Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Eur J Med Chem ; 252: 115287, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958267

RESUMO

New analogs of the antiprotozoal agent Furamidine were prepared utilizing Stille coupling reactions and amidation of the bisnitrile intermediate using lithium bis-trimethylsilylamide. Both the phenyl groups and the furan moiety of furamidine were replaced by heterocycles including thiophene, selenophene, indole or benzimidazole. Based upon the ΔTm and the CD results, the new compounds showed strong binding to the DNA minor groove. The new analogues are also more active both in vitro and in vivo than furamidine. Compounds 7a, 7b, and 7f showed the highest activity in vivo by curing 75% of animals, and this merits further evaluation.


Assuntos
Antiprotozoários , Benzamidinas , Animais , Benzamidinas/farmacologia , Benzamidinas/química , Benzamidinas/metabolismo , Antiprotozoários/farmacologia , DNA/metabolismo
2.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209110

RESUMO

Positively charged groups that mimic arginine or lysine in a natural substrate of trypsin are necessary for drugs to inhibit the trypsin-like serine protease TMPRSS2 that is involved in the viral entry and spread of coronaviruses, including SARS-CoV-2. Based on this assumption, we identified a set of 13 approved or clinically investigational drugs with positively charged guanidinobenzoyl and/or aminidinobenzoyl groups, including the experimentally verified TMPRSS2 inhibitors Camostat and Nafamostat. Molecular docking using the C-I-TASSER-predicted TMPRSS2 catalytic domain model suggested that the guanidinobenzoyl or aminidinobenzoyl group in all the drugs could form putative salt bridge interactions with the side-chain carboxyl group of Asp435 located in the S1 pocket of TMPRSS2. Molecular dynamics simulations further revealed the high stability of the putative salt bridge interactions over long-time (100 ns) simulations. The molecular mechanics/generalized Born surface area-binding free energy assessment and per-residue energy decomposition analysis also supported the strong binding interactions between TMPRSS2 and the proposed drugs. These results suggest that the proposed compounds, in addition to Camostat and Nafamostat, could be effective TMPRSS2 inhibitors for COVID-19 treatment by occupying the S1 pocket with the hallmark positively charged groups.


Assuntos
Antivirais/química , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Benzamidinas/química , Benzamidinas/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Ésteres/química , Ésteres/metabolismo , Guanidinas/química , Guanidinas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Serina Endopeptidases/química , Inibidores de Serina Proteinase/metabolismo , Inibidores de Serina Proteinase/uso terapêutico , Termodinâmica , Tratamento Farmacológico da COVID-19
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33947817

RESUMO

DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the Nudix hydrolase 16 (NUDT16) gene was down-regulated in mutant CAG RNA-expressing cells. The loss of NUDT16 function results in a misincorporation of damaging nucleotides into DNAs and leads to DNA damage. We showed that small CAG (sCAG) RNAs, species generated from expanded CAG transcripts, hybridize with CUG-containing NUDT16 mRNA and form a CAG-CUG RNA heteroduplex, resulting in gene silencing of NUDT16 and leading to the DNA damage and cellular apoptosis. These results were further validated using expanded CAG RNA-expressing mouse primary neurons and in vivo R6/2 HD transgenic mice. Moreover, we identified a bisamidinium compound, DB213, that interacts specifically with the major groove of the CAG RNA homoduplex and disfavors the CAG-CUG heteroduplex formation. This action subsequently mitigated RNA-induced silencing complex (RISC)-dependent NUDT16 silencing in both in vitro cell and in vivo mouse disease models. After DB213 treatment, DNA damage, apoptosis, and locomotor defects were rescued in HD mice. This work establishes NUDT16 deficiency by CAG repeat RNAs as a pathogenic mechanism of polyQ diseases and as a potential therapeutic direction for HD and other polyQ diseases.


Assuntos
Apoptose/genética , Dano ao DNA , Doença de Huntington/genética , Peptídeos/genética , Pirofosfatases/genética , RNA/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Apoptose/efeitos dos fármacos , Benzamidinas/metabolismo , Benzamidinas/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Pirofosfatases/metabolismo , RNA/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Phys Chem Lett ; 11(13): 5302-5311, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32520567

RESUMO

Protein-ligand recognition is dynamic and complex. A key approach in deciphering the mechanism underlying the recognition process is to capture the kinetic process of the ligand in its act of binding to its designated protein cavity. Toward this end, ultralong all-atom molecular dynamics simulation has recently emerged as a popular method of choice because of its ability to record these events at high spatial and temporal resolution. However, success via this route comes at an exorbitant computational cost. Herein, we demonstrate that coarse-grained models of the protein, when systematically optimized to maintain its tertiary fold, can capture the complete process of spontaneous protein-ligand binding from bulk media to the cavity at crystallographic precision and within wall clock time that is orders of magnitude shorter than that of all-atom simulations. The exhaustive sampling of ligand exploration in protein and solvent, harnessed by coarse-grained simulation, leads to elucidation of new ligand recognition pathways and discovery of non-native binding poses.


Assuntos
Benzamidinas/metabolismo , Benzeno/metabolismo , Cânfora/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Muramidase/metabolismo , Tripsina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriófago T4/enzimologia , Benzamidinas/química , Benzeno/química , Cânfora/química , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Ligantes , Simulação de Dinâmica Molecular , Muramidase/química , Ligação Proteica , Pseudomonas putida/enzimologia , Tripsina/química , Proteínas Virais/química , Proteínas Virais/metabolismo
5.
PLoS One ; 15(3): e0228461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32160194

RESUMO

Simulating drug binding and unbinding is a challenge, as the rugged energy landscapes that separate bound and unbound states require extensive sampling that consumes significant computational resources. Here, we describe the use of interactive molecular dynamics in virtual reality (iMD-VR) as an accurate low-cost strategy for flexible protein-ligand docking. We outline an experimental protocol which enables expert iMD-VR users to guide ligands into and out of the binding pockets of trypsin, neuraminidase, and HIV-1 protease, and recreate their respective crystallographic protein-ligand binding poses within 5-10 minutes. Following a brief training phase, our studies shown that iMD-VR novices were able to generate unbinding and rebinding pathways on similar timescales as iMD-VR experts, with the majority able to recover binding poses within 2.15 Å RMSD of the crystallographic binding pose. These results indicate that iMD-VR affords sufficient control for users to carry out the detailed atomic manipulations required to dock flexible ligands into dynamic enzyme active sites and recover crystallographic poses, offering an interesting new approach for simulating drug docking and generating binding hypotheses.


Assuntos
Protease de HIV/metabolismo , Simulação de Dinâmica Molecular , Neuraminidase/metabolismo , Tripsina/metabolismo , Realidade Virtual , Benzamidinas/metabolismo , Sítios de Ligação , Carbamatos/metabolismo , Furanos , Ligantes , Oseltamivir/metabolismo , Ligação Proteica , Sulfonamidas/metabolismo , Zanamivir/metabolismo
6.
Analyst ; 145(9): 3329-3338, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32207499

RESUMO

A label-free biosensor was fabricated for the detection of trypsin by using a peptide-functionalized quartz crystal microbalance gold electrode. The synthetized peptide chains were immobilized tightly on the QCM electrode via a self-assembly method, which formed a thin and approximate rigid layer of peptides. The detection signal was achieved by calculating the mass changes on the QCM electrode because the peptide chains could be specifically cleaved in the carboxyl terminuses of arginine and lysine by trypsin. When gold nanoparticles were coupled to the peptide chains, the sensing signal would be amplified 10.9 times. Furthermore, the sensor interface shows a lower resonance resistance change when the peptide chain is immobilized horizontally. Independent detections in parallel on different electrodes have a wide linear range. Under the optimum conditions, the signal-amplified biosensor allowed the measurement of trypsin over the range of 0-750 ng mL-1 with a detection limit of 8.6 ng mL-1. Moreover, for screening the inhibitor of trypsin, the IC50 values were obtained to be 1.85 µg mL-1 for benzamidine hydrochloride and 20.5 ng mL-1 for the inhibitor from soybean.


Assuntos
Técnicas Biossensoriais/métodos , Peptídeos/química , Tripsina/análise , Benzamidinas/química , Benzamidinas/metabolismo , Eletrodos , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Técnicas de Microbalança de Cristal de Quartzo , Glycine max/química , Glycine max/metabolismo , Tripsina/metabolismo , Inibidores da Tripsina/química , Inibidores da Tripsina/metabolismo
7.
Anal Chem ; 92(5): 3852-3859, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045225

RESUMO

Quantitative information about protein-ligand interactions is central to drug discovery. To obtain the quintessential reaction dissociation constant, ideally measurements of reactions should be performed without perturbations by molecular labeling or immobilization. The technique of transient induced molecular electrical signal (TIMES) has provided a promising technique to meet such requirements, and its performance in a microfluidic environment further offers the potential for high throughput and reduced consumption of reagents. In this work, we further the development by using integrated TIMES signal (i-TIMES) to greatly enhance the accuracy and reproducibility of the measurement. While the transient response may be of interest, the integrated signal directly measures the total amount of surface charge density resulted from molecules near the surface of electrode. The signals enable quantitative characterization of protein-ligand interactions. We have demonstrated the feasibility of i-TIMES technique using different biomolecules including lysozyme, N,N',N″-triacetylchitotriose (TriNAG), aptamer, p-aminobenzamidine (pABA), bovine pancreatic ribonuclease A (RNaseA), and uridine-3'-phosphate (3'UMP). The results show i-TIMES is a simple and accurate technique that can bring tremendous value to drug discovery and research of intermolecular interactions.


Assuntos
Ligantes , Microfluídica , Muramidase/metabolismo , Ribonuclease Pancreático/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Benzamidinas/química , Benzamidinas/metabolismo , Bovinos , Concentração de Íons de Hidrogênio , Muramidase/química , Ribonuclease Pancreático/química , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
8.
J Phys Chem B ; 123(38): 7974-7983, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31478672

RESUMO

Understanding the protein-ligand binding is of fundamental biological interest and is essential for structure-based drug design. The difficulty in capturing the dynamic process, however, poses a great challenge for current experimental and theoretical simulation techniques. A selective integrated-tempering-sampling molecular dynamics (SITSMD) method offering an option for selectively enhanced sampling of the ligand in a protein-ligand complex was utilized to quantitatively illuminate the binding of benzamidine to the wild-type trypsin protease and its two mutants (S214E and S214K). The SITSMD simulations could produce consistent results as the extensive conventional MD simulation and gave additional insights into the binding pathway for the test protein-ligand complex system using significantly saved computational resource and time, indicating the potential of such a method in investigating protein-ligand binding. Additionally, the simulations identified the different roles of trypsin-benzamidine van der Waals (vdW) and electrostatic interactions in the binding: the former interaction works as the driving force for dragging the benzamidine close to the native binding pocket, and the latter interaction mainly contributes to stabilizing the benzamidine inside the pocket. The S214E mutation introduces more favorable electrostatic interactions, and as a result, both vdW and electrostatic interactions drive the benzamidine binding, lowering the binding and unbinding free energy barrier. In contrast, the S214K mutation prohibits the binding of the benzamidine to the native ligand binding pocket by introducing disliked charge-charge interactions. In summary, these findings suggest that the change in specific residues could modify the protein druggability, including the binding kinetics and thermodynamics.


Assuntos
Ligantes , Simulação de Dinâmica Molecular , Tripsina/química , Benzamidinas/química , Benzamidinas/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Eletricidade Estática , Termodinâmica , Tripsina/genética , Tripsina/metabolismo
9.
J Chem Phys ; 150(22): 220901, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31202243

RESUMO

As molecular scientists have made progress in their ability to engineer nanoscale molecular structure, we face new challenges in our ability to engineer molecular dynamics (MD) and flexibility. Dynamics at the molecular scale differs from the familiar mechanics of everyday objects because it involves a complicated, highly correlated, and three-dimensional many-body dynamical choreography which is often nonintuitive even for highly trained researchers. We recently described how interactive molecular dynamics in virtual reality (iMD-VR) can help to meet this challenge, enabling researchers to manipulate real-time MD simulations of flexible structures in 3D. In this article, we outline various efforts to extend immersive technologies to the molecular sciences, and we introduce "Narupa," a flexible, open-source, multiperson iMD-VR software framework which enables groups of researchers to simultaneously cohabit real-time simulation environments to interactively visualize and manipulate the dynamics of molecular structures with atomic-level precision. We outline several application domains where iMD-VR is facilitating research, communication, and creative approaches within the molecular sciences, including training machines to learn potential energy functions, biomolecular conformational sampling, protein-ligand binding, reaction discovery using "on-the-fly" quantum chemistry, and transport dynamics in materials. We touch on iMD-VR's various cognitive and perceptual affordances and outline how these provide research insight for molecular systems. By synergistically combining human spatial reasoning and design insight with computational automation, technologies such as iMD-VR have the potential to improve our ability to understand, engineer, and communicate microscopic dynamical behavior, offering the potential to usher in a new paradigm for engineering molecules and nano-architectures.


Assuntos
Simulação de Dinâmica Molecular , Software , Realidade Virtual , Benzamidinas/metabolismo , Ciclofilina A/química , Humanos , Subtipo H7N9 do Vírus da Influenza A/enzimologia , Relações Interpessoais , Ligantes , Redes Neurais de Computação , Neuraminidase/metabolismo , Compostos Orgânicos/química , Oseltamivir/metabolismo , Ligação Proteica , Conformação Proteica , Teoria Quântica , Tripsina/metabolismo
10.
Future Med Chem ; 11(7): 743-769, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30945556

RESUMO

Members of the type II transmembrane serine proteases (TTSP) family play a vital role in cell growth and development but many are also implicated in disease. Two of the well-studied TTSPs, matriptase and hepsin proteolytically process multiple protein substrates such as the inactive single-chain zymogens pro-HGF and pro-macrophage stimulating protein into the active heterodimeric forms, HGF and macrophage stimulating protein. These two proteases also have many other substrates which are associated with cancer and tumor progression. Another related TTSP, matriptase-2 is expressed in the liver and functions by regulating iron homoeostasis through the cleavage of hemojuvelin and thus is implicated in iron overload diseases. In the present review, we will discuss inhibitor design strategy and Structure activity relationships of TTSP inhibitors, which have been reported in the literature.


Assuntos
Benzamidinas/química , Inibidores de Serina Proteinase/química , Tiazóis/química , Benzamidinas/metabolismo , Descoberta de Drogas , Proteínas Ligadas por GPI/metabolismo , Proteína da Hemocromatose/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Proteínas de Membrana/antagonistas & inibidores , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 29(6): 821-825, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30691925

RESUMO

Netherton syndrome (NS) is a rare and debilitating severe autosomal recessive genetic skin disease with high mortality rates particularly in neonates. NS is caused by loss-of-function SPINK5 mutations leading to unregulated kallikrein 5 (KLK5) and kallikrein 7 (KLK7) activity. Furthermore, KLK5 inhibition has been proposed as a potential therapeutic treatment for NS. Identification of potent and selective KLK5 inhibitors would enable further exploration of the disease biology and could ultimately lead to a treatment for NS. This publication describes how fragmentation of known trypsin-like serine protease (TLSP) inhibitors resulted in the identification of a series of phenolic amidine-based KLK5 inhibitors 1. X-ray crystallography was used to find alternatives to the phenol interaction leading to identification of carbonyl analogues such as lactam 13 and benzimidazole 15. These reversible inhibitors, with selectivity over KLK1 (10-100 fold), provided novel starting points for the guided growth towards suitable tool molecules for the exploration of KLK5 biology.


Assuntos
Benzamidinas/química , Calicreínas/antagonistas & inibidores , Inibidores de Serina Proteinase/química , Animais , Benzamidinas/síntese química , Benzamidinas/metabolismo , Domínio Catalítico , Desenho de Fármacos , Calicreínas/metabolismo , Síndrome de Netherton/tratamento farmacológico , Ligação Proteica , Salicilamidas/síntese química , Salicilamidas/química , Salicilamidas/metabolismo , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/metabolismo , Spodoptera/genética
12.
Phys Chem Chem Phys ; 21(4): 1841-1851, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30629058

RESUMO

Regulation of gene-expression by specific targeting of protein-nucleic acid interactions has been a long-standing goal in medicinal chemistry. Transcription factors are considered "undruggable" because they lack binding sites well suited for binding small-molecules. In order to overcome this obstacle, we are interested in designing small molecules that bind to the corresponding promoter sequences and either prevent or modulate transcription factor association via an allosteric mechanism. To achieve this, we must design small molecules that are both sequence-specific and able to target G/C base pair sites. A thorough understanding of the relationship between binding affinity and the structural aspects of the small molecule-DNA complex would greatly aid in rational design of such compounds. Here we present a comprehensive analysis of sequence-specific DNA association of a synthetic minor groove binder using long timescale molecular dynamics. We show how binding selectivity arises from a combination of structural factors. Our results provide a framework for the rational design and optimization of synthetic small molecules in order to improve site-specific targeting of DNA for therapeutic uses in the design of selective DNA binders targeting transcription regulation.


Assuntos
DNA , Benzamidinas/química , Benzamidinas/metabolismo , Benzimidazóis/química , Benzimidazóis/metabolismo , Sítios de Ligação , DNA/química , DNA/metabolismo , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Bibliotecas de Moléculas Pequenas
13.
Mini Rev Med Chem ; 18(20): 1753-1758, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30112993

RESUMO

BACKGROUND & METHOD: In this ongoing research, it is aimed to investigate the synthesis, structure identification and effects on urokinase-type plasminogen activators (uPA) and its receptor levels of 4-(3H-imidazo[4,5-b]pyridin-2-yl)-N-substituted benzamide and benzamidine derivatives. uPA levels obtained from 4b and 7d administration were similar to 5-FU (5-fluorouracil) for colorectal carcinoma cells (p<0.05). 4b and 7d significantly reduced uPAR (urokinase-type plasminogen activator receptor) levels on both cell lines (p<0.05). CONCLUSION: uPAR levels obtaining from 4b and 7d administration were similar to 5-FU for both cell lines colorectal (Colo205, CCL-222) and hepatocellular (HepG2, CCL-23) carcinoma cells (p<0.05).


Assuntos
Benzamidas/química , Benzamidinas/química , Inibidores Enzimáticos/química , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzamidas/metabolismo , Benzamidas/farmacologia , Benzamidinas/metabolismo , Benzamidinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores
14.
Int J Biol Macromol ; 119: 1113-1128, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30098361

RESUMO

Development of resistance against existing anti-epileptic drugs has alarmed the scientific innovators to find novel potential chemical starting points for the treatment of epilepsy and GABAA inhibition is a promising drug target strategy against epilepsy. The crystal structure of a subtype-selective ß3-homopentameric ligand-gated ion channel of GABAA receptor has been used for the first time for screening the Asinex library for discovery of GABAA agonists as potential anti-epileptic agents. Co-crystallized ligand established the involvement of part of the ß7-ß8 loop (Glu155 and Tyr157) and ß9-ß10 loop (Phe200 and Tyr205) residues as the crucial amino acids in effective binding, an essential feature, being hydrogen bond or ionic interaction with Glu155 residue. Top ranked hits were further subjected to binding energy estimation, ADMET analysis and ligand efficiency matric calculations as consecutive filters. About 19 compounds qualifying all parameters possessed interaction of one positively charged group with Glu155 with good CNS drug-like properties. Simulation studies were performed on the apo protein, its complex with co-crystallized ligand and the best hit qualifying all screening parameters. The best hit was also analyzed using Quantum mechanical studies, off-target analysis and hit modification. The off-target analysis emphasized that these agents did not have any other predicted side-effects.


Assuntos
Epilepsia/tratamento farmacológico , Agonistas de Receptores de GABA-A/química , Agonistas de Receptores de GABA-A/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Receptores de GABA-A/metabolismo , Benzamidinas/química , Benzamidinas/metabolismo , Benzamidinas/farmacologia , Benzamidinas/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Agonistas de Receptores de GABA-A/metabolismo , Agonistas de Receptores de GABA-A/uso terapêutico , Humanos , Ligantes , Conformação Proteica , Receptores de GABA-A/química , Relação Estrutura-Atividade , Interface Usuário-Computador
15.
Chem Biol Drug Des ; 90(6): 1260-1270, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28636189

RESUMO

Protein arginine methylation, a post-translational modification critical for a variety of biological processes, is catalyzed by protein arginine N-methyltransferases (PRMTs). In particular, PRMT1 is responsible for over 85% of the arginine methylation in mammalian cells. Dysregulation of PRMT1 is involved in diverse pathological diseases including cancers. However, most current PRMT1 inhibitors are lack of specificity, efficacy, and bioavailability. Herein, a series of alkyl bis(oxy)dibenzimidamide derivatives were identified as selective PRMT1 inhibitors. Among them, the most potent compound corresponds to hexamidine (IC50  = 5.9 ± 1.7 µm), which is an antimicrobial agent. The binding between hexamidine and PRMT1 was further validated by thermal shift assays and nuclear magnetic resonance (NMR) experiments. Molecular docking and NMR assays indicated that hexamidine occupied the substrate binding pocket. Furthermore, hexamidine effectively blocked cell proliferation in cancer cell lines related to PRMT1 overexpression. Taken together, this study has provided a druggable scaffold targeting PRMT1 as well as a new way to repurpose old drugs which is a complementary tool for the discovery of new lead compounds.


Assuntos
Amidas/química , Inibidores Enzimáticos/química , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Amidas/metabolismo , Amidas/toxicidade , Benzamidinas/química , Benzamidinas/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Transferência Ressonante de Energia de Fluorescência , Humanos , Espectroscopia de Ressonância Magnética , Metilação , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
16.
Biophys J ; 112(4): 620-629, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28256222

RESUMO

We report simulations of full ligand exit pathways for the trypsin-benzamidine system, generated using the sampling technique WExplore. WExplore is able to observe millisecond-scale unbinding events using many nanosecond-scale trajectories that are run without introducing biasing forces. The algorithm generates rare events by dividing the coordinate space into regions, on-the-fly, and balancing computational effort between regions through cloning and merging steps, as in the weighted ensemble method. The averaged exit flux yields a ligand exit rate of 180 µs, which is within an order of magnitude of the experimental value. We obtain broad sampling of ligand exit pathways, and visualize our findings using conformation space networks. The analysis shows three distinct exit channels, two of which are formed through large, rare motions of the loop regions in trypsin. This broad set of ligand-bound poses is then used to investigate general properties of ligand binding: we observe both a direct stabilizing effect of ligand-protein interactions and an indirect destabilizing effect on intraprotein interactions that is induced by the ligand. Significantly, the crystallographic binding poses are distinguished not only because their ligands induce large stabilizing effects, but also because they induce relatively low indirect destabilizations.


Assuntos
Benzamidinas/metabolismo , Benzamidinas/farmacologia , Tripsina/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Cinética , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Tripsina/química
18.
Curr Med Chem ; 23(36): 4108-4134, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27593961

RESUMO

DNA-binding compounds are of extraordinary importance in medicine, accounting for a substantial portion of antitumor drugs in clinical usage. However, their mechanisms of action remain sometimes incompletely understood. This review critically examines two broad classes of molecules that bind noncovalently to DNA: intercalators and groove binders. Intercalators bind to DNA by inserting their chromophore moiety between two consecutive base pairs, whereas groove binders fit into the grooves of DNA. Noncovalent DNAinteractive drugs can recognize certain supramolecular DNA structures such as the Gquadruplexes found in telomeres and in numerous gene promoters, and they can act as topoisomerase I and II poisons. We discuss how DNA-binding compounds affect transcription and compete with protein factors for binding to consensus binding sites in gene promoters both in vitro and in cultured cancer cells. Moreover, we comment on the design of molecules that can tightly and specifically bind to any desired target DNA, such as various hairpin polyamides which efficacy as chemotherapeutic agents is being evaluated. At present, genome-wide studies, which provide details of events that may influence both cancer progression and therapeutic outcome, are a common way used to analyze the effects of DNA-binding compounds. A conclusive feature that emerges from reviewing the information on DNA-binding compounds is that both natural sources and chemical approaches can be productively used to obtain drugs to manipulate gene expression in cancer cells.


Assuntos
Antineoplásicos/metabolismo , DNA de Neoplasias/metabolismo , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Benzamidinas/química , Benzamidinas/metabolismo , DNA de Neoplasias/química , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
19.
J Chem Theory Comput ; 12(6): 2983-9, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27159059

RESUMO

Adaptive multilevel splitting (AMS) is a rare event sampling method that requires minimal parameter tuning and allows unbiased sampling of transition pathways of a given rare event. Previous simulation studies have verified the efficiency and accuracy of AMS in the calculation of transition times for simple systems in both Monte Carlo and molecular dynamics (MD) simulations. Now, AMS is applied for the first time to an MD simulation of protein-ligand dissociation, representing a leap in complexity from the previous test cases. Of interest is the dissociation rate, which is typically too low to be accessible to conventional MD. The present study joins other recent efforts to develop advanced sampling techniques in MD to calculate dissociation rates, which are gaining importance in the pharmaceutical field as indicators of drug efficacy. The system investigated here, benzamidine bound to trypsin, is an example common to many of these efforts. The AMS estimate of the dissociation rate was found to be (2.6 ± 2.4) × 10(2) s(-1), which compares well with the experimental value.


Assuntos
Benzamidinas/química , Simulação de Dinâmica Molecular , Tripsina/química , Algoritmos , Benzamidinas/metabolismo , Ligantes , Método de Monte Carlo , Ligação Proteica , Tripsina/metabolismo
20.
Nucleic Acids Res ; 44(10): 4519-27, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27131382

RESUMO

Sequence-specific binding to DNA is crucial for targeting transcription factor-DNA complexes to modulate gene expression. The heterocyclic diamidine, DB2277, specifically recognizes a single G•C base pair in the minor groove of mixed base pair sequences of the type AAAGTTT. NMR spectroscopy reveals the presence of major and minor species of the bound compound. To understand the principles that determine the binding affinity and orientation in mixed sequences of DNA, over thirty DNA hairpin substrates were examined by NMR and thermal melting. The NMR exchange dynamics between major and minor species shows that the exchange is much faster than compound dissociation determined from biosensor-surface plasmon resonance. Extensive modifications of DNA sequences resulted in a unique DNA sequence with binding site AAGATA that binds DB2277 in a single orientation. A molecular docking result agrees with the model representing rapid flipping of DB2277 between major and minor species. Imino spectral analysis of a (15)N-labeled central G clearly shows the crucial role of the exocyclic amino group of G in sequence-specific recognition. Our results suggest that this approach can be expanded to additional modules for recognition of more sequence-specific DNA complexes. This approach provides substantial information about the sequence-specific, highly efficient, dynamic nature of minor groove binding agents.


Assuntos
DNA/química , DNA/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Pareamento de Bases , Benzamidinas/química , Benzamidinas/metabolismo , Benzimidazóis/química , Benzimidazóis/metabolismo , Sítios de Ligação , Técnicas Biossensoriais , Simulação de Acoplamento Molecular , Prótons , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...