Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 206: 136-149, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36334646

RESUMO

Nei Like DNA Glycosylase 1 (NEIL1) is a DNA glycosylase, which specifically processes oxidative DNA damage by initiating base excision repair. NEIL1 recognizes and removes bases, primarily oxidized pyrimidines, which have been damaged by endogenous oxidation or exogenous mutagenic agents. NEIL1 functions through a combined glycosylase/AP (apurinic/apyrimidinic)-lyase activity, whereby it cleaves the N-glycosylic bond between the DNA backbone and the damaged base via its glycosylase activity and hydrolysis of the DNA backbone through beta-delta elimination due to its AP-lyase activity. In our study we investigated our hypothesis proposing that the cancer resistance of the bowhead whale can be associated with a better DNA repair with NEIL1 being upregulated or more active. Here, we report the molecular cloning and characterization of three transcript variants of bowhead whale NEIL1 of which two were homologous to human transcripts. In addition, a novel NEIL1 transcript variant was found. A differential expression of NEIL mRNA was detected in bowhead eye, liver, kidney, and muscle. The A-to-I editing of NEIL1 mRNA was shown to be conserved in the bowhead and two adenosines in the 242Lys codon were subjected to editing. A mass spectroscopy analysis of liver and eye tissue failed to demonstrate the existence of a NEIL1 isoform originating from RNA editing. Recombinant bowhead and human NEIL1 were expressed in E. coli and assayed for enzymatic activity. Both bowhead and human recombinant NEIL1 catalyzed, with similar efficiency, the removal of a 5-hydroxyuracil lesion in a DNA bubble structure. Hence, these results do not support our hypothesis but do not refute the hypothesis either.


Assuntos
Baleia Franca , DNA Glicosilases , Proteínas de Escherichia coli , Liases , Animais , Humanos , Baleia Franca/genética , Baleia Franca/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Reparo do DNA , DNA Glicosilases/genética , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Clonagem Molecular , DNA , RNA Mensageiro , Liases/metabolismo , Proteínas de Escherichia coli/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36122931

RESUMO

Multiple observations that organismal life span can be extended by nutritional, genetic, or pharmacological intervention has raised the prospect of transforming medicine with the goal of slowing, stopping, or even reversing age-associated disease and maintaining or restoring health and resilience in the increasing numbers of elderly across the world. The potential for such an enterprise is supported in theory by plant and animal models of negligible senescence, most notably the small, freshwater organism Hydra spp. The existence of some very long-lived species, including bowhead whale, Greenland shark, and giant tortoises, suggests that increased healthy life spans in humans, significantly higher than the current known maximum life span of about 120 years, may be possible. Here we discuss the biological restraints on human life extension based on the evolutionary basis of aging and our current genetic and molecular insights into the processes responsible for age-related loss of function and increased disease risk.


Assuntos
Envelhecimento , Baleia Franca , Animais , Humanos , Idoso , Longevidade/genética , Evolução Biológica , Baleia Franca/genética
3.
Sci Rep ; 12(1): 6118, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414162

RESUMO

The East Greenland-Svalbard-Barents Sea (EGSB) bowhead whale stock (Balaena mysticetus) was hunted to near extinction and remains Endangered on the International Union of Conservation of Nature Red List. The intense, temporally extensive hunting pressure may have left the population vulnerable to other perturbations, such as environmental change. However, the lack of genomic baseline data renders it difficult to evaluate the impacts of various potential stressors on this stock. Twelve EGSB bowhead whales sampled in 2017/2018 were re-sequenced and mapped to a previously published draft genome. All individuals were unrelated and void of significant signs of inbreeding, with similar observed and expected homo- and heterozygosity levels. Despite the small population size, mean autosome-wide heterozygosity was 0.00102, which is higher than that of most mammals for which comparable estimates are calculated using the same parameters, and three times higher than a conspecific individual from the Eastern-Canada-West-Greenland bowhead whale stock. Demographic history analyses indicated a continual decrease of Ne from ca. 1.5 million to ca. 250,000 years ago, followed by a slight increase until ca. 100,000 years ago, followed by a rapid decrease in Ne between 50,000 and 10,000 years ago. These estimates are lower than previously suggested based on mitochondrial DNA, but suggested demographic patterns over time are similar.


Assuntos
Baleia Franca , Animais , Baleia Franca/genética , Svalbard
4.
PLoS One ; 16(12): e0260081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34882682

RESUMO

RNA editing is a post-transcriptional process in which nucleotide changes are introduced into an RNA sequence, many of which can contribute to proteomic sequence variation. The most common type of RNA editing, contributing to nearly 99% of all editing events in RNA, is A-to-I (adenosine-to-inosine) editing mediated by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. A-to-I editing at 'recoding' sites results in non-synonymous substitutions in protein-coding sequences. Here, we present studies of the conservation of A-to-I editing in selected mRNAs between pigs, bowhead whales, humans and two shark species. All examined mRNAs-NEIL1, COG3, GRIA2, FLNA, FLNB, IGFBP7, AZIN1, BLCAP, GLI1, SON, HTR2C and ADAR2 -showed conservation of A-to-I editing of recoding sites. In addition, novel editing sites were identified in NEIL1 and GLI1 in bowhead whales. The A-to-I editing site of human NEIL1 in position 242 was conserved in the bowhead and porcine homologues. A novel editing site was discovered in Tyr244. Differential editing was detected at the two adenosines in the NEIL1 242 codon in both pig and bowhead NEIL1 mRNAs in various tissues and organs. No conservation of editing of KCNB1 and EEF1A mRNAs was seen in bowhead whales. In silico analyses revealed conservation of five adenosines in ADAR2, some of which are subject to A-to-I editing in bowheads and pigs, and conservation of a regulatory sequence in GRIA2 mRNA that is responsible for recognition of the ADAR editing enzyme.


Assuntos
Baleia Franca/genética , Edição de RNA , RNA Mensageiro/metabolismo , Suínos/genética , Adenosina/metabolismo , Animais , DNA Glicosilases/genética , Inosina/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Canais de Potássio Shab/genética , Proteína GLI1 em Dedos de Zinco/genética
5.
J Comp Neurol ; 529(9): 2376-2390, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33377221

RESUMO

The cetacean visual system is a product of selection pressures favoring underwater vision, yet relatively little is known about it across taxa. Previous studies report several mutations in the opsin genetic sequence in cetaceans, suggesting the evolutionary complete or partial loss of retinal cone photoreceptor function in mysticete and odontocete lineages, respectively. Despite this, limited anatomical evidence suggests cone structures are partially maintained but with absent outer and inner segments in the bowhead retina. The functional consequence and anatomical distributions associated with these unique cone morphologies remain unclear. The current study further investigates the morphology and distribution of cone photoreceptors in the bowhead whale and beluga retina and evaluates the potential functional capacity of these cells' alternative to photoreception. Refined histological and advanced microscopic techniques revealed two additional cone morphologies in the bowhead and beluga retina that have not been previously described. Two proteins involved in magnetosensation were present in these cone structures suggesting the possibility for an alternative functional role in responding to changes in geomagnetic fields. These findings highlight a revised understanding of the unique evolution of cone and gross retinal anatomy in cetaceans, and provide prefatory evidence of potential functional reassignment of these cells.


Assuntos
Beluga/metabolismo , Evolução Biológica , Baleia Franca/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Beluga/genética , Baleia Franca/genética , Bovinos , Cervos , Células Fotorreceptoras Retinianas Cones/química , Especificidade da Espécie , Suínos
6.
Semin Cell Dev Biol ; 70: 190-203, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28800931

RESUMO

Much of the current research on longevity focuses on the aging process within a single species. Several molecular players (e.g. IGF1 and MTOR), pharmacological compounds (e.g. rapamycin and metformin), and dietary approaches (e.g. calorie restriction and methionine restriction) have been shown to be important in regulating and modestly extending lifespan in model organisms. On the other hand, natural lifespan varies much more significantly across species. Within mammals alone, maximum lifespan differs more than 100 fold, but the underlying regulatory mechanisms remain poorly understood. Recent comparative studies are beginning to shed light on the molecular signatures associated with exceptional longevity. These include genome sequencing of microbats, naked mole rat, blind mole rat, bowhead whale and African turquoise killifish, and comparative analyses of gene expression, metabolites, lipids and ions across multiple mammalian species. Together, they point towards several putative strategies for lifespan regulation and cancer resistance, as well as the pathways and metabolites associated with longevity variation. In particular, longevity may be achieved by both lineage-specific adaptations and common mechanisms that apply across the species. Comparing the resulting cross-species molecular signatures with the within-species lifespan extension strategies will improve our understanding of mechanisms of longevity control and provide a starting point for novel and effective interventions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genoma , Longevidade/genética , Metaboloma , Transcriptoma , Animais , Baleia Franca/genética , Baleia Franca/crescimento & desenvolvimento , Baleia Franca/metabolismo , Restrição Calórica , Quirópteros/genética , Quirópteros/crescimento & desenvolvimento , Quirópteros/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Peixes Listrados/genética , Peixes Listrados/crescimento & desenvolvimento , Peixes Listrados/metabolismo , Longevidade/efeitos dos fármacos , Metformina/farmacologia , Metionina/deficiência , Ratos-Toupeira/genética , Ratos-Toupeira/crescimento & desenvolvimento , Ratos-Toupeira/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
Dokl Biol Sci ; 477(1): 236-238, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29299808

RESUMO

Abundance of 388 ± 108 whales for the Okhotsk Sea bowhead whale population based on individual genotyping was estimated using the capture-recapture method for the open population model. The data demonstrate that this endangered population shows no signs of recovery.


Assuntos
Baleia Franca/genética , Espécies em Perigo de Extinção/estatística & dados numéricos , Animais , Baleia Franca/fisiologia , Genótipo , Sibéria
8.
Nat Commun ; 7: 13389, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824339

RESUMO

The demographic history of Greenland is characterized by recurrent migrations and extinctions since the first humans arrived 4,500 years ago. Our current understanding of these extinct cultures relies primarily on preserved fossils found in their archaeological deposits, which hold valuable information on past subsistence practices. However, some exploited taxa, though economically important, comprise only a small fraction of these sub-fossil assemblages. Here we reconstruct a comprehensive record of past subsistence economies in Greenland by sequencing ancient DNA from four well-described midden deposits. Our results confirm that the species found in the fossil record, like harp seal and ringed seal, were a vital part of Inuit subsistence, but also add a new dimension with evidence that caribou, walrus and whale species played a more prominent role for the survival of Paleo-Inuit cultures than previously reported. Most notably, we report evidence of bowhead whale exploitation by the Saqqaq culture 4,000 years ago.


Assuntos
Baleia Franca/genética , DNA/genética , Inuíte , Animais , Arqueologia , Biodiversidade , Dano ao DNA , DNA de Plantas/genética , Fósseis , Geografia , Sedimentos Geológicos , Groenlândia , Helmintos/classificação , Humanos , Análise de Sequência de DNA , Fatores de Tempo
9.
Cell Rep ; 10(1): 112-22, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25565328

RESUMO

The bowhead whale (Balaena mysticetus) is estimated to live over 200 years and is possibly the longest-living mammal. These animals should possess protective molecular adaptations relevant to age-related diseases, particularly cancer. Here, we report the sequencing and comparative analysis of the bowhead whale genome and two transcriptomes from different populations. Our analysis identifies genes under positive selection and bowhead-specific mutations in genes linked to cancer and aging. In addition, we identify gene gain and loss involving genes associated with DNA repair, cell-cycle regulation, cancer, and aging. Our results expand our understanding of the evolution of mammalian longevity and suggest possible players involved in adaptive genetic changes conferring cancer resistance. We also found potentially relevant changes in genes related to additional processes, including thermoregulation, sensory perception, dietary adaptations, and immune response. Our data are made available online (http://www.bowhead-whale.org) to facilitate research in this long-lived species.


Assuntos
Baleia Franca/genética , Evolução Molecular , Longevidade/genética , Animais , Genoma , Humanos , Seleção Genética , Análise de Sequência de DNA
10.
Aging (Albany NY) ; 6(10): 879-99, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25411232

RESUMO

Mammals vary dramatically in lifespan, by at least two-orders of magnitude, but the molecular basis for this difference remains largely unknown. The bowhead whale Balaena mysticetus is the longest-lived mammal known, with an estimated maximal lifespan in excess of two hundred years. It is also one of the two largest animals and the most cold-adapted baleen whale species. Here, we report the first genome-wide gene expression analyses of the bowhead whale, based on the de novo assembly of its transcriptome. Bowhead whale or cetacean-specific changes in gene expression were identified in the liver, kidney and heart, and complemented with analyses of positively selected genes. Changes associated with altered insulin signaling and other gene expression patterns could help explain the remarkable longevity of bowhead whales as well as their adaptation to a lipid-rich diet. The data also reveal parallels in candidate longevity adaptations of the bowhead whale, naked mole rat and Brandt's bat. The bowhead whale transcriptome is a valuable resource for the study of this remarkable animal, including the evolution of longevity and its important correlates such as resistance to cancer and other diseases.


Assuntos
Adaptação Fisiológica/genética , Baleia Franca/genética , Longevidade/genética , Transcriptoma , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de RNA
11.
Genetika ; 50(4): 452-63, 2014 Apr.
Artigo em Russo | MEDLINE | ID: mdl-25715447

RESUMO

The results of molecular genetic analysis (full-length sequences of the cytochrome b gene and mtDNA control region and the allelic composition of 14 microsatellite loci) of 65 tissue samples from the endangered bowhead whale (Balaena mysticetus) population in the Sea of Okhotsk are presented. The data obtained enable the suggestion that the current state of the Sea of Okhotsk bowhead whale population is rather stable.


Assuntos
Baleia Franca/genética , Citocromos b/genética , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Animais , Sequência de Bases , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Oceanos e Mares
12.
Nat Commun ; 4: 1677, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23575681

RESUMO

The climatic changes of the glacial cycles are thought to have been a major driver of population declines and species extinctions. However, studies to date have focused on terrestrial fauna and there is little understanding of how marine species responded to past climate change. Here we show that a true Arctic species, the bowhead whale (Balaena mysticetus), shifted its range and tracked its core suitable habitat northwards during the rapid climate change of the Pleistocene-Holocene transition. Late Pleistocene lineages survived into the Holocene and effective female population size increased rapidly, concurrent with a threefold increase in core suitable habitat. This study highlights that responses to climate change are likely to be species specific and difficult to predict. We estimate that the core suitable habitat of bowhead whales will be almost halved by the end of this century, potentially influencing future population dynamics.


Assuntos
Baleia Franca/genética , Mudança Climática , DNA/genética , Ecossistema , Animais , Modelos Teóricos
13.
Mol Ecol ; 16(11): 2223-35, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17561886

RESUMO

Bowhead whales (Balaena mysticetus) are distributed in the Arctic in five putative stocks. All stocks have been heavily depleted due to centuries of exploitation. In the present study, nucleotide sequence variation of the mitochondrial control region was determined from bone remains of 99 bowhead whales. The bones, 14C dated from recent to more than 50,000 bp, were collected on Svalbard (Spitsbergen) and are expected to relate to ancestors of the today nearly extinct Spitsbergen stock. Fifty-eight haplotypes were found, a few being frequent but many only found in one individual. The most abundant haplotypes of the Spitsbergen stock are the same as those most abundant in the extant Bering-Chukchi-Beaufort (BCB) Seas stock of bowhead whales. Although F(ST) indicates a slight but statistically significant genetic differentiation between the Spitsbergen and the BCB stocks this was not considered informative due to the very high levels of genetic diversity of mitochondrial DNA haplotypes in both bowhead whale stocks. Other measures such as K(ST) also indicated very low genetic differentiation between the two populations. Nucleotide diversity and haplotype diversity showed only minor differences between the Spitsbergen and BCB stocks. The data suggest that the historic Spitsbergen stock--before the severe bottleneck caused by whaling--did not have substantially more genetic variation than the extant BCB stock. The similar haplotypes of the Holocene Svalbard samples and the current BCB stock indicate significant migration between these two stocks and question the current designation of five distinct stocks of bowhead whales in the Arctic.


Assuntos
Baleia Franca/genética , Variação Genética , Animais , DNA Mitocondrial/genética , Evolução Molecular , Haplótipos , Dados de Sequência Molecular , Análise de Sequência de DNA , Svalbard
14.
Mol Ecol ; 16(10): 1993-2004, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17498227

RESUMO

We develop a general framework for analysing and testing genetic structure within a migratory assemblage that is based on measures of genetic differences between individuals. We demonstrate this method using microsatellite DNA data from the Bering-Chukchi-Beaufort stock of bowhead whales (Balaena mysticetus), sampled via Inuit hunting during the spring and autumn migration off Barrow, Alaska. This study includes a number of covariates such as whale ages and the time separation between captures. Applying the method to a sample of 117 bowhead whales, we use permutation methods to test for temporal trends in genetic differences that can be ascribed to age-related effects or to timing of catches during the seasons. The results reveal a pattern with elevated genetic differences among whales caught about a week apart, and are statistically significant for the autumn migration. In contrast, we find no effects of time of birth or age-difference on genetic differences. We discuss possible explanations for the results, including population substructuring, demographic consequences of historical overexploitation, and social structuring during migration.


Assuntos
Migração Animal , Baleia Franca/genética , Variação Genética , Genética Populacional , Fatores Etários , Alaska , Animais , Análise por Conglomerados , Repetições de Microssatélites/genética , Modelos Genéticos , Oceanos e Mares , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...