Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 11(10): 2927-2940, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518388

RESUMO

Increased copy number of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene confers resistance to glyphosate, the world's most-used herbicide. There are typically three to eight EPSPS copies arranged in tandem in glyphosate-resistant populations of the weed kochia (Kochia scoparia). Here, we report a draft genome assembly from a glyphosate-susceptible kochia individual. Additionally, we assembled the EPSPS locus from a glyphosate-resistant kochia plant by sequencing select bacterial artificial chromosomes from a kochia bacterial artificial chromosome library. Comparing the resistant and susceptible EPSPS locus allowed us to reconstruct the history of duplication in the structurally complex EPSPS locus and uncover the genes that are coduplicated with EPSPS, several of which have a corresponding change in transcription. The comparison between the susceptible and resistant assemblies revealed two dominant repeat types. Additionally, we discovered a mobile genetic element with a FHY3/FAR1-like gene predicted in its sequence that is associated with the duplicated EPSPS gene copies in the resistant line. We present a hypothetical model based on unequal crossing over that implicates this mobile element as responsible for the origin of the EPSPS gene duplication event and the evolution of herbicide resistance in this system. These findings add to our understanding of stress resistance evolution and provide an example of rapid resistance evolution to high levels of environmental stress.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia/genética , Duplicação Gênica , Glicina/análogos & derivados , Herbicidas , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/enzimologia , Elementos de DNA Transponíveis , Resistência a Medicamentos/genética , Evolução Molecular , Expressão Gênica , Glifosato
2.
PLoS One ; 14(5): e0216116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31063467

RESUMO

Mutations that confer herbicide resistance are a primary concern for herbicide-based chemical control of invasive plants and are often under-characterized structurally and functionally. As the outcome of selection pressure, resistance mutations usually result from repeated long-term applications of herbicides with the same mode of action and are discovered through extensive field trials. Here we used acetohydroxyacid synthase (AHAS) of Kochia scoparia (KsAHAS) as an example to demonstrate that, given the sequence of a target protein, the impact of genetic mutations on ligand binding could be evaluated and resistance mutations could be identified using a biophysics-based computational approach. Briefly, the 3D structures of wild-type (WT) and mutated KsAHAS-herbicide complexes were constructed by homology modeling, docking and molecular dynamics simulation. The resistance profile of two AHAS-inhibiting herbicides, tribenuron methyl and thifensulfuron methyl, was obtained by estimating their binding affinity with 29 KsAHAS (1 WT and 28 mutated) using 6 molecular mechanical (MM) and 18 hybrid quantum mechanical/molecular mechanical (QM/MM) methods in combination with three structure sampling strategies. By comparing predicted resistance with experimentally determined resistance in the 29 biotypes of K. scoparia field populations, we identified the best method (i.e., MM-PBSA with single structure) out of all tested methods for the herbicide-KsAHAS system, which exhibited the highest accuracy (up to 100%) in discerning mutations conferring resistance or susceptibility to the two AHAS inhibitors. Our results suggest that the in silico approach has the potential to be widely adopted for assessing mutation-endowed herbicide resistance on a case-by-case basis.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/genética , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/genética , Inibidores Enzimáticos/farmacologia , Resistência a Herbicidas/genética , Mutação/genética , Simulação por Computador , Herbicidas/farmacologia
3.
Planta ; 249(6): 1837-1849, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30850862

RESUMO

MAIN CONCLUSION: Glufosinate is primarily toxic to plants due to a massive light-dependent generation of reactive oxygen species rather than ammonia accumulation or carbon assimilation inhibition. Glutamine synthetase (GS) plays a key role in plant nitrogen metabolism and photorespiration. Glufosinate (C5H12NO4P) targets GS and causes catastrophic consequences leading to rapid plant cell death, and the causes for phytoxicity have been attributed to ammonia accumulation and carbon assimilation restriction. This study aimed to examine the biochemical and physiological consequences of GS inhibition to identify the actual cause for rapid phytotoxicity. Monocotyledonous and dicotyledonous species with different forms of carbon assimilation (C3 versus C4) were selected as model plants. Glufosinate sensitivity was proportional to the uptake of herbicide between species. Herbicide uptake also correlated with the level of GS inhibition and ammonia accumulation in planta even with all species having the same levels of enzyme sensitivity in vitro. Depletion of both glutamine and glutamate occurred in glufosinate-treated leaves; however, amino acid starvation would be expected to cause a slow plant response. Ammonia accumulation in response to GS inhibition, often reported as the driver of glufosinate phytotoxicity, occurred in all species, but did not correlate with either reductions in carbon assimilation or cell death. This is supported by the fact that plants can accumulate high levels of ammonia but show low inhibition of carbon assimilation and absence of phytotoxicity. Glufosinate-treated plants showed a massive light-dependent generation of reactive oxygen species, followed by malondialdehyde accumulation. Consequently, we propose that glufosinate is toxic to plants not because of ammonia accumulation nor carbon assimilation inhibition, but the production of reactive oxygen species driving the catastrophic lipid peroxidation of the cell membranes and rapid cell death.


Assuntos
Amaranthus/efeitos dos fármacos , Aminobutiratos/toxicidade , Bassia scoparia/efeitos dos fármacos , Herbicidas/toxicidade , Poaceae/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Amaranthus/metabolismo , Amaranthus/efeitos da radiação , Aminobutiratos/efeitos da radiação , Amônia/metabolismo , Bassia scoparia/metabolismo , Bassia scoparia/efeitos da radiação , Carbono/metabolismo , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Glutamato-Amônia Ligase/antagonistas & inibidores , Herbicidas/efeitos da radiação , Luz , Peroxidação de Lipídeos/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/antagonistas & inibidores , Poaceae/metabolismo , Poaceae/efeitos da radiação , Espécies Reativas de Oxigênio/efeitos da radiação
4.
Proc Natl Acad Sci U S A ; 115(13): E2911-E2920, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531066

RESUMO

The understanding and mitigation of the appearance of herbicide-resistant weeds have come to the forefront of study in the past decade, as the number of weed species that are resistant to one or more herbicide modes of action is on the increase. Historically, weed resistance to auxin herbicides has been rare, but examples, such as Kochia scoparia L. Schrad (kochia), have appeared, posing a challenge to conventional agricultural practices. Reports of dicamba-resistant kochia populations began in the early 1990s in areas where auxin herbicides were heavily utilized for weed control in corn and wheat cropping systems, and some biotypes are resistant to other auxin herbicides as well. We have further characterized the auxin responses of one previously reported dicamba-resistant biotype isolated from western Nebraska and found that it is additionally cross-resistant to other auxin herbicides, including 2,4-dichlorophenoxyacetic acid (2,4-D) and fluroxypyr. We have utilized transcriptome sequencing and comparison to identify a 2-nt base change in this biotype, which results in a glycine to asparagine amino acid change within a highly conserved region of an AUX/indole-3-acetic acid (IAA) protein, KsIAA16. Through yeast two-hybrid analysis, characterization of F2 segregation, and heterologous expression and characterization of the gene in Arabidopsis thaliana, we show that that the single dominant KsIAA16R resistance allele is the causal basis for dicamba resistance in this population. Furthermore, we report the development of a molecular marker to identify this allele in populations and facilitate inheritance studies. We also report that the resistance allele confers a fitness penalty in greenhouse studies.


Assuntos
Bassia scoparia/fisiologia , Dicamba/farmacologia , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , Proteínas de Plantas/genética , Ácido 2,4-Diclorofenoxiacético/farmacologia , Acetatos/farmacologia , Arabidopsis/genética , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Plantas Daninhas , Piridinas/farmacologia
5.
Sci Rep ; 8(1): 5330, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593313

RESUMO

Kochia scoparia is a troublesome weed across the Great Plains of North America. Glyphosate and dicamba have been used for decades to control K. scoparia. Due to extensive selection, glyphosate- and dicamba-resistant (GDR) K. scoparia have evolved in the USA. Herbicide mixtures are routinely used to improve weed control. Herbicide interactions if result in an antagonistic effect can significantly affect the management of weeds, such as K. scoparia. To uncover the interaction of glyphosate and dicamba when applied in combination in K. scoparia management the efficacies of different doses of glyphosate plus dicamba were evaluated under greenhouse and field conditions using GDR and a known glyphosate- and dicamba-susceptible (GDS) K. scoparia. The results of greenhouse and field studies suggest that the combination of glyphosate and dicamba application controlled GDS, but glyphosate alone provided a better control of GDR K. scoparia compared to glyphosate plus dicamba combinations. Furthermore, investigation of the basis of this response suggested glyphosate and dicamba interact antagonistically and consequently, the translocation of both herbicides was significantly reduced resulting in poor control of K. scoparia. Therefore, a combination of glyphosate plus dicamba may not be a viable option to control GDR K. scoparia.


Assuntos
Bassia scoparia/metabolismo , Dicamba/metabolismo , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/metabolismo , Desenvolvimento Vegetal , Bassia scoparia/efeitos dos fármacos , Transporte Biológico , Isótopos de Carbono/metabolismo , Dicamba/farmacologia , Relação Dose-Resposta a Droga , Glicina/metabolismo , Herbicidas/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Controle de Plantas Daninhas , Glifosato
6.
Pest Manag Sci ; 74(5): 1134-1142, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-27766747

RESUMO

BACKGROUND: Plant growth temperature is one of the important factors that can influence postemergent herbicide efficacy and impact weed control. Control of kochia (Kochia scoparia), a major broadleaf weed throughout the North American Great Plains, often is unsatisfactory when either glyphosate or dicamba are applied on hot summer days. We tested effects of plant growth temperature on glyphosate and dicamba phytotoxicity on two Kansas kochia populations (P1 and P2) grown under the following three day/night (d/n) temperature regimes: T1, 17.5/7.5°C; T2, 25/15°C; and T3, 32.5/22.5°C. RESULTS: Visual injury and above-ground dry biomass data from herbicide dose-response experiments indicated greater susceptibility to both glyphosate and dicamba when kochia was grown under the two cooler temperature regimes, i.e. T1 and T2. At T1, the ED50 of P1 and P2 kochia were 39 and 36 g ha-1 of glyphosate and 52 and 105 g ha-1 of dicamba, respectively. In comparison, at T3 the ED50 increased to 173 and 186 g ha-1 for glyphosate and 106 and 410 g ha-1 for dicamba, respectively, for P1 and P2. We also investigated the physiological basis of decreased glyphosate and dicamba efficacy under elevated temperatures. Kochia absorbed more glyphosate at T1 and T2 compared to T3. Conversely, there was more dicamba translocated towards meristems at T1 and T2, compared to T3. CONCLUSION: Reduced efficacy of dicamba or glyphosate to control kochia under elevated temperatures can be attributed to decreased absorption and translocation of glyphosate and dicamba, respectively. Therefore, it is recommended to apply glyphosate or dicamba when the temperature is low (e.g. d/n temperature at 25/15°C) and seedlings are small (less than 12 cm) to maximize kochia control. © 2016 Society of Chemical Industry.


Assuntos
Bassia scoparia/efeitos dos fármacos , Dicamba/farmacologia , Glicina/análogos & derivados , Herbicidas/farmacologia , Controle de Plantas Daninhas , Relação Dose-Resposta a Droga , Glicina/farmacologia , Resistência a Herbicidas , Temperatura Alta , Glifosato
7.
Pest Manag Sci ; 74(10): 2306-2315, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29083527

RESUMO

BACKGROUND: Resistance to the synthetic auxin herbicide dicamba is increasingly problematic in Kochia scoparia. The resistance mechanism in an inbred dicamba-resistant K. scoparia line (9425R) was investigated using physiological and transcriptomics (RNA-Seq) approaches. RESULTS: No differences were found in dicamba absorption or metabolism between 9425R and a dicamba-susceptible line, but 9425R was found to have significantly reduced dicamba translocation. Known auxin-responsive genes ACC synthase (ACS) and indole-3-acetic acid amino synthetase (GH3) were transcriptionally induced following dicamba treatment in dicamba-susceptible K. scoparia but not in 9425R. Chalcone synthase (CHS), the gene regulating synthesis of the flavonols quertecin and kaemperfol, was found to have twofold higher transcription in 9425R both without and 12 h after dicamba treatment. Increased CHS transcription co-segregated with dicamba resistance in a forward genetics screen using an F2 population. CONCLUSION: Prior work has shown that the flavonols quertecin and kaemperfol compete with auxin for intercellular movement and vascular loading via ATP-binding cassette subfamily B (ABCB) membrane transporters. The results of this study support a model in which constitutively increased CHS expression in the meristem produces more flavonols that would compete with dicamba for intercellular transport by ABCB transporters, resulting in reduced dicamba translocation. © 2017 Society of Chemical Industry.


Assuntos
Aciltransferases/genética , Bassia scoparia/efeitos dos fármacos , Dicamba/farmacologia , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Proteínas de Plantas/genética , Aciltransferases/metabolismo , Bassia scoparia/enzimologia , Bassia scoparia/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/enzimologia , Plantas Daninhas/genética
8.
J Hered ; 109(2): 117-125, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29040588

RESUMO

One of the increasingly widespread mechanisms of resistance to the herbicide glyphosate is copy number variation (CNV) of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. EPSPS gene duplication has been reported in 8 weed species, ranging from 3 to 5 extra copies to more than 150 extra copies. In the case of Palmer amaranth (Amaranthus palmeri), a section of >300 kb containing EPSPS and many other genes has been replicated and inserted at new loci throughout the genome, resulting in significant increase in total genome size. The replicated sequence contains several classes of mobile genetic elements including helitrons, raising the intriguing possibility of extra-chromosomal replication of the EPSPS-containing sequence. In kochia (Kochia scoparia), from 3 to more than 10 extra EPSPS copies are arranged as a tandem gene duplication at one locus. In the remaining 6 weed species that exhibit EPSPS gene duplication, little is known about the underlying mechanisms of gene duplication or their entire sequence. There is mounting evidence that adaptive gene amplification is an important mode of evolution in the face of intense human-mediated selection pressure. The convergent evolution of CNVs for glyphosate resistance in weeds, through at least 2 different mechanisms, may be indicative of a more general importance for this mechanism of adaptation in plants. CNVs warrant further investigation across plant functional genomics for adaptation to biotic and abiotic stresses, particularly for adaptive evolution on rapid time scales.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Evolução Molecular , Duplicação Gênica , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/antagonistas & inibidores , Amaranthus/efeitos dos fármacos , Amaranthus/genética , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/genética , Amplificação de Genes , Genes de Plantas , Glicina/farmacologia , Plantas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/genética , Glifosato
9.
Plant Sci ; 261: 69-79, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28554695

RESUMO

Glyphosate is considered the world's most important herbicide, but widespread and continual use has resulted in the evolution of resistance. Kochia scoparia (kochia) has evolved resistance via tandem gene amplification of glyphosate's target, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and resistant populations have been reported from the Canadian Prairies and the Northern Great Plains. Here, we evaluated the fitness costs of EPSPS amplification in kochia by comparing susceptible and resistant full siblings from segregating F2 populations generated from within six populations. Kochia was expected to be highly diverse because of strong gene flow; however, six of the seven field-collected parents with higher EPSPS copy number were homozygous. Under competitive greenhouse conditions, the EPSPS type of the line's maternal parent showed persistent effects: delayed emergence, delayed flowering, and reductions in viable seed count and weight overall. High EPSPS copy number individuals had reduced seed count and weight, reduced competitive ability, and reduced final height in mixed stands, but better germination of the F3. However, all characteristics were highly variable and fitness costs were not constant across genetic backgrounds. In the absence of selection from glyphosate, kochia with increased EPSPS copy number will be at a competitive disadvantage in some genetic backgrounds.


Assuntos
Bassia scoparia/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Bassia scoparia/enzimologia , Bassia scoparia/genética , Bassia scoparia/fisiologia , Variações do Número de Cópias de DNA/genética , Variações do Número de Cópias de DNA/fisiologia , Glicina/farmacologia , Resistência a Herbicidas/genética , Resistência a Herbicidas/fisiologia , Melhoramento Vegetal , Glifosato
10.
PLoS One ; 11(12): e0168295, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992501

RESUMO

Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia , Dosagem de Genes , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/genética , Amplificação de Genes , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicina/farmacologia , Herbicidas/farmacologia , Glifosato
11.
PLoS One ; 11(8): e0161533, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27537419

RESUMO

The widespread occurrence of herbicide-resistant (HR) Kochia scoparia is an increasing concern for growers in the US Great Plains and Canada. K. scoparia populations resistant to dicamba have been reported in six US states. Populations cross-resistant to dicamba and fluroxypyr have been reported from wheat fields in Montana, USA. It is unclear whether resistance to the auxinic herbicides (dicamba and/or fluroxypyr), can alter the fitness traits of K. scoparia. The objectives of this research were to compare the germination dynamics in response to thermal environment, vegetative growth and fecundity characteristics, and the relative competitive ability of dicamba-fluroxypyr-susceptible (S) vs.-resistant (R) K. scoparia selected from within a single segregating population (collected from wheat-fallow field in MT). S and R selected lines were developed after three generations of recurrent group selection. Compared to the S selected line, the R selected line had lower cumulative germination at all constant temperatures except 25°C, and at all alternating temperatures except 30/35°C. Also, the R selected line had delayed germination relative to the S selected line. The R had lower plant height, plant width, primary branches, total leaf area, stem diameter, and shoot dry weight compared with the S plants in the absence of competition. The reduction in seed production per plant resulted in a 39% fitness cost. The 1000-seed weight of R (1.6 g) was also less than that of S (2.6 g). When grown in an intraspecific competition at different mixture proportions, replacement series indices for the growth parameters further indicated that the R was less competitive than the S. Evident from this research, the dicamba-fluroxypyr-resistant R selected line is less likely to persist in a field population in the absence of the auxinic herbicides.


Assuntos
Acetatos/farmacologia , Bassia scoparia/fisiologia , Dicamba/farmacologia , Germinação/fisiologia , Resistência a Herbicidas , Herbicidas/farmacologia , Piridinas/farmacologia , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/crescimento & desenvolvimento , Fertilidade/fisiologia , Resistência a Herbicidas/fisiologia , Sementes/crescimento & desenvolvimento
12.
PLoS One ; 10(11): e0142675, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26580558

RESUMO

Evolution of glyphosate-resistant kochia is a threat to no-till wheat-fallow and glyphosate-resistant (GR) cropping systems of the US Great Plains. The EPSPS (5-enol-pyruvylshikimate-3-phosphate synthase) gene amplification confers glyphosate resistance in the tested Kochia scoparia (L.) Schrad populations from Montana. Experiments were conducted in spring to fall 2014 (run 1) and summer 2014 to spring 2015 (run 2) to investigate the growth and reproductive traits of the GR vs. glyphosate-susceptible (SUS) populations of K. scoparia and to determine the relationship of EPSPS gene amplification with the level of glyphosate resistance. GR K. scoparia inbred lines (CHES01 and JOP01) exhibited 2 to 14 relative copies of the EPSPS gene compared with the SUS inbred line with only one copy. In the absence of glyphosate, no differences in growth and reproductive parameters were evident between the tested GR and SUS inbred lines, across an intraspecific competition gradient (1 to 170 plants m-2). GR K. scoparia plants with 2 to 4 copies of the EPSPS gene survived the field-use rate (870 g ha-1) of glyphosate, but failed to survive the 4,350 g ha-1 rate of glyphosate (five-times the field-use rate). In contrast, GR plants with 5 to 14 EPSPS gene copies survived the 4,350 g ha-1 of glyphosate. The results from this research indicate that GR K. scoparia with 5 or more EPSPS gene copies will most likely persist in field populations, irrespective of glyphosate selection pressure.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia/genética , Resistência a Herbicidas/genética , Triticum/parasitologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/biossíntese , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/crescimento & desenvolvimento , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Reprodução/genética , Triticum/crescimento & desenvolvimento , Glifosato
13.
Planta ; 241(2): 463-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25366557

RESUMO

MAIN CONCLUSION: Field-evolved resistance to the herbicide glyphosate is due to amplification of one of two EPSPS alleles, increasing transcription and protein with no splice variants or effects on other pathway genes. The widely used herbicide glyphosate inhibits the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Globally, the intensive use of glyphosate for weed control has selected for glyphosate resistance in 31 weed species. Populations of suspected glyphosate-resistant Kochia scoparia were collected from fields located in the US central Great Plains. Glyphosate dose response verified glyphosate resistance in nine populations. The mechanism of resistance to glyphosate was investigated using targeted sequencing, quantitative PCR, immunoblotting, and whole transcriptome de novo sequencing to characterize the sequence and expression of EPSPS. Sequence analysis showed no mutation of the EPSPS Pro106 codon in glyphosate-resistant K. scoparia, whereas EPSPS genomic copy number and transcript abundance were elevated three- to ten-fold in resistant individuals relative to susceptible individuals. Glyphosate-resistant individuals with increased relative EPSPS copy numbers had consistently lower shikimate accumulation in leaf disks treated with 100 µM glyphosate and EPSPS protein levels were higher in glyphosate-resistant individuals with increased gene copy number compared to glyphosate-susceptible individuals. RNA sequence analysis revealed seven nucleotide positions with two different expressed alleles in glyphosate-susceptible reads. However, one nucleotide at the seven positions was predominant in glyphosate-resistant sequences, suggesting that only one of two EPSPS alleles was amplified in glyphosate-resistant individuals. No alternatively spliced EPSPS transcripts were detected. Expression of five other genes in the chorismate pathway was unaffected in glyphosate-resistant individuals with increased EPSPS expression. These results indicate increased EPSPS expression is a mechanism for glyphosate resistance in these K. scoparia populations.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Bassia scoparia/efeitos dos fármacos , Bassia scoparia/enzimologia , Bassia scoparia/metabolismo , Amplificação de Genes/fisiologia , Glicina/análogos & derivados , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Bassia scoparia/genética , Amplificação de Genes/genética , Regulação da Expressão Gênica de Plantas , Glicina/farmacologia , Resistência a Herbicidas/genética , Glifosato
14.
Pest Manag Sci ; 61(11): 1035-42, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15952238

RESUMO

Kochia [Kochia scoparia (L) Schrad] has become resistant to many herbicides used in cropland and railroad rights-of-way in North Dakota and Minnesota. Kochia scoparia plants that had survived annual treatments with diuron and tebuthiuron were sampled along railroad rights-of-way in North Dakota and Minnesota. The samples were screened in the greenhouse for resistance to diuron, tebuthiuron, metribuzin and bromoxynil from 0.5x to 32x the recommended use rates. A resistant K scoparia accession (MN-3R) was confirmed with resistance up to 16-fold higher than recommended use rates for tebuthiuron and diuron and up to 4-fold higher for metribuzin. However, the resistant K scoparia accession was susceptible to bromoxynil even at 50% of the recommended use rate. The herbicide binding region of the psbA gene fragment of eight resistant (R) and seven susceptible (S) K scoparia accessions was PCR-amplified and sequenced for detection of mutations. The psbA gene of four R K scoparia accessions was mutated at residue 219 with substitution of isoleucine for valine (GenBank accession number AY251265). The seven S K scoparia accession sequences were wild-type at this residue (GenBank accession number AY251266). The other four R accessions sequences showed a previously known triazine R mutation with substitution of glycine for serine at residue 264. All 15 K scoparia accessions were wild-type at all other psbA residues within the region analyzed. Resistance to diuron, tebuthiuron and metribuzin among the railroad rights-of-way K scoparia is probably due to the mutation at residue 219 of the psbA gene in some plants, but due to the previously reported Ser(264)Gly substitution in other plants. Target-site resistance associated with a change of valine to isoleucine at residue 219 of the psbA target-site in weeds has previously been reported for Poa annua L selected in diuron-treated grass seed fields, and for Amaranthus powelli S Wats selected in linuron-treated carrot fields. This is the first report of the mutation in herbicide-resistant K scoparia.


Assuntos
Bassia scoparia/efeitos dos fármacos , Bassia scoparia/genética , Diurona/farmacologia , Resistência a Medicamentos , Compostos de Metilureia/farmacologia , Complexo de Proteína do Fotossistema II/genética , Triazinas/farmacologia , Animais , Relação Dose-Resposta a Droga , Resistência a Medicamentos/genética , Genes Bacterianos/genética , Herbicidas/farmacologia , Minnesota , Dados de Sequência Molecular , Mutação/genética , North Dakota , Ferrovias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...