RESUMO
This study aimed to assess the feasibility of using RFLP of PCR-amplified 16S rRNA gene (s) by using universal primers 27f/1492r and a combination of three restriction enzymes, AluI, CfoI, and TaqI, for a low-cost, rapid screen for a primarily differentiation of isolates of the complex of aerobic spore-forming bacteria commonly found in honey samples. The described method produced unique and distinguishable patterns to differentiate among 80 isolates belonging to 26 different species of Bacillus, Brevibacillus, Lysinibacillus, Rummeliibacillus, and Paenibacillus reported in honey and other apiarian sources.
Assuntos
Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano/isolamento & purificação , Bactérias Formadoras de Endosporo/isolamento & purificação , Mel/microbiologia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , DNA Bacteriano/genética , Bactérias Formadoras de Endosporo/classificação , Bactérias Formadoras de Endosporo/genética , Estudos de Viabilidade , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
BACKGROUND: Biosurfactants are surface-active biomolecules with great applicability in the food, pharmaceutical and oil industries. Endospore-forming bacteria, which survive for long periods in harsh environments, are described as biosurfactant producers. Although the ubiquity of endospore-forming bacteria in saline and hypersaline environments is well known, studies on the diversity of the endospore-forming and biosurfactant-producing bacterial genera/species in these habitats are underrepresented. METHODS: In this study, the structure of endospore-forming bacterial communities in sediment/mud samples from Vermelha Lagoon, Massambaba, Dois Rios and Abraão Beaches (saline environments), as well as the Praia Seca salterns (hypersaline environments) was determined via denaturing gradient gel electrophoresis. Bacterial strains were isolated from these environmental samples and further identified using 16S rRNA gene sequencing. Strains presenting emulsification values higher than 30 % were grouped via BOX-PCR, and the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20 % NaCl to test their emulsifying activities in these extreme conditions. Mass spectrometry analysis was used to demonstrate the presence of surfactin. RESULTS: A diverse endospore-forming bacterial community was observed in all environments. The 110 bacterial strains isolated from these environmental samples were molecularly identified as belonging to the genera Bacillus, Thalassobacillus, Halobacillus, Paenibacillus, Fictibacillus and Paenisporosarcina. Fifty-two strains showed emulsification values of at least 30%, and they were grouped into 18 BOX groups. The stability of the emulsification values varied when the culture supernatants of representative strains were subjected to high temperatures and to the presence of up to 20% NaCl. The presence of surfactin was demonstrated in one of the most promising strains. CONCLUSION: The environments studied can harbor endospore-forming bacteria capable of producing biosurfactants with biotechnological applications. Various endospore-forming bacterial genera/species are presented for the first time as biosurfactant producers.