Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.671
Filtrar
1.
Water Sci Technol ; 89(9): 2384-2395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747955

RESUMO

Cr(VI) and phenol commonly coexist in wastewater, posing a great threat to the environment and human health. However, it is still a challenge for microorganisms to degrade phenol under high Cr(VI) stress. In this study, the phenol-degrading strain Bacillus cereus ZWB3 was co-cultured with the Cr(VI)-reducing strain Bacillus licheniformis MZ-1 to enhance phenol biodegradation under Cr(Ⅵ) stress. Compared with phenol-degrading strain ZWB3, which has weak tolerance to Cr(Ⅵ), and Cr(Ⅵ)-reducing strain MZ-1, which has no phenol-degrading ability, the co-culture of two strains could significantly increase the degraded rate and capacity of phenol. In addition, the co-cultured strains exhibited phenol degradation ability over a wide pH range (7-10). The reduced content of intracellular proteins and polysaccharides produced by the co-cultured strains contributed to the enhancement of phenol degradation and Cr(Ⅵ) tolerance. The determination coefficients R2, RMSE, and MAPE showed that the BP-ANN model could predict the degradation of phenol under various conditions, which saved time and economic cost. The metabolic pathway of microbial degradation of phenol was deduced by metabolic analysis. This study provides a valuable strategy for wastewater treatment containing Cr(Ⅵ) and phenol.


Assuntos
Biodegradação Ambiental , Cromo , Aprendizado de Máquina , Fenol , Fenol/metabolismo , Cromo/metabolismo , Bacillus cereus/metabolismo , Poluentes Químicos da Água/metabolismo , Bacillus licheniformis/metabolismo
2.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731430

RESUMO

The root of Carlina acaulis L. has been widely used in traditional medicine for its antimicrobial properties. In this study, the fractionation of methanol extract from the root was conducted. Four fractions (A, B, C, and D) were obtained and tested against a range of bacteria and fungi. The results showed promising antibacterial activity, especially against Bacillus cereus, where the minimal inhibitory concentration (MIC) was determined to be equal to 0.08 mg/mL and 0.16 mg/mL for heptane (fraction B) and ethyl acetate (fraction C), respectively. In the case of the methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 strain, the same fractions yielded higher MIC values (2.5 and 5.0 mg/mL, respectively). This was accompanied by a lack of apparent cytotoxicity to normal human BJ foreskin fibroblasts, enterocytes derived from CaCo2 cells, and zebrafish embryos. Further analyses revealed the presence of bioactive chlorogenic acids in the fractionated extract, especially in the ethyl acetate fraction (C). These findings support the traditional use of the root from C. acaulis and pave the way for the development of new formulations for treating bacterial infections. This was further evaluated in a proof-of-concept experiment where fraction C was used in the ointment formulation, which maintained high antimicrobial activity against MRSA and displayed low toxicity towards cultured fibroblasts.


Assuntos
Antibacterianos , Bacillus cereus , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Extratos Vegetais , Raízes de Plantas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Raízes de Plantas/química , Animais , Células CACO-2 , Metanol/química , Fracionamento Químico , Peixe-Zebra
3.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731451

RESUMO

A novel second-generation blue fluorescent polyamidoamine dendrimer peripherally modified with sixteen 4-N,N-dimethylaninoethyloxy-1,8-naphthalimide units was synthesized. Its basic photophysical characteristics were investigated in organic solvents of different polarity. It was found that in these solvents, the dendrimer is colorless and emitted blue fluorescence with different intensities depending on their polarity. The effect of the pH of the medium on the fluorescence intensity was investigated and it was found that in the acidic medium, the fluorescence is intense and is quenched in the alkaline medium. The ability of the dendrimer to detect metal ions (Pb2+, Zn2+, Mg2+, Sn2+, Ba2+, Ni2+, Sn2+, Mn2+, Co2+, Fe3+, and Al3+) was also investigated, and it was found that in the presence of Fe3+, the fluorescent intensity was amplified more than 66 times. The antimicrobial activity of the new compound has been tested in vitro against Gram-positive B. cereus and Gram-negative P. aeruginosa. The tests were performed in the dark and after irradiation with visible light. The antimicrobial activity of the compound enhanced after light irradiation and B. cereus was found slightly more sensitive than P. aeruginosa. The increase in antimicrobial activity after light irradiation is due to the generation of singlet oxygen particles, which attack bacterial cell membranes.


Assuntos
Dendrímeros , Testes de Sensibilidade Microbiana , Naftalimidas , Poliaminas , Naftalimidas/química , Naftalimidas/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Poliaminas/química , Poliaminas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fluorescência , Pseudomonas aeruginosa/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Bacillus cereus/efeitos dos fármacos , Luz , Corantes Fluorescentes/química , Espectrometria de Fluorescência
4.
Curr Microbiol ; 81(6): 153, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652152

RESUMO

This study investigates the impact of bacteria on arsenic reduction in wheat plants, highlighting the potential of microbe-based eco-friendly strategies for plant growth. In the present study, bacterial isolate SPB-10 was survived at high concentration against both form of arsenic (As3+ and As5+). SPB-10 produced 5.2 g/L and 11.3 g/L of exo-polysaccharide at 20 ppm of As3+ and As5+, respectively, whereas qualitative examination revealed the highest siderophores ability. Other PGP attributes such as IAA production were recorded 52.12 mg/L and 95.82 mg/L, phosphate solubilization was 90.23 mg/L and 129 mg/L at 20 ppm of As3+ and As5+, respectively. Significant amount of CAT, APX, and Proline was also observed at 20 ppm of As3+ and As5+ in SPB-10. Isolate SPB-10 was molecularly identified as Bacillus cereus through 16S rRNA sequencing. After 42 days, wheat plants inoculated with SPB-10 had a 25% increase in shoot length and dry weight, and 26% rise in chlorophyll-a pigment under As5+ supplemented T4 treatment than control. Reducing sugar content was increased by 24% in T6-treated plants compared to control. Additionally, SPB-10 enhanced the content of essential nutrients (NPK), CAT, and APX in plant's-leaf under both As3+ and As5+ stressed conditions after 42 days. The study found that arsenic uptake in plant roots and shoots decreased in SPB-10-inoculated plants, with the maximum reduction observed in As5+ treated plants. Bio-concentration factor-BCF was reduced by 90.89% in SPB-10-inoculated treatment T4 after 42 days. This suggests that Bacillus cereus-SPB-10 may be beneficial for plant growth in arsenic-contaminated soil.


Assuntos
Arsênio , Bacillus cereus , Microbiologia do Solo , Poluentes do Solo , Triticum , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Triticum/metabolismo , Bacillus cereus/metabolismo , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/genética , Bacillus cereus/efeitos dos fármacos , Arsênio/metabolismo , Poluentes do Solo/metabolismo , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Biodegradação Ambiental , Sideróforos/metabolismo
5.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611747

RESUMO

In this study, the effect of various immobilization methods on the biochemical properties of phospholipase C (PLC) from Bacillus cereus obtained from the oily soil located in Sfax, Tunisia, was described. Different supports were checked: octyl sepharose, glyoxyl agarose in the presence of N-acetyl cysteine, and Q-sepharose. In the immobilization by hydrophobic adsorption, a hyperactivation of the PLCBc was obtained with a fold of around 2 times. The recovery activity after immobilization on Q-sepharose and glyoxyl agarose in the presence of N-acetyl cysteine was 80% and 58%, respectively. Furthermore, the biochemical characterization showed an important improvement in the three immobilized enzymes. The performance of the various immobilized PLCBc was compared with the soluble enzyme. The derivatives acquired using Q-sepharose, octyl sepharose, and glyoxyl agarose were stable at 50 °C, 60 °C, and 70 °C. Nevertheless, the three derivatives were more stable in a large range of pH than the soluble enzyme. The three derivatives and the free enzyme were stable in 50% (v/v) ethanol, hexane, methanol, and acetone. The glyoxyl agarose derivative showed high long-term storage at 4 °C, with an activity of 60% after 19 days. These results suggest the sustainable biotechnological application of the developed immobilized enzyme.


Assuntos
Acetilcisteína , Bacillus cereus , Glioxilatos , Sefarose , Enzimas Imobilizadas , Fosfolipases Tipo C
6.
Open Vet J ; 14(1): 186-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633173

RESUMO

Background: Bacillus cereus (B. cereus) biofilm is grown not only on medical devices but also on different substrata and is considered a potential hazard in the food industry. Quorum sensing plays a serious role in the synthesis of biofilm with its surrounding extracellular matrix enabling irreversible connection of the bacteria. Aim: The goal of the current investigation was to ascertain the prevalence, patterns of antimicrobial resistance, and capacity for B. cereus biofilm formation in meat and meat products in Egypt. Methods: In all, 150 meat and meat product samples were used in this study. For additional bacteriological analysis, the samples were moved to the Bacteriology Laboratory. Thereafter, the antimicrobial, antiquorum sensing, and antibiofilm potential of apple cider vinegar (ACV) on B. cereus were evaluated. Results: Out of 150 samples, 34 (22.67%) tested positive for B. cereus. According to tests for antimicrobial susceptibility, every B. cereus isolates tested positive for colistin and ampicillin but negative for ciprofloxacin and imipenem. The ability to form biofilms was present in all 12 multidrug-resistant B. cereus isolates (n = 12); of these, 6 (50%), 3 (25%), and 3 (25%) isolates were weak, moderate, and strong biofilm producers, respectively. It is noteworthy that the ACV demonstrated significant inhibitory effects on B. cereus isolates, with minimum inhibitory concentrations varying between 2 and 8 µg/ml. Furthermore, after exposing biofilm-producing B. cereus isolates to the minimum biofilm inhibitory concentrations 50 of 4 µg/ml, it demonstrated good antibiofilm activity (>50% reduction of biofilm formation). Strong biofilm producers had down-regulated biofilm genes (tasA and sipW) and their regulator (plcR) compared to the control group, according to reverse transcriptase quantitative polymerase chain reaction analysis. Conclusion: Our study is the first report, that spotlights the ACV activity against B. cereus biofilm and its consequence as a strong antibacterial and antibiofilm agent in the food industry and human health risk.


Assuntos
Anti-Infecciosos , Malus , Humanos , Animais , Bacillus cereus/genética , Ácido Acético/farmacologia , Carne/microbiologia , Anti-Infecciosos/farmacologia , Biofilmes
7.
Open Vet J ; 14(1): 470-480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633175

RESUMO

Background: Bacillus cereus and Yersinia enterocolitica are implicated in foodborne diseases that have major effects on human health; therefore, it is considered universal public health disorders. Essential oils and essential oils nano emulsions have a sufficient antibacterial performance against a variety of bacteria, especially multi-drug resistant bacteria. Probiotics showed several health benefits via moderating the GIT microbiota and their metabolites. Aim: The study was designed to evaluate the biocontrol ability of cinnamon essential oil (CEO) nano emulsion and probiotics as natural antibacterial additives and reveal their bactericidal mechanism. Methods: 250 random samples (50 raw milk, 50 rice pudding, 50 kariesh cheese, 50 yogurt, and 50 ice cream) were purchased separately from different areas in Mansoura city, Egypt, and exposed to bacteriological analysis. Results: Bacillus cereus was found with the highest mean value of 66 × 107 ± 1.3 × 108 CFU/g in raw milk and the lowest mean value of 28 × 107 ± 2.6 × 107 CFU/g in kariesh cheese while Y. enterocolitica was found in 64% of the total inspected samples with the highest incidence (84%) in yogurt. The toxinogenic potential of the tested pathogens has been evaluated by multiplex PCR pointing nhe A and ces genes for B. cereus isolates while targeting in Y. enterocolitica 16s rRNA, and YST gene. Different concentrations (0.17%, 0.25%, 0.5%, 0.8%, 1%, 1.5%, and 2%) of cinnamon oil nano emulsion were employed in this study. CEO nano emulsion had the highest reduction rate at a concentration of 1.5% in the case of B. cereus and 2% in the case of Y. enterocolitica. Among different types of probiotics, the best one which showed inhibitory potential against B. cereus and Y. enterocolitica was L. plantarum. Conclusion: Lactobacillus plantarum and CEO nano emulsion at a concentration of 2% have the highest reduction rate against Y. enterocolitica, while L. plantarum and CEO nano emulsion at a concentration of 1.5% has the best antibacterial effect against B. cereus. In conclusion, more attention is required for both safety and quality in dairy products through the application of natural additives such as essential oils and probiotics.


Assuntos
Óleos Voláteis , Probióticos , Animais , Humanos , Leite , Microbiologia de Alimentos , RNA Ribossômico 16S , Bacillus cereus , Antibacterianos
8.
Mar Drugs ; 22(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38667778

RESUMO

Bacillus cereus, a common food-borne pathogen, forms biofilms and generates virulence factors through a quorum sensing (QS) mechanism. In this study, six compounds (dankasterone A, demethylincisterol A3, zinnimidine, cyclo-(L-Val-L-Pro), cyclo-(L-Ile-L-Pro), and cyclo-(L-Leu-L-Pro)) were isolated from the endophytic fungus Pithomyces sacchari of the Laurencia sp. in the South China Sea. Among them, demethylincisterol A3, a sterol derivative, exhibited strong QS inhibitory activity against B. cereus. The QS inhibitory activity of demethylincisterol A3 was evaluated through experiments. The minimum inhibitory concentration (MIC) of demethylincisterol A3 against B. cereus was 6.25 µg/mL. At sub-MIC concentrations, it significantly decreased biofilm formation, hindered mobility, and diminished the production of protease and hemolysin activity. Moreover, RT-qPCR results demonstrated that demethylincisterol A3 markedly inhibited the expression of QS-related genes (plcR and papR) in B. cereus. The exposure to demethylincisterol A3 resulted in the downregulation of genes (comER, tasA, rpoN, sinR, codY, nheA, hblD, and cytK) associated with biofilm formation, mobility, and virulence factors. Hence, demethylincisterol A3 is a potentially effective compound in the pipeline of innovative antimicrobial therapies.


Assuntos
Antibacterianos , Bacillus cereus , Biofilmes , Testes de Sensibilidade Microbiana , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Laurencia/microbiologia , Fatores de Virulência , China , Endófitos
9.
J Agric Food Chem ; 72(15): 8823-8830, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578074

RESUMO

Emetic Bacillus cereus (B. cereus), which can cause emetic food poisoning and in some cases even fulminant liver failure and death, has aroused widespread concern. Herein, a universal and naked-eye diagnostic platform for emetic B. cereus based on recombinase polymerase amplification (RPA)-assisted CRISPR/Cas12a was developed by targeting the cereulide synthetase biosynthetic gene (cesB). The diagnostic platform enabled one-pot detection by adding components at the bottom and cap of the tube separately. The visual limit of detection of RPA-CRISPR/Cas12a for gDNA and cells of emetic B. cereus was 10-2 ng µL-1 and 102 CFU mL-1, respectively. Meanwhile, it maintained the same sensitivity in the rice, milk, and cooked meat samples even if the gDNA was extracted by simple boiling. The whole detection process can be finished within 40 min, and the single cell of emetic B. cereus was able to be recognized through enrichment for 2-5 h. The good specificity, high sensitivity, rapidity, and simplicity of the RPA-assisted CRISPR/Cas12a diagnostic platform made it serve as a potential tool for the on-site detection of emetic B. cereus in food matrices. In addition, the RPA-assisted CRISPR/Cas12a assay is the first application in emetic B. cereus detection.


Assuntos
Eméticos , Microbiologia de Alimentos , Recombinases/genética , Bacillus cereus/genética , Sistemas CRISPR-Cas , Sensibilidade e Especificidade , Nucleotidiltransferases/genética
10.
Sci Rep ; 14(1): 7755, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565929

RESUMO

Cellulose-degrading microorganisms hold immense significance in utilizing cellulose resources efficiently. The screening of natural cellulase bacteria and the optimization of fermentation conditions are the hot spots of research. This study meticulously screened cellulose-degrading bacteria from mixed soil samples adopting a multi-step approach, encompassing preliminary culture medium screening, Congo red medium-based re-screening, and quantification of cellulase activity across various strains. Particularly, three robust cellulase-producing strains were identified: A24 (MT740356.1 Brevibacillus borstelensis), A49 (MT740358.1 Bacillus cereus), and A61 (MT740357.1 Paenibacillus sp.). For subsequent cultivation experiments, the growth curves of the three obtained isolates were monitored diligently. Additionally, optimal CMCase production conditions were determined, keeping CMCase activity as a key metric, through a series of single-factor experiments: agitation speed, cultivation temperature, unit medium concentration, and inoculum volume. Maximum CMCase production was observed at 150 rpm/37 °C, doubling the unit medium addition, and a 5 mL inoculation volume. Further optimization was conducted using the selected isolate A49 employing response surface methodology. The software model recommended a 2.21fold unit medium addition, 36.11 °C temperature, and 4.91 mL inoculant volume for optimal CMCase production. Consequently, three parallel experiments were conducted based on predicted conditions consistently yielding an average CMCase production activity of 15.63 U/mL, closely aligning with the predicted value of 16.41 U/mL. These findings validated the reliability of the model and demonstrated the effectiveness of optimized CMCase production conditions for isolate A49.


Assuntos
Celulase , Paenibacillus , Bacillus cereus/metabolismo , Celulose/metabolismo , Reprodutibilidade dos Testes , Celulase/metabolismo , Paenibacillus/metabolismo , Fermentação
11.
BMJ Case Rep ; 17(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575335

RESUMO

A term neonate presented with cyanosis from birth, with refractory hypoxaemia despite intubation, administration of 100% oxygen and inhaled nitric oxide. Structural congenital heart disease was excluded. He developed profuse pulmonary haemorrhage at 6 hours of life with worsening hypoxia and was transferred to a paediatric intensive care unit (PICU) for initiation of veno-venous extracorporeal membrane oxygenation (vvECMO). Endotracheal aspirates from both the birth hospital and the PICU were positive for Bacillus cereus, with all other investigations finding no alternative cause for his presentation. Of note, mother was a practising veterinarian raising another potential source of exposure to this pathogen. A full recovery occurred after a total of 5 days of vvECMO, 13 days of ventilation and 20 days of PICU stay.


Assuntos
Oxigenação por Membrana Extracorpórea , Pneumonia , Masculino , Recém-Nascido , Humanos , Criança , Bacillus cereus , Pulmão , Óxido Nítrico , Oxigênio
12.
Front Cell Infect Microbiol ; 14: 1337952, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596651

RESUMO

Food intoxications evoked by emetic Bacillus cereus strains constitute a serious threat to public health, leading to emesis and severe organ failure. The emetic peptide toxin cereulide, assembled by the non-ribosomal peptide synthetase CesNRPS, cannot be eradicated from contaminated food by usual hygienic measures due to its molecular size and structural stability. Next to cereulide, diverse chemical variants have been described recently that are produced concurrently with cereulide by CesNRPS. However, the contribution of these isocereulides to the actual toxicity of emetic B. cereus, which produces a cocktail of these toxins in a certain ratio, is still elusive. Since cereulide isoforms have already been detected in food remnants from foodborne outbreaks, we aimed to gain insights into the composition of isocereulides and their impact on the overall toxicity of emetic B. cereus. The amounts and ratios of cereulide and isocereulides were determined in B. cereus grown under standard laboratory conditions and in a contaminated sample of fried rice balls responsible for one of the most severe food outbreaks caused by emetic B. cereus in recent years. The ratios of variants were determined as robust, produced either under laboratory or natural, food-poisoning conditions. Examination of their actual toxicity in human epithelial HEp2-cells revealed that isocereulides A-N, although accounting for only 10% of the total cereulide toxins, were responsible for about 40% of the total cytotoxicity. An this despite the fact that some of the isocereulides were less cytotoxic than cereulide when tested individually for cytotoxicity. To estimate the additive, synergistic or antagonistic effects of the single variants, each cereulide variant was mixed with cereulide in a 1:9 and 1:1 binary blend, respectively, and tested on human cells. The results showed additive and synergistic impacts of single variants, highlighting the importance of including not only cereulide but also the isocereulides in routine food and clinical diagnostics to achieve a realistic toxicity evaluation of emetic B. cereus in contaminated food as well as in patient samples linked to foodborne outbreaks. Since the individual isoforms confer different cell toxicity both alone and in association with cereulide, further investigations are needed to fully understand their cocktail effect.


Assuntos
Toxinas Bacterianas , Depsipeptídeos , Doenças Transmitidas por Alimentos , Venenos , Humanos , Bacillus cereus , Eméticos/análise , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Toxinas Bacterianas/toxicidade , Isoformas de Proteínas
13.
Phytochemistry ; 222: 114078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574958

RESUMO

Six undescribed infrequent eremophilane derivatives including diaportheremopholins A - F and its previously undescribed side chain (E)-2-methyloct-2-enoic acid, together with three known compounds (testacein, xestodecalactones B and C), were isolated from the endophytic fungus Diaporthe sp. BCC69512. The chemical structures were determined based on NMR spectroscopic information in conjunction with the evidence from NOESY spectrum, Mosher's application, and chemical reactions for corroborating the absolute configurations. The isolated compounds were evaluated for biological properties such as antimalarial, anti-TB, anti-phytopathogenic fungal, antibacterial activities and for cytotoxicity against malignant (MCF-7 and NCI-H187) and non-malignant (Vero) cells. Diaportheremopholins B (2) and E (5) possessed broad antimicrobial activity against Mycobacterium tuberculosis, Bacillus cereus, Alternaria brassicicola and Colletotrichum acutatum with MICs in a range of 25.0-50.0 µg/mL. Testacein (7) exhibited strong anti-A. brassicicola and anti-C. acutatum activities with equal MIC values of 3.13 µg/mL. Moreover, diaportheremopholin F (6) and compound 8 displayed antitubercular activity with equal MIC values of 50.0 µg/mL. All tested compounds were non-cytotoxic against MCF-7, NCI-H187, and Vero cells, except those compounds 2 and 5-7 exhibited weak cytotoxicity against both malignant and non-malignant cells with IC50 values in a range of 15.5-115.5 µM.


Assuntos
Alternaria , Ascomicetos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Humanos , Ascomicetos/química , Chlorocebus aethiops , Alternaria/química , Células Vero , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus cereus/efeitos dos fármacos , Animais , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Colletotrichum/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/isolamento & purificação , Relação Estrutura-Atividade , Células MCF-7 , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Relação Dose-Resposta a Droga
14.
Int J Food Microbiol ; 417: 110694, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38614024

RESUMO

The highly potent toxin cereulide is a frequent cause of foodborne intoxications. This extremely resistant toxin is produced by Bacillus cereus group strains carrying the plasmid encoded cesHPTABCD gene cluster. It is known that the capacities to produce cereulide vary greatly between different strains but the genetic background of these variations is not clear. In this study, cereulide production capacities were associated with genetic characteristics. For this, cereulide levels in cultures of 31 strains were determined after incubation in tryptic soy broth for 24 h at 24 °C, 30 °C and 37 °C. Whole genome sequencing based data were used for an in-depth characterization of gene sequences related to cereulide production. The taxonomy, population structure and phylogenetic relationships of the strains were evaluated based on average nucleotide identity, multi-locus sequence typing (MLST), core genome MLST and single nucleotide polymorphism analyses. Despite a limited strain number, the approach of a genome wide association study (GWAS) was tested to link genetic variation with cereulide quantities. Our study confirms strain-dependent differences in cereulide production. For most strains, these differences were not explainable by sequence variations in the cesHPTABCD gene cluster or the regulatory genes abrB, spo0A, codY and pagRBc. Likewise, the population structure and phylogeny of the tested strains did not comprehensively reflect the cereulide production capacities. GWAS yielded first hints for associated proteins, while their possible effect on cereulide synthesis remains to be further investigated.


Assuntos
Bacillus cereus , Depsipeptídeos , Tipagem de Sequências Multilocus , Filogenia , Bacillus cereus/genética , Bacillus cereus/metabolismo , Depsipeptídeos/biossíntese , Depsipeptídeos/genética , Depsipeptídeos/metabolismo , Família Multigênica , Estudo de Associação Genômica Ampla , Sequenciamento Completo do Genoma , Microbiologia de Alimentos , Polimorfismo de Nucleotídeo Único , Genoma Bacteriano , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/biossíntese , Variação Genética
15.
J Nat Prod ; 87(4): 1222-1229, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38447096

RESUMO

Utilizing a gene evolution-oriented approach for gene cluster mining, a cryptic cytochalasin-like gene cluster (sla) in Antarctic-derived Simplicillium lamelliciola HDN13430 was identified. Compared with the canonical cytochalasin biosynthetic gene clusters (BGCs), the sla gene cluster lacks the key α,ß-hydrolase gene. Heterologous expression of the sla gene cluster led to the discovery of a new compound, slamysin (1), characterized by an N-acylated amino acid structure and demonstrating weak anti-Bacillus cereus activity. These findings underscore the potential of genetic evolution in uncovering novel compounds and indicating specific adaptive evolution within specialized habitats.


Assuntos
Citocalasinas , Família Multigênica , Citocalasinas/química , Citocalasinas/farmacologia , Estrutura Molecular , Policetídeos/química , Policetídeos/farmacologia , Regiões Antárticas , Bacillus cereus , Evolução Molecular
16.
Ecotoxicol Environ Saf ; 274: 116229, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508101

RESUMO

Carbon-fixing functional strain-loaded biochar may have significant potential in carbon sequestration given the global warming situation. The carbon-fixing functional strain Bacillus cereus SR was loaded onto rice straw biochar pyrolyzed at different temperatures with the anticipation of clarifying the carbon sequestration performance of this strain on biochar and the interaction effects with biochar. During the culture period, the content of dissolved organic carbon (DOC), easily oxidizable organic carbon, and microbial biomass carbon in biochar changed. This finding indicated that B. cereus SR utilized organic carbon for survival and enhanced carbon sequestration on biochar to increase organic carbon, manifested by changes in CO2 emissions and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzyme activity. Linear regression analysis showed that the strain was likely to consume DOC on 300 °C biochar, although the Rubisco enzyme activity was higher. In contrast, the strain had a higher carbon sequestration potential on 500 °C biochar. Correlation analysis showed that Rubisco enzyme activity was controlled by the physical structure of the biochar. Our results highlight the differences in the survival mode and carbon sequestration potential of B. cereus SR on biochar pyrolyzed at different temperatures.


Assuntos
Bacillus cereus , Carbono , Sequestro de Carbono , Ribulose-Bifosfato Carboxilase , Solo/química , Carvão Vegetal/química , Agricultura/métodos
17.
J Agric Food Chem ; 72(12): 6302-6314, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483152

RESUMO

Discovering new antibacterial agents is crucial to addressing the increasing risk of bacterial infections induced by antimicrobial resistance in food and agricultural industries. Here, biocompatible acidic-type sophorolipids (ASLs) and glucolipids (GLs) prepared via chemical modification of natural sophorolipids from fermentation were functionalized via amide modification for use as potential antibacterial agents. It was found that the arginine methyl ester derivative of GLs (GLs-d-Arg-OMe) showed excellent antibacterial activity, killing more than 99.99% of Escherichia coli at 200 mg/L. The sterilization dosage of the GLs against Bacillus subtilis, Bacillus cereus, and Staphylococcus aureus was 16-64 mg/L, in contrast to 32-64 mg/L for the fungus Candida albicans. In particular, GLs-d-Arg-OMe showed the best biocompatibility with a therapeutic index of up to 18. It was shown that amide modification of glycolipids can effectively improve antibacterial activity while maintaining biocompatibility, which can be exploited for the development of novel antibiotics in food and agricultural fields.


Assuntos
Antibacterianos , Glicolipídeos , Antibacterianos/farmacologia , Glicolipídeos/química , Candida albicans , Bacillus subtilis , Bacillus cereus , Testes de Sensibilidade Microbiana
18.
Ann Agric Environ Med ; 31(1): 8-12, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549471

RESUMO

INTRODUCTION AND OBJECTIVE: Bacillus cereus is a foodborne pathogen causing two main types of gastrointestinal diseases: emetic and diarrheal. The aim of this study was to investigate the prevalence of the Bacillus cereus group in ready-to-eat (RTE) food products available in retail in Poland. MATERIAL AND METHODS: Samples were collected by Sanitary and Epidemiological Stations within the framework of the national official control and monitoring sampling programme in Poland. In 2016-2020, a total of 45,358 food samples, such as: 'confectionery products and products with cream', as well as 'cereal grains and cereal and flour products', 'milk and milk products', 'sugar and others', 'meat offal and meat products', 'poultry offal and poultry products', 'eggs and egg products', 'fish, seafood and their preserves', 'vegetables' (including legumes), 'coffee, tea, cocoa, fruit, and herbal teas', 'delicatessen and culinary products', and 'foods for particular nutritional uses' were collected. RESULTS: The presence of the presumptive B. cereus group was monitored mainly in two categories of food products: 'confectionery products and products with uncooked cream' and 'confectionery products and products with heat-treated cream'. The number of samples disqualified due to presumptive B. cereus was 339 (0.75%). CONCLUSIONS: This study provides useful information regarding the contamination of RTE products with the B. cereus group, which may have implications for food safety.


Assuntos
Contaminação de Alimentos , Doenças Transmitidas por Alimentos , Animais , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Bacillus cereus , Polônia/epidemiologia , Prevalência , Verduras
19.
Talanta ; 272: 125831, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428133

RESUMO

The effective management of infectious diseases and the growing concern of antibiotic resistance necessitates accurate and targeted therapies, highlighting the importance of antibiotic susceptibility testing. This study aimed to develop a real-time impedimetric biosensor for identifying and monitoring bacterial growth and antibiotic susceptibility. The biosensor employed a gold 8-channel disk-shaped microelectrode array with specific antibodies as bio-recognition elements. This setup was allowed for the analysis of bacterial samples, including Staphylococcus aureus, Bacillus cereus, and Micrococcus luteus. These microorganisms were successfully cultured and detected within 1 h of incubation even with a minimal bacterial concentration of 10 CFU/ml. Overall, the developed biosensor array exhibits promising capabilities for monitoring S. aureus, B. cereus and M. luteus, showcasing an excellent linear response ranging from 10 to 104 CFU/ml with a detection limit of 0.95, 1.22 and 1.04 CFU/mL respectively. Moreover, real-time monitoring of antibiotic susceptibility was facilitated by changes in capacitance, which dropped when bacteria were exposed to antibiotic doses higher than their minimum inhibitory concentration (MIC), indicating suppressed bacterial growth. The capacitance measurements enabled determination of half-maximal cytotoxic concentrations (CC50) values for each bacteria-antibiotic pair. As a proof-of-concept application, the developed sensor array was employed as a sensing platform for the real time detection of bacteria in milk samples, which ensured the reliability of the sensor for in-field detection of foodborne pathogens and rapid antimicrobial susceptibility tests (ASTs).


Assuntos
Técnicas Biossensoriais , Staphylococcus aureus , Reprodutibilidade dos Testes , Anticorpos/farmacologia , Antibacterianos/farmacologia , Bacillus cereus
20.
Ecotoxicol Environ Saf ; 273: 116129, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430580

RESUMO

The salinity environment is one of the biggest threats to Glycyrrhiza uralensis Fisch. (G. uralensis) growth, resulting from the oxidative stress caused by excess reactive oxygen species (ROS). Flavonoids are the main pharmacodynamic composition and help maintain ROS homeostasis and mitigate oxidative damage in G. uralensis in the salinity environment. To investigate whether endophytic Bacillus cereus G2 can improve the salt-tolerance of G. uralensis through controlling flavonoid biosynthesis, the transcriptomic and physiological analysis of G. uralensis treated by G2 in the saline environment was conducted, focused on flavonoid biosynthesis-related pathways. Results uncovered that salinity inhibited flavonoids synthesis by decreasing the activities of phenylalanine ammonialyase (PAL) and 4-coumarate-CoA ligase (4CL) (42% and 39%, respectively) due to down-regulated gene Glyur000910s00020578 at substrate level, and then decreasing the activities of chalcone isomerase (CHI) and chalcone synthase (CHS) activities (50% and 42%, respectively) due to down-regulated genes Glyur006062s00044203 and Glyur000051s00003431, further decreasing isoliquiritigenin content by 53%. However, salt stress increased liquiritin content by 43%, which might be a protective mechanism of salt-treated G. uralensis seedlings. Interestingly, G2 enhanced PAL activity by 27% whereas reduced trans-cinnamate 4-monooxygenase (C4H) activity by 43% which could inhibit lignin biosynthesis but promote flavonoid biosynthesis of salt-treated G. uralensis at the substrate level. G2 decreased shikimate O-hydroxycinnamoyltransferase (HCT) activity by 35%, increased CHS activity by 54% through up-regulating the gene Glyur000051s00003431 encoding CHS, and increased CHI activity by 72%, thereby decreasing lignin (34%) and liquiritin (24%) content, but increasing isoliquiritigenin content (35%), which could mitigate oxidative damage and changed salt-tolerance mechanism of G. uralensis.


Assuntos
Chalconas , Glycyrrhiza uralensis , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/genética , Glycyrrhiza uralensis/metabolismo , Bacillus cereus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lignina/metabolismo , Estresse Salino , Flavonoides/farmacologia , Flavonoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...