussed with nanoparticles of biomedical importance in the design of SARS-CoV-2 antivirals. Most importantly, we focused on the biomedical and antiviral properties of Azadirachta indica extracts that could be of importance in the design of potential anti-SARS-CoV-2 nanoformulations.


Assuntos
Azadirachta , Tratamento Farmacológico da COVID-19 , Nanopartículas , Antivirais/química , Antivirais/uso terapêutico , Azadirachta/química , Nanopartículas/uso terapêutico , SARS-CoV-2
12.
Molecules ; 27(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684547

RESUMO

(1) Background: Inhibition of osteoclast differentiation is the key approach in treating osteoporosis. However, using state-of-the-art treatments such as bisphosphonates and estrogen-based therapy is usually accompanied by many side effects. As opposed to this, the use of natural products as an osteoporotic remedy delivers promising outcomes with minimal side effects. (2) Methods: In the present study, we implemented a biochemometric workflow comprising (i) chemometric approaches using NMR and mass spectrometry and (ii) cell biological approaches using an osteoclast cytochemical marker (TRAP). The workflow serves as a screening tool to pursue potential in vitro osteoclast inhibitors. (3) Results: The workflow allowed for the selective isolation of two phenylpropanoids (coniferyl alcohol and sinapyl alcohol) from the fruits of neem tree (Azadirachta indica). These two isolated phenylpropanoids showed a very promising dose-dependent inhibition of osteoclast differentiation with negligible effects in terms of cell viability. (4) Conclusion: The presented workflow is an effective tool in the discovery of potential candidates for osteoclast inhibition from complex extracts. The used biochemometric approach saves time, effort and costs while delivering precise hints to selectively isolate bioactive constituents.


Assuntos
Azadirachta , Azadirachta/química , Frutas , Osteoclastos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
13.
Appl Biochem Biotechnol ; 194(11): 5322-5332, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35759172

RESUMO

Currently, gastric cancer is considered one of the major causes of high mortality and morbidity worldwide. Recent advances in therapeutics, clinical treatment, staging procedures, and imaging techniques are high, yet the prevalence of gastric cancer has not been reduced. Usage of the synthetic drug has many side effects that can lead to other ailments. Gedunin, a phytochemical derived from Azadirachta indica (neem tree), exhibits several pharmacological activities including antitumor, anti-inflammatory, antiulcer, antipyretics, antibacterial, antifungal, anti-diabetic, and antimalarial properties. In the current investigation, the effect of gedunin on the cell viability; reactive oxygen species (ROS) generation by DCFH-DA staining; mitochondrial membrane potential (MMP) by Rh-123 staining; apoptosis by AO/EtBr staining; cell migration and wound healing ability by wound scratch assay; and Bcl-2, Bax, caspase-3, and caspase-9 by ELISA techniques were analyzed in the AGS cells. The treatment with gedunin effectively inhibited the cell viability with IC50 = 20µM, increased the ROS generation, and triggered the apoptosis in AGS cells. The gedunin-treated AGS cells also demonstrated a decreased MMP status. The increment in the ROS generation leads to oxidative stress which in turn induce the apoptosis. The activity of Bax gene was upregulated and the activity of Bcl-2 gene was down-regulated in the AGS cells after the treatment with gedunin. In the AGS cells treated with gedunin, the caspase-3 and caspase-9 activities were increased. In overall, these findings suggested that gedunin can be used as a potent chemotherapeutic agent in the future to treat gastric cancer.


Assuntos
Antineoplásicos Fitogênicos , Azadirachta , Neoplasias Gástricas , Medicamentos Sintéticos , Humanos , Apoptose , Azadirachta/química , Proteína X Associada a bcl-2/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Medicamentos Sintéticos/farmacologia , Antineoplásicos Fitogênicos/farmacologia
14.
BMC Plant Biol ; 22(1): 262, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35610569

RESUMO

BACKGROUND: Antimicrobial resistance became the leading cause of death globally, resulting in an urgent need for the discovery of new, safe, and efficient antibacterial agents. Compounds derived from plants can provide an essential source of new types of antibiotics. A. indica (neem) plant is rich in antimicrobial phytoconstituents. Here, we used the sensitive and reliable gas chromatography-mass spectrometry (GC-MS) approach, for the quantitative and quantitative determination of bioactive constituents in methanolic extract of neem leaves grown in Sudan. Subsequently, antibacterial activity, pharmacokinetic and toxicological properties were utilized using in silico tools. RESULTS: The methanolic extract of neem leaves was found to have antibacterial activity against all pathogenic and reference strains. The lowest concentration reported with bacterial activity was 3.125%, which showed zones of inhibition of more than 10 mm on P. aeruginosa, K. pneumoniae, Citrobacter spp., and E. coli, and 8 mm on Proteus spp., E. faecalis, S. epidermidis, and the pathogenic S. aureus. GC-MS analysis revealed the presence of 30 chemical compounds, including fatty acids (11), hydrocarbons (9), pyridine derivatives (2), aldehydes (2), phenol group (1), aromatic substances (1), coumarins (1), and monoterpenes (1). In silico and in vitro tools revealed that.beta.d-Mannofuranoside, O-geranyl was the most active compound on different bacterial proteins. It showed the best docking energy (-8 kcal/mol) and best stability with different bacterial essential proteins during molecular dynamic (MD) simulation. It also had a good minimum inhibitory concentration (MIC) (32 µg/ml and 64 µg/ml) against S. aureus (ATCC 25,923) and E. coli (ATCC 25,922) respectively. CONCLUSION: The methanolic extract of A. indica leaves possessed strong antibacterial activity against different types of bacteria. Beta.d-Mannofuranoside, O-geranyl was the most active compound and it passed 5 rules of drug-likeness properties. It could therefore be further processed for animal testing and clinical trials for its possible use as an antibacterial agent with commercial values.


Assuntos
Anti-Infecciosos , Azadirachta , Animais , Antibacterianos/farmacologia , Azadirachta/química , Bactérias , Escherichia coli , Metanol , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Staphylococcus aureus
15.
Biofactors ; 48(5): 1118-1128, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35608401

RESUMO

The present study explores the potential of the Azadirachta indica (Neem) plant parts (stem and bark) component gedunin for inhibition of alpha-amylase and alpha glucosidase. In contrast, Methanol at 50 mg/ml and 65 mg/ml had the lowest IC50 in alpha glucosidase and alpha amylase with noncompetitive and mixed inhibition, respectively. Azadirachta indica seeds collected from ICAR showed anti-diabetes activity in vitro and in vivo seeds collected were subjected to soxhlet and nonsoxhlet techniques followed by chromatography. HR-LCMS, HPLC, and FTIR to comprehend phytoconstituents present in the extract were used to comprehend phytoconstituents present in the extract and showed the presence gedunin. Among many hits observed, gedunin was used for docking studies using ICM software and for molecular dynamic simulation using gromacs. The results show significant alpha-amylase inhibitory activity and alpha glucosidase inhibitory activity and interaction of ligand targeting these enzymes, which can be used for cross-validation, in vitro using ligplot maps and visualization.


Assuntos
Azadirachta , Inibidores de Glicosídeo Hidrolases , Azadirachta/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Complexo Ferro-Dextran , Ligantes , Limoninas , Metanol , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Amilases/química , alfa-Glucosidases
16.
Molecules ; 27(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458761

RESUMO

Zika virus (ZIKV) has been characterized as one of many potential pathogens and placed under future epidemic outbreaks by the WHO. However, a lack of potential therapeutics can result in an uncontrolled pandemic as with other human pandemic viruses. Therefore, prioritized effective therapeutics development has been recommended against ZIKV. In this context, the present study adopted a strategy to explore the lead compounds from Azadirachta indica against ZIKV via concurrent inhibition of the NS2B-NS3 protease (ZIKVpro) and NS5 RNA dependent RNA polymerase (ZIKVRdRp) proteins using molecular simulations. Initially, structure-based virtual screening of 44 bioflavonoids reported in Azadirachta indica against the crystal structures of targeted ZIKV proteins resulted in the identification of the top four common bioflavonoids, viz. Rutin, Nicotiflorin, Isoquercitrin, and Hyperoside. These compounds showed substantial docking energy (-7.9 to -11.01 kcal/mol) and intermolecular interactions with essential residues of ZIKVpro (B:His51, B:Asp75, and B:Ser135) and ZIKVRdRp (Asp540, Ile799, and Asp665) by comparison to the reference compounds, O7N inhibitor (ZIKVpro) and Sofosbuvir inhibitor (ZIKVRdRp). Besides, long interval molecular dynamics simulation (500 ns) on the selected docked poses reveals stability of the respective docked poses contributed by intermolecular hydrogen bonds and hydrophobic interactions. The predicted complex stability was further supported by calculated end-point binding free energy using molecular mechanics generalized born surface area (MM/GBSA) method. Consequently, the identified common bioflavonoids are recommended as promising therapeutic inhibitors of ZIKVpro and ZIKVRdRp against ZIKV for further experimental assessment.


Assuntos
Azadirachta , Infecção por Zika virus , Zika virus , Antivirais/química , Azadirachta/química , Flavonoides/química , Humanos , Chumbo/farmacologia , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/farmacologia , Inibidores de Proteases/química , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais/metabolismo , Infecção por Zika virus/tratamento farmacológico
17.
J Agric Food Chem ; 70(11): 3467-3476, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258300

RESUMO

Azadirachtin, a limonoid isolated from the neem tree, has attracted considerable interest due to its excellent performance in pest control. Studies have also reported pharmaceutical activities of dihydroniloticin, an intermediate in azadirachtin biosynthesis, but these pharmaceutical activities could not be validated due to the limited supply. In this study, AiCYP71CD2 was first identified as involved in azadirachtin biosynthesis in neem by expressing it in Nicotiana benthamiana and yeast (Saccharomyces cerevisiae). Homology modeling and molecular docking analysis revealed that AiCYP71CD2 may exhibit a higher ability in catalyzing tirucalla-7,24-dien-3ß-ol into dihydroniloticin compared with MaCYP71CD2 from Melia azedarach L. G310 was identified as the critical residue responsible for the higher catalytic ability of AiCYP71CD2. Condon-Optimized AiCYP71CD2 greatly improved the catalytic efficiency in yeast. De novo dihydroniloticin production using the novel AiCYP71CD2 was achieved by constructing the S. cerevisiae DI-3 strain, and the titer could reach up to 405 mg/L in a fermentor, which was an alternative source for dihydroniloticin.


Assuntos
Azadirachta , Melia azedarach , Azadirachta/química , Azadirachta/genética , Engenharia Metabólica , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/genética
18.
Anticancer Agents Med Chem ; 22(14): 2619-2636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35125086

RESUMO

BACKGROUND & OBJECTIVE: The insulin/IGF-1R/PI3K/Akt signalling cascade is increasingly being linked to breast cancer development, with aldose reductase (AR) playing a key role in mediating the crosstalk between this pathway and angiogenesis. The current study was designed to investigate whether nimbolide, a neem limonoid, targets the oncogenic signaling network to prevent angiogenesis in breast cancer. METHODS: Breast cancer cells (MCF-7, MDA-MB-231), EAhy926 endothelial cells, MDA-MB-231 xenografted nude mice, and tumour tissues from breast cancer patients were used for the study. The expression of AR and key players in IGF-1/PI3K/Akt signaling and angiogenesis was evaluated by qRT-PCR, immunoblotting, and immunohistochemistry. Molecular docking and simulation, overexpression, and knockdown experiments were performed to determine whether nimbolide targets AR and IGF-1R. RESULTS: Nimbolide inhibited AR with consequent blockade of the IGF-1/PI3K/Akt and /HIF-1alpha/VEGF signalling circuit by influencing the phosphorylation and intracellular localisation of key signaling molecules. The downregulation of DNMT-1, HDAC-6, miR-21, HOTAIR, and H19 with the upregulation of miR-148a/miR-152 indicated that nimbolide regulates AR and IGF-1/PI3K/Akt signaling via epigenetic modifications. Coadministration of nimbolide with metformin and the chemotherapeutic drugs tamoxifen/cisplatin displayed higher efficacy than single agents in inhibiting IGF-1/PI3K/Akt/AR signaling. Grade-wise increases in IGF-1R and AR expression in breast cancer tissues underscore their value as biomarkers of progression. CONCLUSION: This study provides evidence for the anticancer effects of nimbolide in cellular and mouse models of breast cancer besides providing leads for new drug combinations. It has also opened up avenues for investigating potential molecules such as AR for therapeutic targeting of cancer.


Assuntos
Azadirachta , Neoplasias da Mama , Limoninas , MicroRNAs , Aldeído Redutase , Animais , Azadirachta/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Células Endoteliais , Feminino , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Limoninas/farmacologia , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , Neovascularização Patológica/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
19.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056801

RESUMO

Today, the most significant challenge encountered by food manufacturers is degradation in the food quality during storage, which is countered by expensive packing, which causes enormous monetary and environmental costs. Edible packaging is a potential alternative for protecting food quality and improving shelf life by delaying microbial growth and providing moisture and gas barrier properties. For the first time, the current article reports the preparation of the new films from Ditriterpenoids and Secomeliacins isolated from Melia azedarach (Dharek) Azadirachta indica plants to protect the quality of fruits. After evaluating these films, their mechanical, specific respirational, coating crystal elongation, elastic, water vapor transmission rate (WVTR), film thickness, and nanoindentation test properties are applied to apple fruit for several storage periods: 0, 3, 6, 9 days. The fruits were evaluated for postharvest quality by screening several essential phytochemical, physiological responses under film coating and storage conditions. It was observed that prepared films were highly active during storage periods. Coated fruits showed improved quality due to the protection of the film, which lowered the transmission rate and enhanced the diffusion rate, followed by an increase in the shelf life. The coating crystals were higher in Film-5 and lower activity in untreated films. It was observed that the application of films through dipping was a simple technique at a laboratory scale, whereas extrusion and spraying were preferred on a commercial scale. The phytochemicals screening of treated fruits during the storage period showed that a maximum of eight important bioactive compounds were present in fruits after the treatment of films. It was resolved that new active films (1-5) were helpful in the effective maintenance of fruit quality and all essential compounds during storage periods. It was concluded that these films could be helpful for fruits growers and the processing industry to maintain fruit quality during the storage period as a new emerging technology.


Assuntos
Filmes Comestíveis , Conservação de Alimentos/métodos , Frutas/química , Química Verde/métodos , Compostos Fitoquímicos/química , Azadirachta/química , Enzimas/metabolismo , Frutas/fisiologia , Malus/química , Malus/fisiologia , Melia azedarach/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Respiração , Paladar , Água/química
20.
Appl Biochem Biotechnol ; 194(1): 148-166, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993768

RESUMO

With the absence of the three most common receptor targets, and with high vascularity and higher-grade tumors, triple-negative breast cancer (TNBC) is the most aggressive of all breast cancer subtypes and is in need of additional/alternative/novel treatment strategies. With ~ 15% of the over 2 million new cases each year, there is an unmet need to treat TNBC. MDA-MB-231, human TNBC cells, were treated with neem leaf extract (Neem) and eight, 1200 V/cm, 100 µs electric pulses (EP), and their viability and proteomic profiles were studied. With EP + Neem, a lower viability of 37% was observed after 24 h, compared to 85% in the neem-only samples, indicating the efficacy of the combinational treatment. The proteomics results indicated significant upregulation of 525 proteins and downregulation of 572 proteins, with a number of different pathways in each case. These include a diverse group of proteins, such as receptors, heat shock proteins, and many others. The upregulated TCA cycle and OXPHOS pathways and the downregulated DNA replication and ubiquitin-mediated proteolytic pathways were associated with effective cell death, demonstrating the potency of this treatment. Viability results reveal the efficacious anticancer effects of the EP + Neem combination, via growth inhibition, on TNBC cells. Proteomics studies could readily identify the effected protein pathways, and their corresponding genes, that are responsible for cell death. This represents a potential therapeutic strategy against TNBC when patients are refractory to standard treatments.


Assuntos
Azadirachta/química , Eletroquimioterapia , Proteínas de Neoplasias/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Feminino , Humanos , Extratos Vegetais/química , Proteômica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...