Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 597
Filtrar
1.
Eur J Med Chem ; 250: 115221, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863228

RESUMO

Positive allosteric modulators of the AMPA receptors (AMPAR PAMs) have been proposed as new drugs for the management of various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, attention deficit hyperactivity disorder, depression, and schizophrenia. The present study explored new AMPAR PAMs belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides (BTDs) characterized by the presence of a short alkyl substituent at the 2-position of the heterocycle and by the presence or absence of a methyl group at the 3-position. The introduction of a monofluoromethyl or a difluoromethyl side chain at the 2-position instead of the methyl group was examined. 7-Chloro-4-cyclopropyl-2-fluoromethyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (15e) emerged as the most promising compound associating high in vitro potency on AMPA receptors, a favorable safety profile in vivo and a marked efficacy as a cognitive enhancer after oral administration in mice. Stability studies in aqueous medium suggested that 15e could be considered, at least in part, as a precursor of the corresponding 2-hydroxymethyl-substituted analogue and the known AMPAR modulator 7-chloro-4-cyclopropyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (3) devoid of an alkyl group at the 2-position.


Assuntos
Receptores de AMPA , Tiadiazinas , Camundongos , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Receptores de AMPA/metabolismo , Tiadiazinas/farmacologia , Tiadiazinas/química , Benzotiadiazinas/farmacologia , Benzotiadiazinas/química , Tiazidas , Regulação Alostérica
2.
Med Chem ; 19(3): 276-296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35986548

RESUMO

AIMS: The present work describes the synthesis and the biological evaluation of novel compounds acting as pyruvate dehydrogenase kinase (PDK) inhibitors. These drugs should become a new therapeutic approach for the treatment of pathologies improved by the control of the blood lactate level. METHODS: Four series of compounds belonging to N-(4-(N-alkyl/aralkylsulfamoyl)phenyl)-2- methylpropanamides and 1,2,4-benzothiadiazine 1,1-dioxides were prepared and evaluated as PDK inhibitors. RESULTS: The newly synthesized N-(4-(N-alkyl/aralkylsulfamoyl)phenyl)-2-methylpropanamides structurally related to previously reported reference compounds 4 and 5 were found to be potent PDK inhibitors (i.e. 10d: IC50 = 41 nM). 1,2,4-Benzothiadiazine 1,1-dioxides carrying a (methyl/ trifluoromethyl)-propanamide moiety at the 6-position were also designed as conformationally restricted ring-closed analogues of N-(4-(N-alkyl/aralkylsulfamoyl)phenyl)-2-hydroxy-2-methylpropanamides. Most of them were found to be less potent than their ring-opened analogues. Interestingly, the best choice of hydrocarbon side chain at the 4-position was the benzyl chain, providing 11c (IC50 = 3.6 µM) belonging to "unsaturated" 1,2,4-benzothiadiazine 1,1-dioxides, and 12c (IC50 = 0.5 µM) belonging to "saturated' 1,2,4-benzothiadiazine 1,1-dioxides. CONCLUSION: This work showed that ring-closed analogues of N-(4-(N-alkyl/aralkylsulfamoyl) phenyl)- 2-hydroxy-2-methylpropanamides were less active as PDK inhibitors than their corresponding ring-opened analogues. However, the introduction of a bulkier substituent at the 4-position of the 1,2,4-benzothiadiazine 1,1-dioxide core structure, such as a benzyl or a phenethyl side chain, was allowed, opening the way to the design of new inhibitors with improved PDK inhibitory activity.


Assuntos
Benzotiadiazinas , Tiazidas , Benzotiadiazinas/química , Benzotiadiazinas/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 67: 116805, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35635929

RESUMO

Angiogenesis inhibitors are a critical pharmacological tool for the treatment of solid tumors. Suppressing vascular permeability leads to inhibition of tumor growth, invasion, and metastatic potential by blocking the supply of oxygen and nutrients. Disruption of the vascular endothelial growth factor (VEGF) signaling pathway is a validated target for the design of antiangiogenic agents. Several VEGFR2 inhibitors have been clinically approved over the past years. Structural analysis of these clinical VEGFR2 inhibitors highlighted key functional group overlap with the benzothiadiazine core contained in a library of in-house compounds. Herein we ascribe anti-angiogenic activity to a series of chlorinated benzothiadiazines. Selected compounds show significant activity to completely ameliorate VEGF-induced endothelial cell proliferation by suppression of VEGFR2 phosphorylation. The scaffold is devoid of activity to inhibit carbonic anhydrases and generally lacks cytotoxicity across a range of cancer and non-malignant cell lines. Assay of activity at 468 kinases shows remarkable selectivity with only four kinases inhibited > 65% at 10 µM concentration, and with significant activity to inhibit TNK2/ACK1 and PKRD2 by > 90%. All four identified kinase targets are known modulators of angiogenesis, thus highlighting compound 17b as a novel angiogenesis inhibitor for further development.


Assuntos
Benzotiadiazinas , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/farmacologia , Benzotiadiazinas/metabolismo , Benzotiadiazinas/farmacologia , Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neovascularização Patológica/tratamento farmacológico , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
4.
J Physiol Pharmacol ; 73(1)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35639034

RESUMO

The majority of excitatory neurotransmission in vertebrate CNS is mediated by glutamate binding to different types of receptors. Among them, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and kainite receptors (KAR) are ionotropic receptors playing important pathophysiological roles. A number of small molecules acting as positive allosteric modulators (PAM) of AMPAR have been proposed as drugs for neurological disorders, however, there is no such abundance of ligands capable of modulating KARs activity. We investigated the ability of IDRA21 and of its derivative, compound 2 (c2), to modulate glutamate-evoked currents at native and recombinantly expressed AMPA and KA receptors. By using the patch clamp technique we analyzed the activity of the two compounds in primary cultures of cerebellar granule neurons and in HEK293 cells transiently transfected with KARs and AMPAR subunits. It resulted that both benzothiadiazine derivatives potentiate AMPAR and KAR mediated currents in native and recombinant receptors, c2 being always more potent and efficacious than IDRA21. The potency of both compounds was higher in native receptors than in recombinant receptors. In HEK293 cells transfected with AMPAR subunits, the efficacy of IDRA21 and c2 was much higher in GluA1 than in GluA2 homomeric receptors while their potency did not change. In recombinant KAR, both compounds had a potency in the high micromolar range, while the efficacy reached a maximum in the GluK2 expressing cells. The benzothiadiazine effect, both in native and recombinant receptors, was detected mainly on plateau current, involving a decrease in AMPAR and KAR desensitization. Our study demonstrates for the first time that two positive allosteric modulators of AMPAR, IDRA21 and its derivative, c2, potentiate KAR activity. Furthermore, we highlighted their subunit selectivity that may enable the design of potent and selective PAMs, which could be relevant for the development of new drugs and for a better understanding of KAR functions in the CNS.


Assuntos
Benzotiadiazinas , Ácido Glutâmico , Receptores de Ácido Caínico , Benzotiadiazinas/farmacologia , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Neurônios , Técnicas de Patch-Clamp , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo
5.
ACS Chem Neurosci ; 12(14): 2679-2692, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34242002

RESUMO

On the basis of the activity of 1,2,4-benzothiadiazine 1,1-dioxides as positive allosteric modulators of AMPA receptors, thiochroman 1,1-dioxides were designed applying the isosteric replacement concept. The new compounds expressed strong modulatory activity on AMPA receptors in vitro, although lower than their corresponding benzothiadiazine analogues. The pharmacokinetic profile of three thiochroman 1,1-dioxides (12a, 12b, 12e) was examined in vivo after oral administration, showing that these compounds freely cross the blood-brain barrier. Structural analysis was achieved using X-ray crystallography after cocrystallization of the racemic compound 12b in complex with the ligand-binding domain of GluA2 (L504Y/N775S). Interestingly, both enantiomers of 12b were found to interact with the GluA2 dimer interface, almost identically to its benzothiadiazine analogue, BPAM344 (4). The interactions of the two enantiomers in the cocrystal were further analyzed (mapping Hirshfeld surfaces and 2D fingerprint) and compared to those of 4. Taken together, these data explain the lower affinity on AMPA receptors of thiochroman 1,1-dioxides compared to their corresponding 1,2,4-benzothiadiazine 1,1-dioxides.


Assuntos
Benzotiadiazinas , Receptores de AMPA , Regulação Alostérica , Benzotiadiazinas/farmacologia , Cristalografia por Raios X , Receptores de AMPA/metabolismo , Estereoisomerismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
6.
Arch Pharm (Weinheim) ; 354(5): e2000280, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33491807

RESUMO

Leishmaniasis is a major vector-borne parasitic disease that affects thousands of people in tropical and subtropical developing countries. In 2019 alone, it killed 26,000-65,000 individuals. Leishmaniasis is curable, yet its eradication and elimination are hampered by major hurdles, such as the availability of only a handful of clinical toxic drugs and the emergence of pathogenic resistance against them. This underscores the imperative need for new and effective antileishmanial drugs. In search for such agents, we synthesized and evaluated the in vitro antileishmanial potential of a small library of benzothiadiazine derivatives by assessing their activity against the promastigotes of three strains of Leishmania and toxicity in healthy cells. The derivatives were found to have no toxicity to the mammalian cells and were, in general, active against all parasites. The benzothiadiazine derivative 1e, 3-methyl-2-[3-(trifluoromethyl)benzyl]-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide, was found to be the most active (IC50 , 0.2 µM) against Leishmania major, responsible for the most prevalent disease form, cutaneous leishmaniasis. Conversely, benzothiadiazine 2c, 2-(4-bromobenzyl)-3-phenyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide, was the most potent (IC50 , 6.5 µM) against Leishmania donovani, a causative strain of the lethal visceral leishmaniasis. Both compounds stand as antipromastigote hits for further lead investigation into their potential to act as new antileishmanial agents.


Assuntos
Antiprotozoários/farmacologia , Benzotiadiazinas/farmacologia , Leishmania/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Benzotiadiazinas/síntese química , Benzotiadiazinas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
7.
ChemMedChem ; 16(7): 1143-1162, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33331124

RESUMO

Mitochondrial respiratory complex II (CII), also known as succinate dehydrogenase, plays a critical role in mitochondrial metabolism. Known but low potency CII inhibitors are selectively cytotoxic to cancer cells including the benzothiadiazine-based anti-hypoglycemic diazoxide. Herein, we study the structure-activity relationship of benzothiadiazine derivatives for CII inhibition and their effect on cancer cells for the first time. A 15-fold increase in CII inhibition was achieved over diazoxide, albeit with micromolar IC50 values. Cytotoxicity evaluation of the novel derivatives resulted in the identification of compounds with much greater antineoplastic effect than diazoxide, the most potent of which possesses an IC50 of 2.93±0.07 µM in a cellular model of triple-negative breast cancer, with high selectivity over nonmalignant cells and more than double the potency of the clinical agent 5-fluorouracil. No correlation between cytotoxicity and CII inhibition was found, thus indicating an as-yet-undefined mechanism of action of this scaffold. The derivatives described herein represent valuable hit compounds for therapeutic discovery in triple-negative breast cancer.


Assuntos
Antineoplásicos/farmacologia , Benzotiadiazinas/farmacologia , Descoberta de Drogas , Antineoplásicos/síntese química , Antineoplásicos/química , Benzotiadiazinas/síntese química , Benzotiadiazinas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
8.
Plant Physiol Biochem ; 156: 39-48, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32906020

RESUMO

In this study, the comparative effect of TeA, DCMU, bentazone, DBMIB and MV on prompt fluorescence and the MR820 signal was simultaneously analyzed to provide an insight into how to elucidate their precise influence on Ageratina adenophora photosystems. The herbicides that interrupt electron transport beyond QA, such as TeA, DCMU and bentazone, mainly increased the J-step level of fluorescence rise kinetics as a result of accumulation of QA-, but showed differences in detail. The IP phase disappeared in the presence of DCMU and bentazone with a significant increase in FO value. TeA treatment retained the IP phase with lowering FM. As an inhibitor of plastoquinone re-oxidation, DBMIB increased the I-step (IP phase almost unnoticable) without changing FO and FM values. MV blocking PSI electron transfer through intercepting electrons from the FeS clusters suppressed the IP phase by decreasing the P level. Considering the WIP kinetics, TeA and DBMIB also affected PSI activity. After DCMU and MV treatment, the major change in the MR820 kinetics was the loss of the slow phase due to the complete prevention of electron movement from PSII to re-reduce PC+ and P700+. TeA, bentazone and DBMIB clearly suppressed the MR820 slow phase and decreased the re-reduction rate of PC+ and P700+ (Vred), significantly. However, there were still parts of electrons being donated to PC+ and P700+, showing a smaller slow phase and PC+ and P700+ re-reduction rate. Additionally, TeA and DBMIB also somewhat declined the fast phase and PC and P700 oxidation rate (Vox).


Assuntos
Ageratina/efeitos dos fármacos , Clorofila A/química , Herbicidas/farmacologia , Benzotiadiazinas/farmacologia , Dibromotimoquinona/farmacologia , Diurona/farmacologia , Transporte de Elétrons , Fluorescência , Cinética , Oxirredução , Paraquat/farmacologia , Ácido Tenuazônico/farmacologia
9.
J Neurosci ; 40(12): 2471-2484, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32051325

RESUMO

The AMPA receptor (AMPAR) subunit GluA3 has been suggested to shape synaptic transmission and activity-dependent plasticity in endbulb-bushy cell synapses (endbulb synapses) in the anteroventral cochlear nucleus, yet the specific roles of GluA3 in the synaptic transmission at endbulb synapses remains unexplored. Here, we compared WT and GluA3 KO mice of both sexes and identified several important roles of GluA3 in the maturation of synaptic transmission and short-term plasticity in endbulb synapses. We show that GluA3 largely determines the ultrafast kinetics of endbulb synapses glutamatergic currents by promoting the insertion of postsynaptic AMPARs that contain fast desensitizing flop subunits. In addition, GluA3 is also required for the normal function, structure, and development of the presynaptic terminal which leads to altered short term-depression in GluA3 KO mice. The presence of GluA3 reduces and slows synaptic depression, which is achieved by lowering the probability of vesicle release, promoting efficient vesicle replenishment, and increasing the readily releasable pool of synaptic vesicles. Surprisingly, GluA3 also makes the speed of synaptic depression rate-invariant. We propose that the slower and rate-invariant speed of depression allows an initial response window that still contains presynaptic firing rate information before the synapse is depressed. Because this response window is rate-invariant, GluA3 extends the range of presynaptic firing rates over which rate information in bushy cells can be preserved. This novel role of GluA3 may be important to allowing the postsynaptic targets of spherical bushy cells in mice use rate information for encoding sound intensity and sound localization.SIGNIFICANCE STATEMENT We report novel roles of the glutamate receptor subunit GluA3 in synaptic transmission in synapses between auditory nerve fibers and spherical bushy cells (BCs) in the cochlear nucleus. We show that GluA3 contributes to the generation of ultrafast glutamatergic currents at these synapses, which is important to preserve temporal information about the sound. Furthermore, we demonstrate that GluA3 contributes to the normal function and development of the presynaptic terminal, whose properties shape short-term plasticity. GluA3 slows and attenuates synaptic depression, and makes it less dependent on the presynaptic firing rates. This may help BCs to transfer information about the high rates of activity that occur at the synapse in vivo to postsynaptic targets that use rate information for sound localization.


Assuntos
Núcleo Coclear/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de AMPA/fisiologia , Transmissão Sináptica/fisiologia , Animais , Percepção Auditiva/fisiologia , Benzotiadiazinas/farmacologia , Núcleo Coclear/citologia , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/genética , Localização de Som/fisiologia , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura
10.
Mini Rev Med Chem ; 20(10): 929-940, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31976832

RESUMO

BACKGROUND: Benzothiazine derivatives, because of their various biological activities have attracted particular attention in Med Chem and drug discovery efforts. The synthetic modifications of 1,2-benzothiazine 1,1-dioxides have been undertaken in order to explore and identify novel compounds or new analogues possessing promising biological activities. In our effort we have designed -oxicam derived bezothiazine-1,2,3-triazole derivatives as potential antibacterial agents. METHODS: These compounds were synthesized via a multi-step sequence involving the Cu catalyzed azide- alkyne cycloaddition (CuAAC) as a key step. The CuAAC proceeded at room temperature in DMF to afford 26 novel molecules in good (70-90%) yields. RESULTS: All these compounds were tested for their antibacterial properties against four strains of bacterial microorganisms and subsequently cytotoxic properties against lung and colon cancer cell lines. The compound 4e showed activities against majority of the bacterial species used (nearly comparable to amoxicillin, ciprofloxacin and ofloxacin against P. vulgaris) whereas 4d and 4f showed cytotoxicities selective towards cancer cells. CONCLUSION: The present bezothiazine-1,2,3-triazole framework represents a new template for the identification of novel and potent antibacterial/anticancer agents.


Assuntos
Benzotiadiazinas/química , Benzotiadiazinas/farmacologia , Descoberta de Drogas/métodos , Triazóis/química , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzotiadiazinas/síntese química , Técnicas de Química Sintética , Humanos , Triazóis/síntese química
11.
Mol Neurobiol ; 57(1): 191-199, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31515692

RESUMO

A series of new positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors based on 3,7-diazabicyclo[3.3.1]nonane scaffold have been designed, synthesized, and analyzed. In electrophysiological patch clamp studies, several compounds have demonstrated a sub-nanomolar potency. Compound 4 in in vivo tests showed anti-amnestic properties in the scopolamine-induced model of amnesia in the step-through passive avoidance or maximal electroshock experiments in rats at 0.01 mg/kg showing a significant "dose-response" advantage over memantine. Based on the analysis of the flexible docking results of PAMs, the cyclothiazide-like mechanism of binding mode was suggested as the major site for the interaction with AMPA receptors.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Benzotiadiazinas/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/metabolismo , Masculino , Ratos Wistar
12.
Anticancer Agents Med Chem ; 20(5): 599-611, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884931

RESUMO

BACKGROUND: Cancer is one of the major health and social-economic problems despite considerable progress in its early diagnosis and treatment. Owing to the emergence and increase of multidrug resistance to various conventional drugs, and the continuing importance of health-care expenditure, many researchers have focused on developing novel and effective anticancer compounds. OBJECTIVE: Chemical repositories provide a good platform to evaluate and exploit known chemical entities for the identification of other biological activities. In the present study, we have selected an in-house library of synthesized compounds based on two different pharmacophoric scaffolds to evaluate their cytotoxic potency on various cancer cell lines and mechanisms of action. METHODS: A series of in-house synthesized quinazoline and quinazolino-benzothiadiazine derivatives were investigated for their anticancer efficacy against a panel of five cancer (DU145, MCF7, HepG2, SKOV3 and MDA-MB-231) and one normal (MRC5) cell lines. Furthermore, the active compound of the study was investigated to elucidate the mechanism of cytotoxicity by performing series of experiments such as cell cycle analysis, inhibition of tubulin polymerization, alteration of mitochondrial membrane potential, determination of endocytic pathway for drug uptake pathway and combination drug treatment. RESULTS: Among all the tested compounds, fifteen of them exhibited promising growth-inhibitory effect (0.15- 5.0µM) and induced cell cycle arrest in the G2/M phase. In addition, the selected compounds inhibited the microtubule assembly; altered mitochondrial membrane potential and enhanced the levels of caspase-9 in MCF-7 cells. Furthermore, the active compound with a combination of drugs showed a synergistic effect at lower concentrations, and the drug uptake was mediated through clathrin-mediated endocytic pathway. CONCLUSION: Our results indicated that quinazoline and quinazolino-benzothiadiazine conjugates could serve as potential leads in the development of new anticancer agents.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzotiadiazinas/farmacologia , Mitose/efeitos dos fármacos , Quinazolinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/química , Benzotiadiazinas/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Estrutura Molecular , Polimerização/efeitos dos fármacos , Quinazolinas/química , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
13.
Neuroscience ; 410: 160-175, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082537

RESUMO

The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptors mediates most fast excitatory transmission. Glutamate binding to AMPA receptors (AMPARs) causes most AMPARs to rapidly and completely desensitize, and their desensitization kinetics influence synaptic timing. Thus, factors that alter AMPAR desensitization influence synaptic transmission. Synaptically released zinc is such a factor. Zinc is a neuromodulator with effects on amino acid receptors and synaptic transmission in many brain regions, including the olfactory bulb (OB). We have previously shown in the OB that zinc potentiates AMPAR-mediated currents at low concentrations (30 µM, 100 µM) and inhibits them at a higher concentration (1 mM). It has been hypothesized that zinc potentiates AMPARs by decreasing receptor desensitization. Here, we used cyclothiazide (CTZ), a drug that blocks AMPAR desensitization, to determine whether zinc-mediated potentiation and/or inhibition of AMPA-evoked currents reflect(s) changes in AMPAR desensitization. Zinc largely had biphasic concentration-dependent effects at OB AMPARs. CTZ completely blocked potentiation by zinc but had no significant effect on inhibition. There was a significant negative correlation between the degree of potentiation of AMPAR-mediated currents by 100 µM zinc and a quantitative measure of the degree of AMPAR desensitization (the steady-state to peak [S:P] ratio of AMPA-evoked currents), but no correlation between the degree of current inhibition by 1 mM zinc and the S:P ratio. Together, these findings suggest that low zinc concentrations potentiate rat OB AMPARs by decreasing receptor desensitization, but that the inhibitory effects of higher zinc concentrations are mediated by a separate mechanism.


Assuntos
Benzotiadiazinas/farmacologia , Bulbo Olfatório/fisiologia , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/fisiologia , Zinco/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Masculino , Bulbo Olfatório/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
14.
Eur J Med Chem ; 170: 112-125, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878826

RESUMO

A series of 24 benzothiadiazine derivatives with structural novelty were designed, synthesized and biologically evaluated as PI3Kδ-selective inhibitors. As a consequence of the structure-activity relationship (SAR) study, compounds 63 and 71 were identified with single-digit nanomolar IC50 values against PI3Kδ and submicromolar GI50 values against human malignant B-cell line SU-DHL-6. Furthermore, chiral resolution of the key amine intermediate of these two compounds was performed to achieve corresponding enantiomers. In subsequent biological evaluation, S-63 (IC50: 4.6 nM) and S-71 (IC50: below 0.32 nM) demonstrated comparable and superior PI3Kδ inhibitory activity, respectively, to that of idelalisib. Additionally, both S-63 (GI50: 33.2 nM) and S-71 (GI50: 15.9 nM) exerted enhanced anti-proliferative activity against the SU-DHL-6 cell line than that of idelalisib. Moreover, both S-63 and S-71 exhibited excellent PI3Kδ selectivity. In the further in vivo pharmacokinetic (PK) study, S-63 displayed a good plasma exposure and an acceptable oral bioavailability of 29.2%. By virtue of its biological performance, S-63 merits further development as a potential therapeutic agent for battling B-cell-mediated malignancies.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzotiadiazinas/química , Benzotiadiazinas/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Linfoma de Células B/tratamento farmacológico , Administração Oral , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Benzotiadiazinas/síntese química , Benzotiadiazinas/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Desenho de Fármacos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley
15.
J Biol Chem ; 294(16): 6522-6530, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30850396

RESUMO

Oxidative modifications of cysteine residues are an important component in signaling pathways, enzymatic regulation, and redox homeostasis. Current direct and indirect methods detect specific modifications and a general binary population of "free" or "oxidized" cysteines, respectively. In an effort to combine both direct and indirect detection strategies, here we developed a method that we designate isotopic tagging of oxidized and reduced cysteines (iTORC). This method uses synthetic molecules for rapid isotopic coding of sulfenic acids, reduced cysteines, and disulfides in cells. Our approach utilizes isotopically distinct benzothiazine and halogenated benzothiazine probes to sequentially alkylate sulfenic acids and then free thiols and, finally, after a reduction step, cysteines oxidized to disulfides or other phosphine-reducible states. We ascertained that the iodinated benzothiazine probe has reduced cross-reactivity toward primary amines and is highly reactive with the cysteine of GSH, with a calculated rate constant of 2 × 105 m-1 s-1 (pH 8.0, 23 °C) (i.e. 10-20 times faster than N-ethylmaleimide). We applied iTORC to a mouse hepatocyte lysate to identify known sulfenylated and disulfide-bonded proteins, including elongation factor 1-α1 and mouse serum albumin, and found that iTORC reliably detected their expected oxidation status. This method can be easily employed to study the effects of oxidants on recombinant proteins and cell and tissue extracts, and the efficiencies of the alkylating agents enable completion of all three labeling steps within 2 h. In summary, we demonstrate here that halogenated benzothiazine-based alkylating agents can be utilized to rapidly measure the cellular thiol status in cells.


Assuntos
Benzotiadiazinas/química , Cisteína/metabolismo , Hepatócitos/metabolismo , Marcação por Isótopo/métodos , Ácidos Sulfênicos/metabolismo , Animais , Benzotiadiazinas/farmacologia , Cisteína/análise , Masculino , Camundongos , Oxirredução , Ácidos Sulfênicos/análise
16.
J Enzyme Inhib Med Chem ; 34(1): 197-203, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30482059

RESUMO

A series of nineteen benzothiazin-4-ones from N-(3-aminopropyl) piperidine, 4-(2-aminoethyl)morpholine or 1-(2-aminoethyl)piperidine, aliphatic or aromatic aldehyde and thiosalicylic acid, were synthesized in good yields by multicomponent one-pot reactions. The solvent was toluene and this efficient procedure afforded the desired heterocycles in 5 h. Identification and characterization were achieved by NMR and GC-MS techniques. In vitro AChE activities of all compounds were evaluated in cerebral cortex and hippocampus of rats and in general, the results in cortex were more promising than hippocampus. The benzothiazinone 5Bd showed the best AChE inhibition activity IC50 8.48 µM (cortex) and IC50 39.80 µM (hippocampus). The cytotoxicity of seven compounds in MCR-5 human fibroblast cell by SRB test in 24 h were evaluated and 5Bd suggest preliminary safety, showing no cytotoxicity at 100 µM. Finally, these important findings could be a starting point for the development of new AChE inhibitors agents and will provide the basis for new studies.


Assuntos
Acetilcolinesterase/metabolismo , Benzotiadiazinas/farmacologia , Inibidores da Colinesterase/farmacologia , Animais , Benzotiadiazinas/síntese química , Benzotiadiazinas/química , Células Cultivadas , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade
17.
Biochem Pharmacol ; 148: 308-314, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29330065

RESUMO

It was previously reported that Stargazin (STG) enhances the surface expression of AMPA receptors, controls receptor gating and slows channel desensitization as an auxiliary subunit of the receptors. Ampakines are a class of AMPA receptor positive allosteric modulators that modify rates of transmitter binding, channel activity and desensitization parameters. As such, they have shown efficacy in animal models of neurodegenerative diseases, where excitatory synaptic transmission is compromised. Given the functional similarities between STG and ampakines, the current study sought to probe interactions between STG and ampakine gating properties. The effects of the high impact ampakines, CX614 and cyclothiazide (CTZ), were compared with homomeric GluR1-flip (Glur1i) and GluR2-flop (Glur2o) receptors expressed in HEK293 cells by transient transfection with or without STG gene. STG dramatically enhanced the surface expression of AMPA receptors and increased glutamate-induced steady-state currents during desensitization. STG also increased ratios of 500 µM kainate and 500 µM glutamate activated steady-state currents. STG reduced association rates of ampakines and differentially affected the dissociation rates for both CX614 and CTZ on desensitized receptors. The estimated Kd value for CX614 was lowered from 340 µM to 70 µM, whereas that for CTZ was lowered from 170 µM to 6 µM by STG. The data suggest that Stargazin can dramatically alter the conformation of the receptor dimer interface where CX614 and CTZ are known to bind. This work also demonstrates the importance of considering STG interactions when developing ampakines to treat neurodegenerative diseases in which AMPAergic signaling is compromised.


Assuntos
Canais de Cálcio/metabolismo , Receptores de AMPA/metabolismo , Benzotiadiazinas/farmacologia , Canais de Cálcio/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Células HEK293 , Humanos , Potenciais da Membrana , Oxazinas/farmacologia , Receptores de AMPA/genética
18.
J Med Chem ; 61(1): 251-264, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29256599

RESUMO

We report here the synthesis of 7-phenoxy-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides and their evaluation as AMPA receptor positive allosteric modulators (AMPApams). The impact of substitution on the phenoxy ring and on the nitrogen atom at the 4-position was examined. At GluA2(Q) expressed in HEK293 cells (calcium flux experiment), the most potent compound was 11m (4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide, EC50 = 2.0 nM). The Hill coefficient in the screening and the shape of the dimerization curve in small-angle X-ray scattering (SAXS) experiments using isolated GluA2 ligand-binding domain (GluA2-LBD) are consistent with binding of one molecule of 11m per dimer interface, contrary to most benzothiadiazine dioxides developed to date. This observation was confirmed by the X-ray structure of 11m bound to GluA2-LBD and by NMR. This is the first benzothiadiazine dioxide AMPApam to reach the nanomolar range.


Assuntos
Benzotiadiazinas/química , Benzotiadiazinas/farmacologia , Receptores de AMPA/metabolismo , Regulação Alostérica/efeitos dos fármacos , Desenho de Fármacos , Células HEK293 , Humanos
19.
Biophys J ; 113(10): 2218-2235, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-28863863

RESUMO

Wild-type AMPA receptors display a characteristic rapidly desensitizing phenotype. Many studies point to the dimer interface between pairs of extracellular ligand binding domains as the key region controlling the rate at which the receptors desensitize. However, mutations at the extracellular end of the pore-forming regions (near the putative ion channel gate) have also been shown to alter desensitization. Here we report the behavior of single GluA4 receptors carrying one of two mutations that greatly reduce desensitization at the level of ensemble currents: the dimer interface mutation L484Y and the Lurcher mutation (A623T, GluA4-Lc) in the extracellular end of M3 (the second true transmembrane helix). Analysis of unitary currents in patches with just one active receptor showed that each mutation greatly prolongs bursts of openings without prolonging the apparent duration of individual openings. Each mutation decreases the frequency with which individual receptors visit desensitized states, but both mutant receptors still desensitize multiple times per second. Cyclothiazide (CTZ) reduced desensitization of wild-type receptors and both types of mutant receptor. Analysis of shut-time distributions revealed a form of short-lived desensitization that was resistant to CTZ and was especially prominent for GluA4-Lc receptors. Despite reducing desensitization of GluA4 L484Y receptors, CTZ decreased the amplitude of ensemble currents through GluA2 and GluA4 LY receptor mutants. Single-channel analysis and comparison of the GluA2 L483Y ligand binding domain dimer in complex with glutamate with and without CTZ is consistent with the conclusion that CTZ binding to the dimer interface prevents effects of the LY mutation to modulate receptor activation, resulting in a reduction in the prevalence of large-conductance substates that accounts for the decrease in ensemble current amplitudes. Together, the results show that similar nondesensitizing AMPA-receptor phenotypes of population currents can arise from distinct underlying molecular mechanisms that produce different types of unitary activity.


Assuntos
Receptores de AMPA/metabolismo , Benzotiadiazinas/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Mutagênese , Mutação , Probabilidade , Multimerização Proteica , Estrutura Quaternária de Proteína , Receptores de AMPA/química , Receptores de AMPA/genética
20.
Cell Calcium ; 66: 10-18, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28807145

RESUMO

The transient receptor potential canonical channel 5 (TRPC5) is a Ca2+-permeable ion channel, which is predominantly expressed in the brain. TRPC5-deficient mice exhibit a reduced innate fear response and impaired motor control. In addition, outgrowth of hippocampal and cerebellar neurons is retarded by TRPC5. However, pharmacological evidence of TRPC5 function on cellular or organismic levels is sparse. Thus, there is still a need for identifying novel and efficient TRPC5 channel modulators. We, therefore, screened compound libraries and identified the glucocorticoid methylprednisolone and N-[3-(adamantan-2-yloxy)propyl]-3-(6-methyl-1,1-dioxo-2H-1λ6,2,4-benzothiadiazin-3-yl)propanamide (BTD) as novel TRPC5 activators. Comparisons with closely related chemical structures from the same libraries indicate important substructures for compound efficacy. Methylprednisolone activates TRPC5 heterologously expressed in HEK293 cells with an EC50 of 12µM, while BTD-induced half-maximal activation is achieved with 5-fold lower concentrations, both in Ca2+ assays (EC50=1.4µM) and in electrophysiological whole cell patch clamp recordings (EC50=1.3 µM). The activation resulting from both compounds is long lasting, reversible and sensitive to clemizole, a recently established TRPC5 inhibitor. No influence of BTD on homotetrameric members of the remaining TRPC family was observed. On the main sensory TRP channels (TRPA1, TRPV1, TRPM3, TRPM8) BTD exerts only minor activity. Furthermore, BTD can activate heteromeric channel complexes consisting of TRPC5 and its closest relatives TRPC1 or TRPC4, suggesting a high selectivity of BTD for channel complexes bearing at least one TRPC5 subunit.


Assuntos
Benzotiadiazinas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Metilprednisolona/farmacologia , Canais de Cátion TRPC/metabolismo , Animais , Benzotiadiazinas/química , Sinalização do Cálcio/efeitos dos fármacos , Células HEK293 , Humanos , Metilprednisolona/química , Camundongos , Microscopia Confocal , Técnicas de Patch-Clamp , Fosfoinositídeo Fosfolipase C/metabolismo , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/agonistas , Subunidades Proteicas/metabolismo , Canais de Cátion TRPC/agonistas , Canais de Cátion TRPC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...