Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.446
Filtrar
1.
J Biomed Opt ; 29(5): 050501, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774711

RESUMO

Significance: Fiber-optic microendoscopy is a promising approach to noninvasively visualize epithelial nuclear morphometry for early cancer and precancer detection. However, the broader clinical application of this approach is limited by a lack of topical contrast agents available for in vivo use. Aim: The aim of this study was to evaluate the ability to image nuclear morphometry in vivo with a novel fiber-optic microendoscope used together with topical application of methylene blue (MB), a dye with FDA approval for use in chromoendoscopy in the gastrointestinal tract. Approach: The low-cost, high-resolution microendoscope implements scanning darkfield imaging without complex optomechanical components by leveraging programmable illumination and the rolling shutter of the image sensor. We validate the integration of our system and MB staining for visualizing epithelial cell nuclei by performing ex vivo imaging on fresh animal specimens and in vivo imaging on healthy volunteers. Results: The results indicate that scanning darkfield imaging significantly reduces specular reflection and resolves epithelial nuclei with enhanced image contrast and spatial resolution compared to non-scanning widefield imaging. The image quality of darkfield images with MB staining is comparable to that of fluorescence images with proflavine staining. Conclusions: Our approach enables real-time microscopic evaluation of nuclear patterns and has the potential to be a powerful noninvasive tool for early cancer detection.


Assuntos
Azul de Metileno , Azul de Metileno/química , Animais , Humanos , Núcleo Celular , Tecnologia de Fibra Óptica/instrumentação , Desenho de Equipamento , Endoscopia/métodos , Endoscopia/instrumentação , Administração Tópica
2.
Sci Rep ; 14(1): 11583, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773106

RESUMO

The present investigation explores the efficacy of green algae Ulva lactuca biochar-sulfur (GABS) modified with H2SO4 and NaHCO3 in adsorbing methylene blue (MB) dye from aqueous solutions. The impact of solution pH, contact duration, GABS dosage, and initial MB dye concentration on the adsorption process are all methodically investigated in this work. To obtain a thorough understanding of the adsorption dynamics, the study makes use of several kinetic models, including pseudo-first order and pseudo-second order models, in addition to isotherm models like Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich. The findings of the study reveal that the adsorption capacity at equilibrium (qe) reaches 303.78 mg/g for a GABS dose of 0.5 g/L and an initial MB dye concentration of 200 mg/L. Notably, the Langmuir isotherm model consistently fits the experimental data across different GABS doses, suggesting homogeneous adsorption onto a monolayer surface. The potential of GABS as an efficient adsorbent for the extraction of MB dye from aqueous solutions is highlighted by this discovery. The study's use of kinetic and isotherm models provides a robust framework for understanding the intricacies of MB adsorption onto GABS. By elucidating the impact of various variables on the adsorption process, the research contributes valuable insights that can inform the design of efficient wastewater treatment solutions. The comprehensive analysis presented in this study serves as a solid foundation for further research and development in the field of adsorption-based water treatment technologies.


Assuntos
Carvão Vegetal , Azul de Metileno , Ulva , Poluentes Químicos da Água , Purificação da Água , Azul de Metileno/química , Carvão Vegetal/química , Ulva/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Purificação da Água/métodos , Enxofre/química , Concentração de Íons de Hidrogênio , Água/química , Algas Comestíveis
3.
Luminescence ; 39(5): e4758, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712530

RESUMO

The ability of heterogeneous photocatalysis to effectively remove organic pollutants from wastewater has shown great promise as a tool for environmental remediation. Pure zinc ferrites (ZnFe2O4) and magnesium-doped zinc ferrites (Mg@ZnFe2O4) with variable percentages of Mg (0.5, 1, 3, 5, 7, and 9 mol%) were synthesized via hydrothermal route and their photocatalytic activity was checked against methylene blue (MB) taken as a model dye. FTIR, XPS, BET, PL, XRD, TEM, and UV-Vis spectroscopy were used for the identification and morphological characterization of the prepared nanoparticles (NPs) and nanocomposites (NCs). The 7% Mg@ZnFe2O4 NPs demonstrated excellent degradation against MB under sunlight. The 7% Mg@ZnFe2O4 NPs were integrated with diverse contents (10, 50, 30, and 70 wt.%) of S@g-C3N4 to develop NCs with better activity. When the NCs were tested to degrade MB dye, it was revealed that the 7%Mg@ZnFe2O4/S@g-C3N4 NCs were more effective at utilizing solar energy than the other NPs and NCs. The synergistic effect of the interface formed between Mg@ZnFe2O4 and S@g-C3N4 was primarily responsible for the boosted photocatalytic capability of the NCs. The fabricated NCs may function as an effective new photocatalyst to remove organic dyes from wastewater.


Assuntos
Compostos Férricos , Azul de Metileno , Compostos de Nitrogênio , Energia Solar , Poluentes Químicos da Água , Zinco , Catálise , Poluentes Químicos da Água/química , Compostos Férricos/química , Azul de Metileno/química , Zinco/química , Magnésio/química , Fotólise , Processos Fotoquímicos , Corantes/química , Nanocompostos/química , Grafite/química , Águas Residuárias/química , Nitrilas/química
4.
J Environ Manage ; 357: 120738, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574710

RESUMO

The pyrolysis of mint stalks and lemon peels was performed to synthesize mint-stalks (MBC) and lemon-peels (LBC) derived biochars for adsorbing methylene blue (MB). The preparation, characterization, and application of MBC in adsorption have not been reported in the literature. MBC showed higher surface area and carbon content than that of LBC. The removal ratios of MB were 87.5% and 60% within 90 min for MBC and LBC, respectively at pH 7, temperature of 30oC, adsorbent dose of 0.5 g/L, and MB concentration of 5 mg/L. The optimal MBC dose was 1 g/L achieving a removal efficiency of 93.6% at pH 7, temperature of 30oC, contact time of 90 min, and initial dye concentration of 5.0 mg/L. The adsorption efficiency decreased from 98.6% to 31.33% by raising the dye concentration from 3.0 mg/L to 30 mg/L. Further, the increase of adsorbent dose to 10 g/L could achieve 94.2%, 90.3%, 87.6%, and 84.1% removal efficiencies of MB in the case of initial concentrations of 200 mg/L, 300 mg/L, 400 mg/L, and 500 mg/L, respectively. MBC showed high stability in adsorbing MB under five cycles, and the performed analyses after adsorption reaffirmed the stability of MBC. The adsorption mechanism indicated that the adsorption of MB molecules on the biochar's surface was mainly because of the electrostatic interaction, hydrogen bonding, and π-π stacking. Pseudo-second-order and Langmuir models could efficiently describe the adsorption of MB on the prepared biochar. The adsorption process is endothermic and spontaneous based on the adsorption thermodynamics. The proposed adsorption system is promising and can be implemented on a bigger scale. Moreover, the prepared biochar can be implemented in other applications such as photocatalysis, periodate, and persulfate activation-based advanced oxidation processes.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Adsorção , Concentração de Íons de Hidrogênio , Carvão Vegetal/química , Termodinâmica , Cinética
5.
Biosens Bioelectron ; 256: 116273, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621341

RESUMO

Simple and reliable profiling of tumor-derived exosomes (TDEs) holds significant promise for the early detection of cancer. Nonetheless, this remains challenging owing to the substantial heterogeneity and low concentration of TDEs. Herein, we devised an accurate and highly sensitive electrochemical sensing strategy for TDEs via simultaneously targeting exosomal mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1). This approach employs high-affinity aptamers as specific recognition elements, utilizes rolling circle amplification and DNA nanospheres as effective bridges and signal amplifiers, and leverages methylene blue (MB) and doxorubicin (DOX) as robust signal reporters. The crux of this separation- and label-free method is the specific response of MB and DOX to G-quadruplex structures and DNA nanospheres, respectively. Quantifying TDEs using this strategy enabled precise discrimination of lung cancer patients (n = 25) from healthy donors (n = 12), showing 100% specificity (12/12), 92% sensitivity (23/25), and an overall accuracy of 94.6% (35/37), with an area under the receiver operating characteristic curve (AUC) of 0.97. Furthermore, the assay results strongly correlated with findings from computerized tomography and pathological analyses. Our approach could facilitate the early diagnosis of lung cancer through TDEs-based liquid biopsy.


Assuntos
Aptâmeros de Nucleotídeos , Antígeno B7-H1 , Técnicas Biossensoriais , Doxorrubicina , Técnicas Eletroquímicas , Exossomos , Neoplasias Pulmonares , Humanos , Técnicas Biossensoriais/métodos , Exossomos/química , Técnicas Eletroquímicas/métodos , Neoplasias Pulmonares/química , Aptâmeros de Nucleotídeos/química , Doxorrubicina/química , DNA/química , Azul de Metileno/química , Nanosferas/química , Quadruplex G
6.
Sci Rep ; 14(1): 9279, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654039

RESUMO

A simple and rapid electrochemical sensing method with high sensitivity and specificity of aptamers was developed for the detection of methylamphetamine (MAMP). A short anti-MAMP thiolated aptamer (Apt) with a methylene blue (MB) probe at 3'-end was immobilized on the surface of a gold electrode (MB-Apt-S/GE). The electrochemical signal appeared when MAMP presenting in the sample solution competed with cDNA for binding with MB-Apt-S. Under optimized conditions, the liner range of this signal-on electrochemical aptasensor for the detection of MAMP achieved from 1.0 to 10.0 nmol/L and 10.0-400 nmol/L. LOD 0.88 nmol/L were obtained. Satisfactory spiked recoveries of saliva and urine were also obtained. In this method, only 5 min were needed to incubate before the square wave voltammetry (SWV) analysis, which was much more rapid than other electrochemical sensors, leading to a bright and broad prospect for the detection of MAMP in biological sample. This method can be used for on-site rapid detection on special occasions, such as drug driving scenes, entertainment venues suspected of drug use, etc.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Metanfetamina , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Humanos , Metanfetamina/urina , Metanfetamina/análise , DNA Complementar/genética , Saliva/química , Saliva/metabolismo , Eletrodos , Limite de Detecção , Ouro/química , Azul de Metileno/química
7.
ACS Sens ; 9(4): 2141-2148, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38578241

RESUMO

The glycated hemoglobin (HbA1c) level, which is defined as the ratio of HbA1c to total hemoglobin (tHb, including glycated and unglycated hemoglobin), is considered one of the preferred indicators for diabetes monitoring. Generally, assessment of the HbA1c level requires separate determination of tHb and HbA1c concentrations after a complex separation step. This undoubtedly increases the cost of the assay, and the loss or degradation of HbA1c during the separation process results in a decrease in the accuracy of the assay. Therefore, this study explored a dual-signal acquisition method for the one-step simultaneous evaluation of tHb and HbA1c. Quantification of tHb: graphene adsorbed carbon quantum dots and methylene blue were utilized as the substrate material and linked to the antibody. tHb was captured on the substrate by the antibody. The unique heme group on tHb catalyzed the production of •OH from H2O2 to degrade methylene blue on the substrate, and a quantitative relationship between the tHb concentration and the methylene blue oxidation current signal was constructed. Quantification of HbA1c: complex labels with HbA1c recognition were made of ZIF-8-ferrocene-gold nanoparticles-mercaptophenylboronic acid. The specific recognition of the boronic acid bond with the unique cis-diol structure of HbA1c establishes a quantitative relationship between the oxidation current of the label-loaded ferrocene and the concentration of HbA1c. Thus, the HbA1c level can be assessed with only one signal readout. The sensor exhibited extensive detection ranges (0.200-600 ng/mL for tHb and 0.100-300 ng/mL for HbA1c) and low detection limits (4.00 × 10-3 ng/mL for tHb and 1.03 × 10-2 ng/mL for HbA1c).


Assuntos
Hemoglobinas Glicadas , Azul de Metileno , Hemoglobinas Glicadas/análise , Humanos , Azul de Metileno/química , Grafite/química , Ouro/química , Nanopartículas Metálicas/química , Pontos Quânticos/química , Hemoglobinas/análise , Hemoglobinas/química , Ácidos Borônicos/química , Compostos Ferrosos/química , Metalocenos/química , Limite de Detecção , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química
8.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673952

RESUMO

This study focuses on synthesizing and characterizing a graphene oxide/ZnTiO3/TiO2 (GO/ZTO/TO) composite to efficiently remove methylene blue (MB) from water, presenting a novel solution to address industrial dye pollution. GO and ZTO/TO were synthesized by the modified Hummers and sol-gel methods, respectively, while GO/ZTO/TO was prepared using a hydrothermal process. The structural and surface properties of the composite were characterized using various analytical techniques confirming the integration of the constituent materials and suitability for dye adsorption. The study revealed that GO/ZTO/TO exhibits an adsorption capacity of 78 mg g-1 for MB, with only a 15% reduction in adsorption efficiency until the fifth reuse cycle. Furthermore, the study suggests optimal adsorption near neutral pH and enhanced performance at elevated temperatures, indicating an endothermic reaction. The adsorption behavior fits the Langmuir isotherm, implying monolayer adsorption on homogeneous surfaces, and follows pseudo-second-order kinetics, highlighting chemical interactions at the surface as the rate-limiting step. The photocatalytic degradation of MB by GO/ZTO/TO follows pseudo-first-order kinetics, with a higher rate constant than that of GO alone, demonstrating the enhanced photocatalytic activity of the composite. In conclusion, GO/ZTO/TO emerges as a promising and sustainable approach for water purification, through an adsorption process and subsequent photocatalytic degradation.


Assuntos
Grafite , Azul de Metileno , Titânio , Poluentes Químicos da Água , Purificação da Água , Azul de Metileno/química , Azul de Metileno/isolamento & purificação , Titânio/química , Adsorção , Grafite/química , Catálise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Cinética , Processos Fotoquímicos , Concentração de Íons de Hidrogênio , Zinco/química
9.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675629

RESUMO

In this study, we prepared high-nitrogen self-doped porous carbons (NPC1 and NPC2) derived from the pruned branches and seeds of Zanthoxylum bungeanum using a simple one-step method. NPC1 and NPC2 exhibited elevated nitrogen contents of 3.56% and 4.22%, respectively, along with rich porous structures, high specific surface areas of 1492.9 and 1712.7 m2 g-1 and abundant surface groups. Notably, both NPC1 and NPC2 demonstrated remarkable adsorption abilities for the pollutant methylene blue (MB), with maximum monolayer adsorption capacities of 568.18 and 581.40 mg g-1, respectively. The adsorption kinetics followed the pseudo-second-order kinetics and the adsorption isotherms conformed to the Langmuir isotherm model. The adsorption mechanism primarily relied on the hierarchical pore structures of NPC1 and NPC2 and their diverse strong interactions with MB molecules. This study offers a new approach for the cost-effective design of nitrogen self-doped porous carbons, facilitating the efficient removal of MB from wastewater.


Assuntos
Carbono , Azul de Metileno , Nitrogênio , Zanthoxylum , Zanthoxylum/química , Adsorção , Nitrogênio/química , Azul de Metileno/química , Porosidade , Carbono/química , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Águas Residuárias/química
10.
Int J Biol Macromol ; 266(Pt 2): 131354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574933

RESUMO

A floating adsorbent bead was prepared from polylactide (PLA) and maleic anhydride (MAH)-modified cellulose in a one-pot process (OP bead). Cellulose was extracted from waste lemongrass leaf (LGL) and modified with MAH in the presence of dimethylacetamide (DMAc). PLA was then added directly into the system to form sorbent beads by a phase separation process that reused unreacted MAH and DMAc as a pore former and a solvent, respectively. The chemical modification converted cellulose macrofibres (55.1 ± 31.5 µm) to microfibers (8.8 ± 1.5 µm) without the need for grinding. The OP beads exhibited more and larger surface pores and greater thermal stability than beads prepared conventionally. The OP beads also removed methylene blue (MB) more effectively, with a maximum adsorption capacity of 86.19 mg⋅g-1. The adsorption of MB on the OP bead fitted the pseudo-second order and the Langmuir isotherm models. The OP bead was reusable over five adsorption cycles, retaining 88 % of MB adsorption. In a mixed solution of MB and methyl orange (MO), the OP bead adsorbed 96 % of the cationic dye MB while repelling the anionic dye MO. The proposed method not only reduced time, energy and chemical consumption, but also enabled the fabrication of a green, effective and easy-to-use biosorbent.


Assuntos
Biomassa , Celulose , Azul de Metileno , Poliésteres , Poluentes Químicos da Água , Purificação da Água , Azul de Metileno/química , Azul de Metileno/isolamento & purificação , Poliésteres/química , Celulose/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Cinética , Água/química
11.
Chemosphere ; 356: 141867, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583535

RESUMO

The rapid development of the industrial world causes wastewater containing dyes to continue to increase. Even in recent years, the food, textile, cosmetic, plastic, and printing industries have developed the use of dyes. Methylene blue (MB) is one of the cationic dyes widely used in dyeing silk, wood, and cotton because of its absorbency and good fastness to materials. The adsorption process is the best technique and preferred in removing dyes from wastewater due to excellent selectivity, high efficiency from high-quality treated effluent, flexibility in design, and simplicity. Therefore, there is a growing interest to identify low-cost alternative adsorbents that have reasonable adsorption efficiency, especially natural materials such as leaves. In this study, research on MB adsorption using leaves was analyzed using bibliometric analysis. Information of bibliometric is extracted from the Scopus database with the keyword "Methylene Blue", "Adsorption or Desorption", and "Leaves or leaf". The results showed that India, Desalination and Water Treatment, and SASTRA Deemed University were the country, journal, and institution that contributed the most publications on this topic. Therefore, it is expected that with the use of bibliometrics, the use of leaf-based MB adsorption processes in their potential for MB dye removal can be investigated especially for large-scale development.


Assuntos
Bibliometria , Corantes , Azul de Metileno , Folhas de Planta , Águas Residuárias , Azul de Metileno/química , Adsorção , Folhas de Planta/química , Corantes/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Índia
13.
Int J Biol Macromol ; 267(Pt 1): 131432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583849

RESUMO

The potential applications of cellulose nanofibril-based foam materials can be expanded by their enhanced water durability. This study proposes two crosslinking methods to improve the water durability of the oven-dried carboxymethylated cellulose nanofibril (CMCNF) foam. The first method involves the addition of a crosslinker, polyamideamine epichlorohydrin. The second method is the self-crosslinking of CMCNFs via heat treatment at 140 °C for less than an hour, which is a simple way to crosslink CMCNF-based materials. Both crosslinking methods resulted in excellent water durability and wet resilience of the foams, which also exhibited high water absorbency. Furthermore, neither method affected the structural nor mechanical properties of the oven-dried CMCNF foams. In particular, self-crosslinking by heat treatment proved to be as effective as using a crosslinking agent. Compared to the freeze-dried foam, the oven-dried foam exhibited slower methylene blue (MB) dye adsorption but a higher maximum adsorption capacity (238-250 mg/g), attributed to the closed pore structure and a larger specific surface area. In addition, the isotherm and reusability of the foam for MB adsorption were investigated. These crosslinking processes expanded the potential use of oven-dried CMCNF foams as adsorbents for cationic dyes.


Assuntos
Celulose , Corantes , Reagentes de Ligações Cruzadas , Azul de Metileno , Nanofibras , Água , Nanofibras/química , Adsorção , Água/química , Celulose/química , Celulose/análogos & derivados , Corantes/química , Azul de Metileno/química , Reagentes de Ligações Cruzadas/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Epicloroidrina/química
14.
Sci Rep ; 14(1): 9877, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684756

RESUMO

Our study focused on the optical behavior, methylene blue (MB) dye degradation potential, antibacterial performance, and silver and trioxide mineral interaction with different bacterial species. We found that the addition of silver nanoparticles (Ag NPs) to neodymium oxide (Nd2O3) resulted in a significant response, with an enlargement of the inhibition zone for bacterial species such as Staphylococcus aureus and Escherichia coli. Specifically, the inhibition zone for S. aureus increased from 9.3 ± 0.5 mm for pure Nd2O3 to 16.7 ± 0.4 mm for the Ag/Nd2O3 nano-composite, while for E. coli, it increased from 8.8 ± 0.4 mm for Nd2O3 to 15.9 ± 0.3 mm for Ag/Nd2O3. Furthermore, the optical behavior of the composites showed a clear band-gap narrowing with the addition of Ag NPs, resulting in enhanced electronic localization. The direct and indirect transitions reduced from 6.7 to 6.1 eV and from 5.2 to 2.9 eV, respectively. Overall, these results suggest that the Ag/Nd2O3 nano-composite has potential applications in sensor industries and water treatment, thanks to its enhanced optical behavior, antibacterial performance, and efficient MB degradation capabilities. In terms of MB degradation, the Ag/Nd2O3 mixed system exhibited more efficient degradation compared to pure Nd2O3. After 150 min, the MB concentration in the mixed system decreased to almost half of its starting point, while pure Nd2O3 only reached 33%.


Assuntos
Antibacterianos , Escherichia coli , Nanopartículas Metálicas , Azul de Metileno , Neodímio , Óxidos , Prata , Staphylococcus aureus , Azul de Metileno/química , Nanopartículas Metálicas/química , Prata/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Neodímio/química , Óxidos/química , Adsorção
15.
Bioresour Technol ; 401: 130712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641300

RESUMO

The growing interest in utilizing lignin for dye removal has gained momentum, but there is limited information on the intricate relationship between lignin structural characteristics and adsorption efficacy, especially for its biochar derivatives. This study focused on three types of lignin and their corresponding biochar derivatives. Among them, ZnCl2-activated acidic/alkali densified lignin preparation of lignin-derived active carbon exhibited superior adsorption performance, achieving 526.32 mg/g for methylene blue and 2156.77 mg/g for congo red. Its exceptional adsorption capacity was attributed to its unique structural properties, including low alkyl and O-alkyl group content and high aromatic carbon levels. Furthermore, the adsorption mechanisms adhered to pseudo-second-order kinetics and the Langmuir model, signifying a spontaneous process. Intriguingly, lignin-derived active carbon also demonstrated remarkable recovery capabilities. These findings provide valuable insights into the impact of structural attributes on lignin and its biochar's adsorption performance.


Assuntos
Carvão Vegetal , Lignina , Lignina/química , Adsorção , Carvão Vegetal/química , Cinética , Azul de Metileno/química , Vermelho Congo/química
16.
Chemosphere ; 358: 142098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677606

RESUMO

This research investigates the adsorption potential of chrysotile and lizardite, two minerals derived from chromite ore wastes, for the uptake of Methylene Blue (MB) dye from waste streams. The characterization of these minerals involves XRD, XRF, FTIR, and SEM. Results confirm the dominance of polymorphic magnesium silicate minerals, specifically chrysotile and lizardite, in the samples. The FTIR spectra reveal characteristic vibration bands confirming the presence of these minerals. The SEM analysis depicts irregular surfaces with broken and bent edges, suggesting favorable morphologies for adsorption. N2 adsorption-desorption isotherms indicate mesoporous structures with Type IV pores in both adsorbents. The Central Composite Design approach is employed to optimize MB adsorption conditions, revealing the significance of contact time, adsorbent mass, and initial MB concentration. The proposed models exhibit high significance, with F-values and low p-values indicating the importance of the studied factors. Experimental validation confirms the accuracy of the models, and the optimum conditions for MB adsorption are determined. The influence of solution acidity on MB uptake is investigated, showing a significant enhancement at higher pH values. Isothermal studies indicate Langmuir and Freundlich models as suitable descriptions for MB adsorption onto chrysotile and lizardite. The maximum adsorption capacities of MB for chrysotile and lizardite were found to be 352.97 and 254.85, respectively. Kinetic studies reveal that the pseudo-first-order model best describes the adsorption process. Thermodynamic analysis suggests an exothermic and spontaneous process. Statistical physics models further elucidate the monolayer nature of adsorption. Additionally, an artificial neural network is developed, exhibiting high predictive capability during training and testing stages. The reusability of chrysotile and lizardite is demonstrated through multiple regeneration cycles, maintaining substantial adsorption potential. Therefore, this research provides comprehensive insights into the adsorption characteristics of chrysotile and lizardite, emphasizing their potential as effiective and reusable sorbents for MB uptake from wastewater.


Assuntos
Azul de Metileno , Termodinâmica , Poluentes Químicos da Água , Adsorção , Azul de Metileno/química , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Redes Neurais de Computação , Concentração de Íons de Hidrogênio , Silicatos de Magnésio/química
17.
Chemosphere ; 357: 142116, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663674

RESUMO

This study explores the utilization of semiconductor-based photocatalysts for environmental remediation through photocatalytic degradation, harnessing solar energy for effective treatment. The primary focus is on the application of photocatalytic technology for the degradation of 2-chlorophenol and methylene blue, critical pollutants requiring remediation. The research involves the synthesis of binary AgAlO2/g-C3N4 nanocomposites through an exchange ion method, subsequent calcination, and sonication. This process enhances the transfer of photogenerated electrons from AgAlO2 to g-C3N4, resulting in a significantly increased reductive electron charge on the surface of g-C3N4. The photocatalytic activity of the synthesized composites is comprehensively examined in the degradation of 2-chlorophenol and methylene blue through detailed crystallographic, electron-microscopy, photoemission spectroscopy, electrochemical, and spectroscopic characterizations. Among the various composites, AgAlO2/20% g-C3N4 emerges as the most active photocatalyst, achieving an impressive 98% degradation of methylene blue and 97% degradation of 2-chlorophenol under visible light. Notably, AgAlO2/20% g-C3N4 surpasses bare AgAlO2 and bare g-C3N4, exhibiting 1.66 times greater methylene blue degradation and constant rate (k) values of 20.17 × 10-3 min-1, 4.18 × 10-3 min-1 and 3.48 × 10-3 min-1, respectively. The heightened photocatalytic activity is attributed to the diminished recombination rate of electron-hole pairs. Scavenging evaluations confirm that O2•- and h+ are the primary photoactive species steering methylene blue photodegradation over AgAlO2/g-C3N4 in the visible region. These findings present new possibilities for the development of efficient binary photocatalysts for environmental remediation.


Assuntos
Clorofenóis , Poluentes Ambientais , Recuperação e Remediação Ambiental , Luz , Azul de Metileno , Recuperação e Remediação Ambiental/métodos , Clorofenóis/química , Catálise , Poluentes Ambientais/química , Azul de Metileno/química , Nanocompostos/química , Fotólise
18.
Chemosphere ; 357: 141982, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608778

RESUMO

Powdered activated carbon (PAC) has been extensively used as an effective adsorbent. Despite its excellent adsorption ability, PAC has drawbacks, including difficulty in filtration and reactivation after use, limitations of mass transfer in deeper areas because of its aggregated powder form, and limited applicability in high-flow systems. To overcome these limitations, we used a three-dimensional (3D) printing system to fabricate PAC into a 3D structure. Spectral and microscopic analyses indicated that PAC was embedded into 3D monolith and exhibited high porosity suitable for facile mass transfer. The designed 3D PAC filter effectively removed 200 ppm-methylene blue (MB) within 8 h and showed an adsorption efficiency of 93.4 ± 0.9%. The adsorption of MB onto the 3D PAC filter was described by the pseudo-first-order kinetic and Freundlich isotherm models. The negatively charged 3D PAC filter might attract the positively charged MB, thus favoring the physical adsorption of MB onto the 3D PAC filter. The adsorption performance of the 3D PAC filter was tested at various pH levels of 4-10 and against MB spiked in seawaters and freshwaters to evaluate its feasibility for use in real environments. Finally, the reproducibility and reusability of the 3D PAC filter were demonstrated through repeated adsorption and desorption processes against MB.


Assuntos
Carvão Vegetal , Corantes , Azul de Metileno , Impressão Tridimensional , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/química , Adsorção , Corantes/química , Poluentes Químicos da Água/química , Azul de Metileno/química , Purificação da Água/métodos , Pós , Cinética , Cátions/química , Filtração/métodos , Porosidade , Carbono/química , Concentração de Íons de Hidrogênio
19.
Chemosphere ; 358: 141936, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614393

RESUMO

This study presents the adsorption of methylene blue (MB) dye using latex char derived from pyrolysis of latex gloves. The adsorption process was investigated systematically using Response Surface Methodology (RSM) with a Central Composite Design (CCD). The effects of four key variables, namely pH, time, temperature, and adsorbent dosage, were studied using a factorial design enriched with center points and axial points. Experimental data were analyzed using a second-order polynomial regression model to construct a response surface model, which elucidated the relationship between the variables and MB removal efficiency. The study found that the char obtained at 800 °C exhibited the highest adsorption capacity due to its increased carbonization, expanded surface area, and diverse pore structure. Analysis of Variance (ANOVA) confirmed the significance of the quadratic model, with remarkable agreement between predicted and experimental outcomes. Diagnostic plots validated the model's reliability, while 3D contour graphs illustrated the combined effects of variables on MB removal efficiency. Optimization using DoE software identified optimal conditions resulting in a 99% removal efficiency, which closely matched experimental results. Additionally, adsorption isotherms revealed that the Freundlich model best described the adsorption behavior, indicating heterogeneous surface adsorption with multilayer adsorption. This comprehensive study provides valuable insights into the adsorption process of MB dye using latex char, with implications for wastewater treatment and environmental remediation.


Assuntos
Látex , Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Adsorção , Látex/química , Poluentes Químicos da Água/química , Águas Residuárias/química , Corantes/química , Temperatura , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Carvão Vegetal/química , Purificação da Água/métodos
20.
Biomaterials ; 308: 122561, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38603827

RESUMO

Fungi infection is a serious threat to public health, but an effective antifungal strategy remains a challenge. Herein, a biomimetic nanocomposite with multifunctionalities, including fungi diagnosis, antifungal adhesion, precise fungi elimination, and cytokine sequestration, is constructed for battling Candida albicans (C. albicans) infection. By screening a range of cells, we find that the polarized macrophage cells have the strongest binding tendency toward C. albicans. Thus, their membranes were exfoliated to camouflage UCNPs and then decorated with photosensitizers (methylene blue, MB) and DNA sensing elements. The resulting nanocomposite can tightly bind to fungal surfaces, promote DNA recognition, and squeeze pro-inflammatory cytokines to relieve inflammation. Consequently, this nanocomposite can detect C. albicans with enhanced sensitivity and precisely eliminate fungal cells through photodynamic therapy with minimal phototoxicity because of its switchable fluorescence behavior. The developed nanocomposite with good biocompatibility achieves a satisfactory diagnostic and therapeutic effect in a C. albicans-infected mouse model, which offers a unique approach to fight fungi infection.


Assuntos
Antifúngicos , Materiais Biomiméticos , Candida albicans , Candidíase , Nanocompostos , Nanomedicina Teranóstica , Animais , Nanocompostos/química , Camundongos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Candidíase/tratamento farmacológico , Candidíase/diagnóstico , Nanomedicina Teranóstica/métodos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antifúngicos/química , Células RAW 264.7 , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Camundongos Endogâmicos BALB C , Biomimética/métodos , Humanos , Azul de Metileno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...