Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6606): 660-666, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926021

RESUMO

The microbiome contributes to the development and maturation of the immune system. In response to commensal bacteria, intestinal CD4+ T lymphocytes differentiate into functional subtypes with regulatory or effector functions. The development of small intestine intraepithelial lymphocytes that coexpress CD4 and CD8αα homodimers (CD4IELs) depends on the microbiota. However, the identity of the microbial antigens recognized by CD4+ T cells that can differentiate into CD4IELs remains unknown. We identified ß-hexosaminidase, a conserved enzyme across commensals of the Bacteroidetes phylum, as a driver of CD4IEL differentiation. In a mouse model of colitis, ß-hexosaminidase-specific lymphocytes protected against intestinal inflammation. Thus, T cells of a single specificity can recognize a variety of abundant commensals and elicit a regulatory immune response at the intestinal mucosa.


Assuntos
Bacteroidetes , Linfócitos T CD4-Positivos , Colite , Mucosa Intestinal , beta-N-Acetil-Hexosaminidases , Animais , Bacteroidetes/enzimologia , Bacteroidetes/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD8/imunologia , Colite/imunologia , Colite/microbiologia , Modelos Animais de Doenças , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , beta-N-Acetil-Hexosaminidases/imunologia
3.
Gastroenterology ; 162(1): 166-178, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606847

RESUMO

BACKGROUND & AIMS: Fecal microbiota transplantation (FMT) is an emerging treatment modality for ulcerative colitis (UC). Several randomized controlled trials have shown efficacy for FMT in the treatment of UC, but a better understanding of the transferable microbiota and their immune impact is needed to develop more efficient microbiome-based therapies for UC. METHODS: Metagenomic analysis and strain tracking was performed on 60 donor and recipient samples receiving FMT for active UC. Sorting and sequencing of immunoglobulin (Ig) A-coated microbiota (called IgA-seq) was used to define immune-reactive microbiota. Colonization of germ-free or genetically engineered mice with patient-derived strains was performed to determine the mechanism of microbial impact on intestinal immunity. RESULTS: Metagenomic analysis defined a core set of donor-derived transferable bacterial strains in UC subjects achieving clinical response, which predicted response in an independent trial of FMT for UC. IgA-seq of FMT recipient samples and gnotobiotic mice colonized with donor microbiota identified Odoribacter splanchnicus as a transferable strain shaping mucosal immunity, which correlated with clinical response and the induction of mucosal regulatory T cells. Colonization of mice with O splanchnicus led to an increase in Foxp3+/RORγt+ regulatory T cells, induction of interleukin (IL) 10, and production of short chain fatty acids, all of which were required for O splanchnicus to limit colitis in mouse models. CONCLUSIONS: This work provides the first evidence of transferable, donor-derived strains that correlate with clinical response to FMT in UC and reveals O splanchnicus as a key component promoting both metabolic and immune cell protection from colitis. These mechanistic features will help enable strategies to enhance the efficacy of microbial therapy for UC. Clinicaltrials.gov ID NCT02516384.


Assuntos
Bacteroidetes/imunologia , Colite/terapia , Colo/microbiologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Imunoglobulina A/imunologia , Mucosa Intestinal/microbiologia , Animais , Bacteroidetes/genética , Bacteroidetes/metabolismo , Ensaios Clínicos como Assunto , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Colo/imunologia , Colo/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Vida Livre de Germes , Humanos , Imunidade nas Mucosas , Imunoglobulina A/genética , Imunoglobulina A/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Linfócitos Intraepiteliais/microbiologia , Metagenoma , Metagenômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/microbiologia , Resultado do Tratamento
4.
Sci Rep ; 11(1): 8966, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903700

RESUMO

Since alterations in the intestinal microbiota may induce systemic inflammation and polarization of macrophages to the M1 state, the microbiome role in atherosclerosis, an M1-driven disease, requires evaluation. We aimed to determine if antibiotic (Abx) induced alterations to the intestinal microbiota interferes with atherosclerotic plaque inflammation resolution after lipid-lowering in mice. Hyperlipidemic Apoe-/- mice were fed a western diet to develop aortic atherosclerosis with aortas then transplanted into normolipidemic wild-type (WT) mice to model clinically aggressive lipid management and promote atherosclerosis inflammation resolution. Gut microbial composition pre and post-transplant was altered via an enteral antibiotic or not. Post aortic transplant, after Abx treatment, while plaque size did not differ, compared to Apoe-/- mice, Abx- WT recipient mice had a 32% reduction in CD68-expressing cells (p = 0.02) vs. a non-significant 12% reduction in Abx+ WT mice. A trend toward an M1 plaque CD68-expresing cell phenotype was noted in Abx+ mice. By 16S rRNA sequence analysis, the Abx+ mice had reduced alpha diversity and increased Firmicutes/Bacteroidetes relative abundance ratio with a correlation between gut Firmicutes abundance and plaque CD68-expressing cell content (p < 0.05). These results indicate that in a murine atherosclerotic plaque inflammation resolution model, antibiotic-induced microbiome perturbation may blunt the effectiveness of lipid-lowering to reduce the content of plaque inflammatory CD68-expressing cells.


Assuntos
Aterosclerose , Bacteroidetes , Firmicutes , Microbioma Gastrointestinal/imunologia , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/microbiologia , Bacteroidetes/genética , Bacteroidetes/imunologia , Modelos Animais de Doenças , Firmicutes/genética , Firmicutes/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/genética , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/microbiologia
5.
Carbohydr Polym ; 255: 117388, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436217

RESUMO

Pectins are a part of daily diet as well as food additives that are indigestible polysaccharides by human enzymes, however, they can be easily degraded by gut bacteria with the production of short chain fatty acids (SCFAs). Knowledge of pectin gut homeostasis and further how pectin affect gut bacterial communities is insufficient and limited. This review focuses on providing the whole story of how pectin functions as prebiotics in the gut. Understanding the interplay between functional and immunological responses inside animal or human gut as influenced by pectin in diets is provided. The interaction between pectin and gut microbiota is presented from both sides, in terms of how pectin affects gut microbiome and or the fermentation products produced in response by gut bacteria. This knowledge can be used to define preferred dietary pectins, targeting beneficial bacteria, and favoring balanced microbiota communities in the gut to maximize pectins' health benefits.


Assuntos
Microbioma Gastrointestinal/imunologia , Homeostase/imunologia , Imunomodulação/fisiologia , Pectinas/farmacologia , Polissacarídeos/administração & dosagem , Prebióticos/administração & dosagem , Animais , Bacteroidetes/genética , Bacteroidetes/imunologia , Biotransformação , Ensaios Clínicos como Assunto , Dieta/métodos , Ácidos Graxos Voláteis/biossíntese , Fermentação , Firmicutes/genética , Firmicutes/imunologia , Humanos , Pectinas/imunologia , Pectinas/metabolismo , Polissacarídeos/análise , Prebióticos/análise
6.
Int J Med Sci ; 18(2): 511-519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390820

RESUMO

The association between body composition and gut microbiota in type 2 diabetes mellitus (DM) remains unknown. To elucidate the correlation of body composition and gut microbiota, we conducted a clinical study to enroll 179 patients with type 2 DM. Body composition of lean tissue index (LTI) and fat tissue index was measured by Body Composition Monitor. Eight pairs of 16S rRNA gene primers specific to Firmicutes, Bacteroidetes, the Clostridium leptum group, Bacteroides, Bifidobacterium, Akkermansia muciniphila, Escherichia coli, and Faecalibacterium prausnitzii were used to measure their abundance by quantitative polymerase chain reaction. The results showed that type 2 DM with higher abundance of phylum Firmicutes and a higher ratio of phyla Firmicutes to Bacteroidetes (phyla F/B ratio) had higher LTI. This significant correlation between phyla F/B ratio and LTI was especially evident in type 2 DM with high body mass index, and independent of glycemic control or dipeptidyl peptidase-4 inhibitor usage. In conclusion, our study demonstrated the positive association of LTI with the abundance of phylum Firmicutes and the phyla F/B ratio in type 2 DM.


Assuntos
Composição Corporal/imunologia , Diabetes Mellitus Tipo 2/imunologia , Disbiose/complicações , Microbioma Gastrointestinal/imunologia , Idoso , Bacteroidetes/genética , Bacteroidetes/imunologia , Bacteroidetes/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Diabetes Mellitus Tipo 2/microbiologia , Disbiose/diagnóstico , Disbiose/imunologia , Disbiose/microbiologia , Feminino , Firmicutes/genética , Firmicutes/imunologia , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , RNA Ribossômico 16S/genética , Fatores de Risco
7.
Cells ; 9(9)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947881

RESUMO

Alterations in the gut microbiota composition and diversity seem to play a role in the development of chronic diseases, including inflammatory bowel disease (IBD), leading to gut barrier disruption and induction of proinflammatory immune responses. This opens the door for the use of novel health-promoting bacteria. We selected five Parabacteroides distasonis strains isolated from human adult and neonates gut microbiota. We evaluated in vitro their immunomodulation capacities and their ability to reinforce the gut barrier and characterized in vivo their protective effects in an acute murine model of colitis. The in vitro beneficial activities were highly strain dependent: two strains exhibited a potent anti-inflammatory potential and restored the gut barrier while a third strain reinstated the epithelial barrier. While their survival to in vitro gastric conditions was variable, the levels of P. distasonis DNA were higher in the stools of bacteria-treated animals. The strains that were positively scored in vitro displayed a strong ability to rescue mice from colitis. We further showed that two strains primed dendritic cells to induce regulatory T lymphocytes from naïve CD4+ T cells. This study provides better insights on the functionality of commensal bacteria and crucial clues to design live biotherapeutics able to target inflammatory chronic diseases such as IBD.


Assuntos
Bacteroidetes/genética , Bacteroidetes/imunologia , Colite/induzido quimicamente , Colite/microbiologia , Microbioma Gastrointestinal/imunologia , Ácido Trinitrobenzenossulfônico/efeitos adversos , Adulto , Animais , Bacteroidetes/isolamento & purificação , Células CACO-2 , Colite/imunologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Humanos , Recém-Nascido , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T Reguladores/imunologia
8.
Nutrients ; 12(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230951

RESUMO

Altered intestinal microbiota is associated with systemic and intestinal diseases, such as inflammatory bowel disease (IBD). Dysbiotic microbiota with enhanced proinflammatory capacity is characterized by depletion of anaerobic commensals, increased proportion of facultatively anaerobic bacteria, as well as reduced diversity and stability. In this study, we developed a high-throughput in vitro screening assay to isolate intestinal commensal bacteria with anti-inflammatory capacity from a healthy fecal microbiota transplantation donor. Freshly isolated gut bacteria were screened for their capacity to attenuate Escherichia coli lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) release from HT-29 cells. The screen yielded a number of Bacteroides and Parabacteroides isolates, which were identified as P. distasonis, B. caccae, B. intestinalis, B. uniformis, B. fragilis, B. vulgatus and B. ovatus using whole genome sequencing. We observed that a cell-cell contact with the epithelium was not necessary to alleviate in vitro inflammation as spent culture media from the isolates were also effective and the anti-inflammatory action did not correlate with the enterocyte adherence capacity of the isolates. The anti-inflammatory isolates also exerted enterocyte monolayer reinforcing action and lacked essential genes to synthetize hexa-acylated, proinflammatory lipid A, part of LPS. Yet, the anti-inflammatory effector molecules remain to be identified. The Bacteroides strains isolated and characterized in this study have potential to be used as so-called next-generation probiotics.


Assuntos
Anti-Inflamatórios/metabolismo , Bacteroides , Microbioma Gastrointestinal/imunologia , Adulto , Bacteroides/classificação , Bacteroides/imunologia , Bacteroides/isolamento & purificação , Bacteroides/metabolismo , Bacteroidetes/classificação , Bacteroidetes/imunologia , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Células CACO-2 , Fezes/microbiologia , Feminino , Ensaios de Triagem em Larga Escala , Homeostase/imunologia , Humanos , Interleucina-8/análise , Interleucina-8/metabolismo , Lipopolissacarídeos/metabolismo , Probióticos
9.
Curr Opin Allergy Clin Immunol ; 20(3): 323-328, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250972

RESUMO

PURPOSE OF REVIEW: To perform a nonsystematic review of the literature on the microbiota in the different types of non-IgE-mediated food allergy. RECENT FINDINGS: The commonest non-IgE-mediated disorders managed by allergists include: eosinophilic esophagitis, food protein-induced enteropathy, food protein-induced enterocolitis syndrome, and food protein-induced allergic proctocolitis. The review of the literature describes how at phylum level we observe an increase of Proteobacteria in eosinophilic esophagitis esophageal microbiota and in food protein-induced enterocolitis syndrome, and food protein-induced allergic proctocolitis gut microbiota, while we observe an increase of Bacteroidetes in healthy controls. Several studies endorse the concept that a bloom of Proteobacteria in the gut reflects dysbiosis or an unstable gut microbial community structure. In several studies, the type of diet, the use of probiotics and in a single experience the use of fecal microbiota transplantation has produced significant variations of the microbiota. SUMMARY: Genetic factors alone cannot account for the rapid rise in food allergy prevalence and the microbiome might be contributing to allergy risk. Our review showed that common features of the pathological microbiota among different types of non-IgE-mediated food allergy can be identified. These evidences suggest a possible role of the microbiota in the pathogenesis and non-IgE-mediated food allergies and the need to understand the effects of its modulation on the disorders themselves.


Assuntos
Disbiose/imunologia , Hipersensibilidade Alimentar/imunologia , Microbioma Gastrointestinal/imunologia , Bacteroidetes/imunologia , Proteínas Alimentares/imunologia , Disbiose/diagnóstico , Disbiose/microbiologia , Enterite/epidemiologia , Enterite/imunologia , Enterite/microbiologia , Eosinofilia/epidemiologia , Eosinofilia/imunologia , Eosinofilia/microbiologia , Esofagite Eosinofílica/epidemiologia , Esofagite Eosinofílica/imunologia , Esofagite Eosinofílica/microbiologia , Fezes/microbiologia , Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/microbiologia , Gastrite/epidemiologia , Gastrite/imunologia , Gastrite/microbiologia , Humanos , Prevalência , Proctocolite/epidemiologia , Proctocolite/imunologia , Proctocolite/microbiologia , Proteobactérias/imunologia , Proteobactérias/isolamento & purificação
10.
Sci Rep ; 10(1): 2232, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042047

RESUMO

Microbial dysbiosis has long been postulated to be associated with the pathogenesis of inflammatory bowel disease (IBD). Although evidence supporting the anti-colitic effects of melatonin have been accumulating, it is not clear how melatonin affects the microbiota. Herein, we investigated the effects of melatonin on the microbiome in colitis and identified involvement of Toll-like receptor (TLR) 4 signalling in the effects. Melatonin improved dextran sulfate sodium (DSS)-induced colitis and reverted microbial dysbiosis in wild-type (WT) mice but not in TLR4 knockout (KO) mice. Induction of goblet cells was observed with melatonin administration, which was accompanied by suppression of Il1b and Il17a and induction of melatonin receptor and Reg3ß, an antimicrobial peptide (AMP) against Gram-negative bacteria. In vitro, melatonin treatment of HT-29 intestinal epithelial cells promotes mucin and wound healing and inhibits growth of Escherichia coli. Herein, we showed that melatonin significantly increases goblet cells, Reg3ß, and the ratio of Firmicutes to Bacteriodetes by suppressing Gram-negative bacteria through TLR4 signalling. Our study suggests that sensing of bacteria through TLR4 and regulation of bacteria through altered goblet cells and AMPs is involved in the anti-colitic effects of melatonin. Melatonin may have use in therapeutics for IBD.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Células Caliciformes/efeitos dos fármacos , Melatonina/administração & dosagem , Receptor 4 Toll-Like/metabolismo , Animais , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/imunologia , Bacteroidetes/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/imunologia , Disbiose/microbiologia , Disbiose/patologia , Firmicutes/efeitos dos fármacos , Firmicutes/imunologia , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal/imunologia , Células Caliciformes/imunologia , Células Caliciformes/microbiologia , Células Caliciformes/fisiologia , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas a Pancreatite/imunologia , Proteínas Associadas a Pancreatite/metabolismo , Receptores de Melatonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/genética
11.
Nat Microbiol ; 5(2): 304-313, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907407

RESUMO

The microbiota primes immune defences but the identity of specific commensal microorganisms that protect against infection is unclear. Conversely, how pathogens compete with the microbiota to establish their host niche is also poorly understood. In the present study, we investigate the antagonism between the microbiota and Klebsiella pneumoniae during colonization and transmission. We discover that maturation of the microbiota drives the development of distinct immune defence programmes in the upper airways and intestine to limit K. pneumoniae colonization within these niches. Immune protection in the intestine depends on the development of Bacteroidetes, interleukin (IL)-36 signalling and macrophages. This effect of Bacteroidetes requires the polysaccharide utilization locus of their conserved commensal colonization factor. Conversely, in the upper airways, Proteobacteria prime immunity through IL-17A, but K. pneumoniae overcomes these defences through encapsulation to effectively colonize this site. Ultimately, we find that host-to-host spread of K. pneumoniae occurs principally from its intestinal reservoir, and that commensal-colonization-factor-producing Bacteroidetes are sufficient to prevent transmission between hosts through IL-36. Thus, our study provides mechanistic insight into when, where and how commensal Bacteroidetes protect against K. pneumoniae colonization and contagion, providing insight into how these protective microorganisms could be harnessed to confer population-level protection against K. pneumoniae infection.


Assuntos
Bacteroidetes/imunologia , Interleucina-1/imunologia , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae , Microbiota/imunologia , Animais , Animais Recém-Nascidos , Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Interleucina-17/imunologia , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/transmissão , Klebsiella pneumoniae/patogenicidade , Camundongos , Modelos Biológicos , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Transdução de Sinais/imunologia
12.
J Diabetes Complications ; 34(2): 107449, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31677982

RESUMO

AIM: The aim of this study was to determine and compare the levels of both Bacteroidetes and Firmicutes in the gut microbiota and TLR2/TLR4 gene expression in the blood of patients with type 1 diabetes mellitus (T1DM) and healthy individuals. These results may serve as a preliminary assessment to guide future research. METHOD: Between January and October 2014, stool and blood samples were collected from 53 adult T1DM patients and 53 age- and gender-matched healthy individuals. Bacteroidetes and Firmicutes levels were assessed from stool sample DNA and TLR2 and TLR4 expression levels were analyzed via qPCR using RNA from EDTA blood samples from both patients and healthy controls. RESULTS: The amounts of Bacteroidetes and Firmicutes were statistically significantly higher and lower, respectively, in the T1DM group than in the healthy control group (p < 0.001 and p < 0.001, respectively). In addition, the Firmicutes/Bacteroidetes ratios in patients with T1DM were significantly lower than in healthy controls. The TLR4 and TLR2 gene expression levels in T1DM patients were significantly upregulated and downregulated, respectively, compared to those in the control group. CONCLUSION: Our data are the first to show a relationship between T1DM and gut microbiota in our country. In addition, our results provide information about the connections between T1DM, gut microbiota, and TLR2 and TLR4 expression. We believe that Bacteroidetes and Firmicutes in the gut microbiota may play a role in the autoimmune process of T1DM and that these findings should be further investigated in the future.


Assuntos
Bacteroidetes/imunologia , Diabetes Mellitus Tipo 1 , Firmicutes/imunologia , Microbioma Gastrointestinal , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Adulto , Bacteroidetes/isolamento & purificação , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Feminino , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Turquia , Adulto Jovem
13.
Nature ; 575(7781): 224-228, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666699

RESUMO

The human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism1-3. Many members of the Gram-negative order Bacteroidales encode the type VI secretion system (T6SS), which facilitates the delivery of toxic effector proteins into adjacent cells4,5. Here we report the occurrence of acquired interbacterial defence (AID) gene clusters in Bacteroidales species that reside within the human gut microbiome. These clusters encode arrays of immunity genes that protect against T6SS-mediated intra- and inter-species bacterial antagonism. Moreover, the clusters reside on mobile elements, and we show that their transfer is sufficient to confer resistance to toxins in vitro and in gnotobiotic mice. Finally, we identify and validate the protective capability of a recombinase-associated AID subtype (rAID-1) that is present broadly in Bacteroidales genomes. These rAID-1 gene clusters have a structure suggestive of active gene acquisition and include predicted immunity factors of toxins derived from diverse organisms. Our data suggest that neutralization of contact-dependent interbacterial antagonism by AID systems helps to shape human gut microbiome ecology.


Assuntos
Bacteroidetes , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Interações Microbianas , Sistemas de Secreção Tipo VI/antagonistas & inibidores , Animais , Bacteroidetes/genética , Bacteroidetes/imunologia , Feminino , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/imunologia , Genes Bacterianos/genética , Humanos , Camundongos , Interações Microbianas/genética , Interações Microbianas/imunologia , Família Multigênica/genética , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/imunologia
14.
Front Immunol ; 10: 1772, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417552

RESUMO

The active form of vitamin D (1,25(OH)2D) suppresses experimental models of inflammatory bowel disease in part by regulating the microbiota. In this study, the role of vitamin D in the regulation of microbe induced RORγt/FoxP3+ T regulatory (reg) cells in the colon was determined. Vitamin D sufficient (D+) mice had significantly higher frequencies of FoxP3+ and RORγt/FoxP3+ T reg cells in the colon compared to vitamin D deficient (D-) mice. The higher frequency of RORγt/FoxP3+ T reg cells in D+ colon correlated with higher numbers of bacteria from the Clostridium XIVa and Bacteroides in D+ compared to D- cecum. D- mice with fewer RORγt/FoxP3+ T reg cells were significantly more susceptible to colitis than D+ mice. Transfer of the cecal bacteria from D+ or D- mice to germfree recipients phenocopied the higher numbers of RORγt/FoxP3+ cells and reduced susceptibility to colitis in D+ vs. D- recipient mice. 1,25(OH)2D treatment of the D- mice beginning at 3 weeks of age did not completely recover RORγt/FoxP3+ T reg cells or the Bacteriodes, Bacteriodes thetaiotaomicron, and Clostridium XIVa numbers to D+ values. Early vitamin D status shapes the microbiota to optimize the population of colonic RORγt/FoxP3+ T reg cells important for resistance to colitis.


Assuntos
Calcitriol/farmacologia , Colite , Colo , Microbioma Gastrointestinal , Linfócitos T Reguladores/imunologia , Animais , Bacteroidetes/imunologia , Clostridium/imunologia , Colite/imunologia , Colite/microbiologia , Colite/patologia , Colo/imunologia , Colo/microbiologia , Colo/patologia , Fatores de Transcrição Forkhead/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Linfócitos T Reguladores/patologia
15.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308086

RESUMO

As important players in the host defense system, commensal microbes and the microbiota influence multiple aspects of host physiology. Bordetella pertussis infection is highly contagious among humans. However, the roles of the microbiota in B. pertussis pathogenesis are poorly understood. Here, we show that antibiotic-mediated depletion of the microbiota results in increased susceptibility to B. pertussis infection during the early stage. The increased susceptibility was associated with a marked impairment of the systemic IgG, IgG2a, and IgG1 antibody responses to B. pertussis infection after antibiotic treatment. Furthermore, the microbiota impacted the short-lived plasma cell responses as well as the recall responses of memory B cells to B. pertussis infection. Finally, we found that the dysbiosis caused by antibiotic treatment affects CD4+ T cell generation and PD-1 expression on CD4+ T cells and thereby perturbs plasma cell differentiation. Our results have revealed the importance of commensal microbes in modulating host immune responses to B. pertussis infection and support the possibility of controlling the severity of B. pertussis infection in humans by manipulating the microbiota.


Assuntos
Bordetella pertussis/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade Humoral , Simbiose/imunologia , Coqueluche/imunologia , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/classificação , Bacteroidetes/classificação , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/imunologia , Bordetella pertussis/crescimento & desenvolvimento , Bordetella pertussis/patogenicidade , Disbiose/microbiologia , Disbiose/fisiopatologia , Feminino , Firmicutes/classificação , Firmicutes/efeitos dos fármacos , Firmicutes/crescimento & desenvolvimento , Firmicutes/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata , Imunoglobulina G/biossíntese , Imunoglobulina G/classificação , Metronidazol/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Neomicina/farmacologia , Proteobactérias/classificação , Proteobactérias/efeitos dos fármacos , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/imunologia , Simbiose/efeitos dos fármacos , Vancomicina/farmacologia , Coqueluche/microbiologia , Coqueluche/fisiopatologia
16.
Clin Exp Allergy ; 49(2): 227-238, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30312497

RESUMO

BACKGROUND: House dust mite (HDM) is the major source of indoor allergens that cause airway disease. Recent evidence suggests that Gram-negative/positive bacteria produce nano-sized extracellular vesicles (EVs) containing diverse components, including various immunostimulatory molecules. However, the association between bacteria-derived EVs and development of airway disease is unclear. OBJECTIVE: To identify and isolate HDM-derived EVs and to evaluate their effect on the development of airway inflammation. METHODS: Extracellular vesicles were isolated from crude HDM extracts by ultra-centrifugation, and their physical and immunological characteristics and roles in airway inflammation were tested in vitro and in murine models of airway inflammation. In addition, 16s metagenome analysis of nucleic acid from EVs was performed to identify their origin. RESULTS: Round, bilayered vesicles measuring 80-100 nanometres and containing abundant amounts of LPS were isolated. These vesicles induced innate immune responses both in vitro and in vivo. Intranasal exposure of naïve mice to HDM EVs induced production of cytokines associated with development of Th2-mediated and mixed (Th1-/Th2-/Th17-mediated) airway inflammation to allergen. Metagenome analysis identified Bacteroidetes and Proteobacteria as the probable sources of HDM EVs. CONCLUSION: House dust mite EVs originating from Gram-negative bacteria may play an important role on the development of airway inflammation.


Assuntos
Asma , Bacteroidetes , Vesículas Extracelulares , Proteobactérias , Pyroglyphidae , Linfócitos T Auxiliares-Indutores , Animais , Asma/metabolismo , Asma/microbiologia , Asma/patologia , Bacteroidetes/genética , Bacteroidetes/imunologia , Modelos Animais de Doenças , Vesículas Extracelulares/química , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/microbiologia , Metagenoma , Camundongos , Camundongos Knockout , Proteobactérias/genética , Proteobactérias/imunologia , Pyroglyphidae/química , Pyroglyphidae/imunologia , Pyroglyphidae/microbiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/patologia
17.
Mucosal Immunol ; 11(6): 1591-1605, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30115998

RESUMO

Human mucosal-associated invariant T (MAIT) cell receptors (TCRs) recognize bacterial riboflavin pathway metabolites through the MHC class 1-related molecule MR1. However, it is unclear whether MAIT cells discriminate between many species of the human microbiota. To address this, we developed an in vitro functional assay through human T cells engineered for MAIT-TCRs (eMAIT-TCRs) stimulated by MR1-expressing antigen-presenting cells (APCs). We then screened 47 microbiota-associated bacterial species from different phyla for their eMAIT-TCR stimulatory capacities. Only bacterial species that encoded the riboflavin pathway were stimulatory for MAIT-TCRs. Most species that were high stimulators belonged to Bacteroidetes and Proteobacteria phyla, whereas low/non-stimulator species were primarily Actinobacteria or Firmicutes. Activation of MAIT cells by high- vs low-stimulating bacteria also correlated with the level of riboflavin they secreted or after bacterial infection of macrophages. Remarkably, we found that human T-cell subsets can also present riboflavin metabolites to MAIT cells in a MR1-restricted fashion. This T-T cell-mediated signaling also induced IFNγ, TNF and granzyme B from MAIT cells, albeit at lower level than professional APC. These findings suggest that MAIT cells can discriminate and categorize complex human microbiota through computation of TCR signals depending on antigen load and presenting cells, and fine-tune their functional responses.


Assuntos
Bacteroidetes/imunologia , Macrófagos/imunologia , Microbiota/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Proteobactérias/imunologia , Riboflavina/metabolismo , Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Células Cultivadas , Engenharia Genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Macrófagos/microbiologia , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/microbiologia , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
18.
Appl Microbiol Biotechnol ; 102(21): 9317-9329, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30151605

RESUMO

Immune function is influenced by the diversity and stability of the intestinal microbiota. A likely trade-off of immune function for growth has been demonstrated in heavier breeds of poultry that have been genetically selected for growth and feed efficiency traits. We investigated the expression of selected innate immune genes and genes encoding products involved in intestinal barrier function to determine whether function changes could be consistently linked to the phenotypic expression of feed conversion ratio (FCR), a common measure of performance within poultry broiler flocks. In addition, we compared individual cecal microbial composition with innate immune gene expression. Samples were utilised from two replicate trials termed P1E1 and P1E2. High (n = 12) and low (n = 12) performing birds were selected based on their individual FCR data from each replicate and combined for microbiota phylogenetic composition and immune gene expression analysis. Toll-like receptor 1 (TLR1La) and zonula occludens 1 (ZO1) were differentially expressed between high- and low-performing broilers. Several taxa were correlated with FCR; of these, unclassified YS2 and ZO1 were also positively correlated with each other. Interactions between taxa and differentially expressed innate immune genes between P1E1 and P1E2 were much greater compared to relationships between high- and low-performing birds. At the level of phylum, reciprocal correlations between tight junction proteins and Toll-like receptors with Bacteroidetes and Firmicutes were evident, as were correlations at the genus level.


Assuntos
Ceco/imunologia , Ceco/microbiologia , Microbioma Gastrointestinal/imunologia , Imunidade Inata/genética , Intestinos/imunologia , Aves Domésticas/imunologia , Ração Animal/microbiologia , Animais , Bacteroidetes/imunologia , Dieta , Firmicutes/imunologia , Microbioma Gastrointestinal/genética , Expressão Gênica/genética , Expressão Gênica/imunologia , Imunidade Inata/imunologia , Intestinos/microbiologia , Filogenia , Aves Domésticas/genética , Aves Domésticas/microbiologia , Probióticos , Proteínas de Junções Íntimas/metabolismo , Receptores Toll-Like/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-29977866

RESUMO

Introduction: Compared to bovine formula (BF), breast milk (BM) has unique properties. In the newborn intestine, there is a homeostatic balance between the counterparts of the immune system, which allows a physiological inflammation, modulated by the gut microbiota. Many studies have attempted to understand the effect of BF vs. BM, and the changes in the gut microbiota, but few also focus on intestinal inflammation. Methods: We conducted a cohort study of newborn infants during their first 3 months. In stool samples taken at 1 and 3 months (timepoints T1 and T3), we quantified calprotectin, IL-8 and α1-antitrypsin by ELISA and we evaluated the expression of IL8 and IL1ß genes by RT-qPCR. To determine the microbiota composition, the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs). Results: In total 15 BM and 10 BF infants were enrolled. In the BM group, we found calprotectin and α1-antitrypsin levels were significantly elevated at T3 compared to T1; no differences were found between T1 and T3 in the BF group. A comparison between the BM and BF groups showed that calprotectin levels at T1 were lower in the BM than the BF group; this difference was not observed at T3. For IL-8 levels, we found no differences between groups. A gene expression analysis of the IL8 and IL1ß genes showed that infants from the BF group at T1 have a significantly increased expression of these markers compared to the BM group. Gut microbiota analyses revealed that the phylum Bacteroidetes was higher in BM than BF, whereas Firmicutes were higher in BF. A redundancy analysis and ANOVA showed BM has a community structure statistically different to BF at T1 but not at T3. Compared to BF, BM at T1 showed a higher representation of Enterococcus, Streptococcus, Enterobacter, Lactococcus, and Propionibacterium. Conclusions: We found a basal state of inflammation in the infants' intestine based on inflammation markers. One month after birth, infants receiving BF exhibited higher levels of inflammation compared to BM.


Assuntos
Fórmulas Infantis/microbiologia , Inflamação/microbiologia , Intestinos/microbiologia , Microbiota/imunologia , Leite Humano/microbiologia , Bacteroidetes/genética , Bacteroidetes/imunologia , Chile , Estudos de Coortes , Firmicutes/genética , Firmicutes/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/microbiologia , Lactente , Recém-Nascido , Inflamação/imunologia , Inflamação/patologia , Intestinos/imunologia , Intestinos/patologia , Complexo Antígeno L1 Leucocitário/análise , Microbiota/genética , alfa 1-Antitripsina/análise
20.
J Autoimmun ; 93: 57-65, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29960834

RESUMO

The incidence of type 1 diabetes (T1D) is determined by both genetic and environmental factors. In recent years, the gut microbiota have been identified to be an important environmental factor that could modify diabetes susceptibility. We have previously shown that Myeloid differentiation primary response gene 88 (MyD88), a major adaptor protein downstream of most innate immune Toll-like receptor (TLR) signaling, is important for mediating diabetes susceptibility in the non-obese diabetic (NOD) mouse model of human T1D. Here we report the role of TIR-domain-containing adapter-inducing interferon-ß (TRIF) in T1D development, as TRIF is an important adaptor protein downstream of TLR3 and TLR4 signaling. We found that TRIF-deficient (TRIF-/-) NOD mice were protected from development of diabetes, but only when housed with TRIF-deficient (TRIF-/-) NOD mice. When housed with TRIF-sufficient wild type (WT, i.e., TRIF+/+) NOD mice, the mice developed diabetes. We further investigated the gut microbiota as a potential cause for the altered diabetes development. Interestingly, TRIF-/-NOD mice had a different microbiota composition compared to WT NOD mice, only if they were housed with TRIF-/-NOD mice. However, the composition of gut microbiota in the TRIF-/-NOD mice was indistinguishable from WT NOD mice, if they were housed with WT NOD mice. The difference in the gut microbiota in TRIF-/-NOD mice, due to cohousing, accorded with the diabetes development in TRIF-/-NOD mice. Comparing the gut microbiota in TRIF-/- and WT NOD mice, we identified changes in percentage of Sutterella, Rikenella and Turicibacter species. Moreover, bacteria from WT NOD mice induced significantly stronger inflammatory immune responses in vitro compared to those from TRIF-/-NOD mice. Further immunological analysis revealed impaired function of dendritic cells and reduced T cell activation and proliferation in TRIF-/-NOD mice. Our data show that TRIF-deficiency protects NOD mice from diabetes development through alteration of the gut microbiota and reduced immune cell activation; however, that protection is over-ridden upon exposure to WT NOD bacteria. Therefore exposure to different microbiota can modify disease susceptibility determined by genetic factors related to innate immunity.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/microbiologia , Microbioma Gastrointestinal/imunologia , Fator 88 de Diferenciação Mieloide/genética , Linfócitos T/imunologia , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Transferência Adotiva , Animais , Bacteroidetes/imunologia , Burkholderiales/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Células Dendríticas/patologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Suscetibilidade a Doenças , Feminino , Firmicutes/imunologia , Regulação da Expressão Gênica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais , Linfócitos T/patologia , Linfócitos T/transplante , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...