Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 106: 129735, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588785

RESUMO

A series of 1,4-benzoxazin-3-one analogs were investigated to discover mode-selective TRPV1 antagonists, since such antagonists are predicted to minimize target-based adverse effects. Using the high-affinity antagonist 2 as the lead structure, the structure activity relationship was studied by modifying the A-region through incorporation of a polar side chain on the benzoxazine and then by changing the C-region with a variety of substituted pyridine, pyrazole and thiazole moieties. The t-butyl pyrazole and thiazole C-region analogs provided high potency as well as mode-selectivity. Among them, antagonist 36 displayed potent and capsaicin-selective antagonism with IC50 = 2.31 nM for blocking capsaicin activation and only 47.5 % inhibition at 3 µM concentration toward proton activation, indicating that more than a 1000-fold higher concentration of 36 was required to inhibit proton activation than was required to inhibit capsaicin activation. The molecular modeling study of 36 with our homology model indicated that two π-π interactions with the Tyr511 and Phe591 residues by the A- and C-region and hydrogen bonding with the Thr550 residue by the B-region were critical for maintaining balanced and stable binding. Systemic optimization of antagonist 2, which has high-affinity but full antagonism for activators of all modes, led to the mode-selective antagonist 36 which represents a promising step in the development of clinical TRPV1 antagonists minimizing side effects such as hyperthermia and impaired heat sensation.


Assuntos
Benzoxazinas , Canais de Cátion TRPV , Ureia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Relação Estrutura-Atividade , Benzoxazinas/química , Benzoxazinas/farmacologia , Benzoxazinas/síntese química , Ureia/análogos & derivados , Ureia/química , Ureia/farmacologia , Ureia/síntese química , Humanos , Estrutura Molecular , Animais , Capsaicina/farmacologia , Capsaicina/química , Descoberta de Drogas , Relação Dose-Resposta a Droga
2.
Angew Chem Int Ed Engl ; 63(21): e202401189, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38506220

RESUMO

This study introduces a novel approach for synthesizing Benzoxazine-centered Polychiral Polyheterocycles (BPCPHCs) via an innovative asymmetric carbene-alkyne metathesis-triggered cascade. Overcoming challenges associated with intricate stereochemistry and multiple chiral centers, the catalytic asymmetric Carbene Alkyne Metathesis-mediated Cascade (CAMC) is employed using dirhodium catalyst/Brønsted acid co-catalysis, ensuring precise stereo control as validated by X-ray crystallography. Systematic substrate scope evaluation establishes exceptional diastereo- and enantioselectivities, creating a unique library of BPCPHCs. Pharmacological exploration identifies twelve BPCPHCs as potent Nav ion channel blockers, notably compound 8 g. In vivo studies demonstrate that intrathecal injection of 8 g effectively reverses mechanical hyperalgesia associated with chemotherapy-induced peripheral neuropathy (CIPN), suggesting a promising therapeutic avenue. Electrophysiological investigations unveil the inhibitory effects of 8 g on Nav1.7 currents. Molecular docking, dynamics simulations and surface plasmon resonance (SPR) assay provide insights into the stable complex formation and favorable binding free energy of 8 g with C5aR1. This research represents a significant advancement in asymmetric CAMC for BPCPHCs and unveils BPCPHC 8 g as a promising, uniquely acting pain blocker, establishing a C5aR1-Nav1.7 connection in the context of CIPN.


Assuntos
Alcinos , Benzoxazinas , Metano , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Alcinos/química , Benzoxazinas/química , Benzoxazinas/farmacologia , Benzoxazinas/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Humanos , Estereoisomerismo , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/síntese química , Estrutura Molecular , Catálise , Descoberta de Drogas , Animais
3.
Carbohydr Res ; 510: 108458, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34634551

RESUMO

A convenient protocol for the two component preparation of 1,3-benzoxazines by using several protected and unprotected carbohydrate molecules as organocatalysts have been developed which is broadly applicable to condensation reaction between variety of Mannich bases and paraformaldehyde. This study revealed that fructose have much higher catalytic activity than the other carbohydrates and can be an alternative to metal-containing catalysts as a green renewable organocatalyst for efficient and rapid construction of 1,3-benzoxazine skeleton. In this context, 21 benzoxazine compounds were successfully synthesized and spectral characterizations of these compounds were carried out by spectroscopic methods and elemental analysis. Furthermore, density functional theory (DFT) calculations have been performed to study the detailed mechanism of organocatalyst assisted synthesis of the benzoxazine monomers. The results obtained from these calculations showed that the more realistic reaction pathway involves formation of a phenolate based intermediate which loses a water molecule to form benzenaminium ion. Subsequently, this ion provides the formation of the corresponding benzoxazines with good yields through the intramolecular ring closure step.


Assuntos
Benzoxazinas/síntese química , Carboidratos/química , Benzoxazinas/química , Catálise , Teoria da Densidade Funcional , Avaliação Pré-Clínica de Medicamentos , Estrutura Molecular
4.
J Med Chem ; 64(18): 13410-13428, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34499493

RESUMO

Retinoic acid receptor-related orphan receptor γ (RORc, RORγ, or NR1F3) is the nuclear receptor master transcription factor that drives the function and development of IL-17-producing T helper cells (Th17), cytotoxic T cells (Tc17), and subsets of innate lymphoid cells. Activation of RORγ+ T cells in the tumor microenvironment is hypothesized to render immune infiltrates more effective at countering tumor growth. To test this hypothesis, a family of benzoxazines was optimized to provide LYC-55716 (37c), a potent, selective, and orally bioavailable small-molecule RORγ agonist. LYC-55716 decreases tumor growth and enhances survival in preclinical tumor models and was nominated as a clinical development candidate for evaluation in patients with solid tumors.


Assuntos
Antineoplásicos/uso terapêutico , Benzoxazinas/uso terapêutico , Neoplasias/tratamento farmacológico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Propionatos/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Benzoxazinas/síntese química , Benzoxazinas/farmacocinética , Feminino , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Propionatos/síntese química , Propionatos/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-Atividade
5.
AAPS PharmSciTech ; 22(5): 171, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34100170

RESUMO

Macrophages act as a cellular reservoir in HIV infection. Elimination of HIV from macrophages has been an unfulfilled dream due to the failure of drugs to reach them. To address this, we developed CD44 receptor-targeted, novel hyaluronic acid (HA)-coated nanostructured lipid carriers (NLCs) of efavirenz via washless layer-by-layer (LbL) assembly of HA and polyallylamine hydrochloride (PAH). NLCs were subjected to TEM analysis, size and zeta potential, in vitro release and encapsulation efficiency studies. The uptake of NLCs in THP-1 cells was studied using fluorescence microscopy and flow cytometry. The anti-HIV efficacy was evaluated using p24 antigen inhibition assay. NLCs were found to be spherical in shape with anionic zeta potential (-23.66 ± 0.87 mV) and 241.83 ± 5.38 nm particle size. NLCs exhibited prolonged release of efavirenz during in vitro drug release studies. Flow cytometry revealed 1.73-fold higher uptake of HA-coated NLCs in THP-1 cells. Cytotoxicity studies showed no significant change in cell viability in presence of NLCs as compared with the control. HA-coated NLCs distributed throughout the cell including cytoplasm, plasma membrane and nucleus, as observed during fluorescence microscopy. HA-coated NLCs demonstrated consistent and significantly higher inhibition (81.26 ± 1.70%) of p24 antigen which was 2.08-fold higher than plain NLCs. The obtained results suggested preferential uptake of HA-coated NLCs via CD44-mediated uptake. The present finding demonstrates that HA-based CD44 receptor targeting in HIV infection is an attractive strategy for maximising the drug delivery to macrophages and achieve effective viral inhibition.


Assuntos
Portadores de Fármacos/administração & dosagem , HIV-1/efeitos dos fármacos , Receptores de Hialuronatos , Macrófagos/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Inibidores da Transcriptase Reversa/administração & dosagem , Alcinos/administração & dosagem , Alcinos/síntese química , Alcinos/metabolismo , Benzoxazinas/administração & dosagem , Benzoxazinas/síntese química , Benzoxazinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ciclopropanos/administração & dosagem , Ciclopropanos/síntese química , Ciclopropanos/metabolismo , Relação Dose-Resposta a Droga , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , HIV-1/fisiologia , Humanos , Receptores de Hialuronatos/metabolismo , Lipídeos/administração & dosagem , Lipídeos/síntese química , Macrófagos/metabolismo , Nanoestruturas/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/metabolismo , Células THP-1
6.
Angew Chem Int Ed Engl ; 60(32): 17514-17521, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34018657

RESUMO

Macrophage migration inhibitory factor (MIF) is involved in protein-protein interactions that play key roles in inflammation and cancer. Current strategies to develop small molecule modulators of MIF functions are mainly restricted to the MIF tautomerase active site. Here, we use this site to develop proteolysis targeting chimera (PROTAC) in order to eliminate MIF from its protein-protein interaction network. We report the first potent MIF-directed PROTAC, denoted MD13, which induced almost complete MIF degradation at low micromolar concentrations with a DC50 around 100 nM in A549 cells. MD13 suppresses the proliferation of A549 cells, which can be explained by deactivation of the MAPK pathway and subsequent induction of cell cycle arrest at the G2/M phase. MD13 also exhibits antiproliferative effect in a 3D tumor spheroid model. In conclusion, we describe the first MIF-directed PROTAC (MD13) as a research tool, which also demonstrates the potential of PROTACs in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Benzoxazinas/farmacologia , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Ftalimidas/farmacologia , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/síntese química , Benzoxazinas/síntese química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Oxirredutases Intramoleculares/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fatores Inibidores da Migração de Macrófagos/química , Ftalimidas/síntese química , Proteólise/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo
7.
Arch Pharm (Weinheim) ; 354(2): e2000199, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33617016

RESUMO

Seventeen 1,4-benzoxazin-2-ones bearing the enaminone moiety and three of their analogs were tested for the antibacterial activity against Mycobacterium tuberculosis (H37Rv). Minimal bactericidal concentrations (MBCs) were determined after 41 days of incubation by BACTEC. 1,4-Benzoxazin-2-ones bearing the unsubstituted benzo moiety showed the most promising activities (MBC = 5.00 µg/ml). For most active compounds, antibacterial activities were determined daily during the 41 days. The most promising compound showed a bacteriostatic effect at a concentration of 0.31 µg/ml on Day 4 of incubation, 0.62 µg/ml on Day 6, 2.50 µg/ml on Day 9, and 5.00 µg/ml on Day 41. All studied compounds, along with some of their reported analogs, were docked to 35 proteins of M. tuberculosis to find their potent targets in these organisms. As a result of reverse docking, aspartate 1-decarboxylase, panD, was selected as the most appropriate target. Docking of the most active compounds to mutant panD from pyrazinamide-resistant strains of M. tuberculosis implies that they would not be active against these strains. Considering that most of pyrazinamide clinical resistance cases are due to loss-of-function mutations in pyrazinamidase, pncA, compounds from this study could be useful drugs for the treatment of some cases of pyrazinamide-resistant tuberculosis.


Assuntos
Antibacterianos/farmacologia , Benzoxazinas/farmacologia , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Benzoxazinas/síntese química , Benzoxazinas/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular
8.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008773

RESUMO

There is currently a pursuit of synthetic approaches for designing porous carbon materials with selective CO2 capture and/or excellent energy storage performance that significantly impacts the environment and the sustainable development of circular economy. In this study we prepared a new bio-based benzoxazine (AP-BZ) in high yield through Mannich condensation of apigenin, a naturally occurring phenol, with 4-bromoaniline and paraformaldehyde. We then prepared a PA-BZ porous organic polymer (POP) through Sonogashira coupling of AP-BZ with 1,3,6,8-tetraethynylpyrene (P-T) in the presence of Pd(PPh3)4. In situ Fourier transform infrared spectroscopy and differential scanning calorimetry revealed details of the thermal polymerization of the oxazine rings in the AP-BZ monomer and in the PA-BZ POP. Next, we prepared a microporous carbon/metal composite (PCMC) in three steps: Sonogashira coupling of AP-BZ with P-T in the presence of a zeolitic imidazolate framework (ZIF-67) as a directing hard template, affording a PA-BZ POP/ZIF-67 composite; etching in acetic acid; and pyrolysis of the resulting PA-BZ POP/metal composite at 500 °C. Powder X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller (BET) measurements revealed the properties of the as-prepared PCMC. The PCMC material exhibited outstanding thermal stability (Td10 = 660 °C and char yield = 75 wt%), a high BET surface area (1110 m2 g-1), high CO2 adsorption (5.40 mmol g-1 at 273 K), excellent capacitance (735 F g-1), and a capacitance retention of up to 95% after 2000 galvanostatic charge-discharge (GCD) cycles; these characteristics were excellent when compared with those of the corresponding microporous carbon (MPC) prepared through pyrolysis of the PA-BZ POP precursors with a ZIF-67 template at 500 °C.


Assuntos
Benzoxazinas/química , Dióxido de Carbono/química , Carbono/química , Metais/química , Adsorção , Benzoxazinas/síntese química , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Eletricidade , Eletroquímica , Nitrogênio/química , Polímeros/química , Porosidade , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
9.
Bioorg Med Chem ; 28(20): 115699, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069078

RESUMO

Dihydrobenzoxazinone based design and synthesis produced two series of compounds as aldose reductase (ALR2) inhibitor candidates. In particular, phenolic residues were embodied into the compounds for the combination of strengthening the inhibitory acitvity and antioxidant ability to retard the progression of diabetic complications. Most of the derivatives with styryl side chains exhibited excellent activities on selective ALR2 inhibition with IC50 values ranging from 0.082 to 0.308 µM, and {8-[2-(4-hydroxy-phenyl)-vinyl]-2-oxo-2,3-dihydro-benzo[1,4]oxazin-4-yl}-acetic acid (3a) was the most potent. More significantly, most of dihydrobenzoxazinone compounds revealed not only good inhibitory effect on ALR2, but also showed powerful antioxidant activity. Notably, phenolic compound 3a was even comparable to the well-known antioxidant Trolox, confirming that the C8 p-hydroxystyryl substitution was key structure of lowering oxidative stress. Therefore, these results provided an achievement of multifunctional ALR2 inhibitors possessing capacities for both ALR2 inhibition and as antioxidants.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Antioxidantes/farmacologia , Benzoxazinas/farmacologia , Inibidores Enzimáticos/farmacologia , Aldeído Redutase/metabolismo , Animais , Antioxidantes/síntese química , Antioxidantes/química , Benzoxazinas/síntese química , Benzoxazinas/química , Compostos de Bifenilo/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Picratos/antagonistas & inibidores , Ratos , Relação Estrutura-Atividade
10.
Cell Death Dis ; 11(8): 666, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820146

RESUMO

Macrophages, with diverse functions and variable phenotypes, are considered as an important executor of inflammatory diseases. And it has been proved that autophagy is deeply connected with the development of inflammation, while the exact regulatory mechanism still remains unclear, and the application of autophagy regulators in anti-inflammation needs to be further confirmed. Here, we firstly verified that neochromine S5 (hereinafter referred to as S5) significantly inhibited M1-like macrophage polarization with decrease of the proinflammatory cytokines and downregulation of NF-κB and STAT1 signals. Then, in vivo experiments demonstrated S5 improved cecal ligation and puncture (CLP)-induced sepsis specially based on the regulation of M1-like macrophages. Mechanistic studies indicated that S5 treatment dramatically upregulated cellular autophagy in M1-like macrophage. Furthermore, by multiple methods, S5 was revealed to directly bind with ubiquitin-specific proteases 14 (USP14) at Ser404, Phe405, and Cys414 by hydrogen bond to inhibit its deubiquitinating activity, and block USP14-TRAF6 (TNF receptor associated factor 6) interaction, subsequently promoting ubiquitination of Beclin1, interrupting Beclin1-Bcl2 interaction, and accumulating the autophagosome in macrophages, which finally resulted in the blockade of M1-like macrophage polarization. Animal experiments also confirmed the protection of S5 in CLP mice was dependent on activation of macrophage autophagy. What's more, as a novel USP14 inhibitor, S5 exhibited higher efficiency and safety than IU1, the known USP14 inhibitor. Therefore, this study has demonstrated that typically inhibiting USP14 promotes autophagy in M1-like macrophages and alleviates CLP-induced sepsis. Moreover, we provide a new candidate compound, S5, for sensitizing autophagy to interfere with the macrophage inflammation.


Assuntos
Autofagia/fisiologia , Benzoxazinas/farmacologia , Cromonas/farmacologia , Macrófagos/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Proteína Beclina-1/metabolismo , Benzoxazinas/síntese química , Cromonas/síntese química , Citocinas/metabolismo , Feminino , Ativação de Macrófagos/imunologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fator de Transcrição STAT1/metabolismo , Sepse/metabolismo , Sepse/fisiopatologia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina Tiolesterase/fisiologia
11.
Chem Commun (Camb) ; 56(53): 7309-7312, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32478362

RESUMO

Using ureas as transfer catalysts through hydrogen bonding activation, biomimetic asymmetric reduction of benzoxazinones and quinoxalinones with chiral and regenerable NAD(P)H models was described, giving chiral dihydrobenzoxazinones and dihydroquinoxalinones with high yields and excellent enantioselectivities. A key dihydroquinoxalinone intermediate of a BRD4 inhibitor was synthesized using biomimetic asymmetric reduction.


Assuntos
Benzoxazinas/síntese química , Materiais Biomiméticos/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Quinoxalinas/química , Fatores de Transcrição/antagonistas & inibidores , Ureia/química , Benzoxazinas/metabolismo , Catálise , Complexos de Coordenação/química , Ligação de Hidrogênio , Modelos Químicos , Conformação Molecular , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/química , Oxirredução , Quinoxalinas/síntese química , Quinoxalinas/metabolismo , Rutênio/química , Especificidade por Substrato
12.
J Am Chem Soc ; 142(23): 10358-10372, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32412754

RESUMO

With a resurgence in interest in covalent drugs, there is a need to identify new moieties capable of cysteine bond formation that are differentiated from commonly employed systems such as acrylamide. Herein, we report on the discovery of new alkynyl benzoxazine and dihydroquinazoline moieties capable of covalent reaction with cysteine. Their utility as alternative electrophilic warheads for chemical biological probes and drug molecules is demonstrated through site-selective protein modification and incorporation into kinase drug scaffolds. A potent covalent inhibitor of JAK3 kinase was identified with superior selectivity across the kinome and improvements in in vitro pharmacokinetic profile relative to the related acrylamide-based inhibitor. In addition, the use of a novel heterocycle as a cysteine reactive warhead is employed to target Cys788 in c-KIT, where acrylamide has previously failed to form covalent interactions. These new reactive and selective heterocyclic warheads supplement the current repertoire for cysteine covalent modification while avoiding some of the limitations generally associated with established moieties.


Assuntos
Benzoxazinas/farmacologia , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Benzoxazinas/síntese química , Benzoxazinas/química , Humanos , Janus Quinase 3/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinazolinas/síntese química , Quinazolinas/química
13.
J Am Chem Soc ; 142(19): 8946-8952, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32352775

RESUMO

Difluoromethylene-containing compounds have attracted substantial research interest over the past decades for their ability to mimic biological functions of traditional functional groups while providing a wide variety of pharmacological benefits bestowed by the C-F bond. We report a novel strategy to access RCF2Br-containing heterocycles by regio- and enantioselective bromocyclization of difluoroalkenes enabled by chiral anion phase-transfer catalysis. The utility of this methodology was highlighted through a synthesis of an analogue of efavirenz, a drug used for treating HIV. Additionally, the synthetic versatility of the CF2Br intermediates was showcased through functionalization to a variety of enantioenriched α,α-difluoromethylene-containing products.


Assuntos
Alcinos/síntese química , Benzoxazinas/síntese química , Ciclopropanos/síntese química , Hidrocarbonetos Fluorados/síntese química , Alcinos/química , Benzoxazinas/química , Ciclopropanos/química , Hidrocarbonetos Fluorados/química , Estrutura Molecular , Estereoisomerismo
14.
Int Immunopharmacol ; 83: 106445, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32272395

RESUMO

The purpose of this study was to synthesize 4-hydroxybenzo[d]oxazol-2(3H)-one (HBO) and to investigate its protective effects on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury. HBO (C7H5O3N) was synthesized based on 2-nitro-resorcinol and identified by physicochemical analysis. In the animal experiment, mice were pretreated with HBO (50, 100, 200 mg/kg) for 10 days. At the end of pretreatment, the animals were injected with LPS (10 µg/kg)/D-GalN (700 mg/kg). The results showed that HBO significantly alleviated liver injury induced by LPS/D-GalN in mice. It remarkably decreased inflammatory response by reducing the levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß). Moreover, HBO notably attenuated hepatocyte apoptosis by inhibiting the release of Cytochrome C (Cyt C) from mitochondria into the cytoplasm and regulating the expression of B-cell lymphoma-2 (Bcl-2) family. Furthermore, the result showed that HBO inhibited the expressions of nuclear factor kappa-B p50 (NF-κBp50), toll-like receptor 4 (TLR4), and myeloid differentiation factor 88 (MyD88), as well as the phosphorylation of inhibitor of nuclear factor kappa-B (IκB), inhibitor of nuclear factor kappa-B kinase-α/ß (IKK-α/ß), nuclear factor kappa-B p65 (NF-κBp65), suggesting that HBO had a certain influence on the TLR4/NF-κB pathway. In addition, the mitogen-activated protein kinase (MAPK) signaling pathway was also affected by HBO, as evidenced by the decrease in the phosphorylation levels of extracellular regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38). In conclusion, our study suggested that HBO could protect against LPS/D-GalN-induced liver injury, moreover, treatment with HBO appeared to be capable of further regulating the TLR4/NF-κB and MAPK signaling pathways.


Assuntos
Anti-Inflamatórios/uso terapêutico , Benzoxazinas/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Hepatócitos/fisiologia , Animais , Apoptose , Benzoxazinas/síntese química , Células Cultivadas , Citocinas/metabolismo , Galactose/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 5 Toll-Like/metabolismo
15.
ACS Chem Biol ; 15(4): 824-829, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32109051

RESUMO

Within mammals, there are often several functionally related glycoside hydrolases, which makes monitoring their activities problematic. This problem is particularly acute for the enzyme ß-glucocerebrosidase (GCase), the malfunction of which is a key driver of Gaucher's disease (GD) and a major risk factor for Parkinson's disease (PD). Humans harbor two other functionally related ß-glucosidases known as GBA2 and GBA3, and the currently used fluorogenic substrates are not selective, which has driven the use of complicated subtractive assays involving the use of detergents and inhibitors. Here we describe the preparation of fluorogenic substrates based on the widely used nonselective substrate resorufin ß-d-glucopyranoside. Using recombinant enzymes, we show that these substrates are highly selective for GCase. We also demonstrate their value through the analysis of GCase activity in brain tissue homogenates from transgenic mice expressing mutant human GCase and patient fibroblasts expressing mutant GCase. This approach simplifies the analysis of cell and tissue homogenates and should facilitate the analysis of clinical and laboratory tissues and samples.


Assuntos
Benzoxazinas/metabolismo , Corantes Fluorescentes/metabolismo , Glucosídeos/metabolismo , Glucosilceramidase/análise , Animais , Benzoxazinas/síntese química , Encéfalo/enzimologia , Ensaios Enzimáticos/métodos , Fibroblastos/enzimologia , Corantes Fluorescentes/síntese química , Glucosídeos/síntese química , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Cinética , Camundongos Transgênicos , Mutação
16.
Bioorg Med Chem ; 28(4): 115300, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31937477

RESUMO

The imidazobenzoxazin-5-thione MV1035, synthesized as a new sodium channel blocker, has been tested on tumoral cells that differ for origin and for expressed NaV pool (U87-MG, H460 and A549). In this paper we focus on the effect of MV1035 in reducing U87 glioblastoma cell line migration and invasiveness. Since the effect of this compound on U87-MG cells seemed not dependent on its sodium channel blocking capability, alternative off-target interaction for MV1035 have been identified using SPILLO-PBSS software. This software performs a structure-based in silico screening on a proteome-wide scale, that allows to identify off-target interactions. Among the top-ranked off-targets of MV1035, we focused on the RNA demethylase ALKBH5 enzyme, known for playing a key role in cancer. In order to prove the effect of MV1035 on ALKBH5 in vitro coincubation of MV1035 and ALKBH5 has been performed demonstrating a consequent increase of N6-methyladenosine (m6A) RNA. To further validate the pathway involving ALKBH5 inhibition by MV1035 in U87-MG reduced migration and invasiveness, we evaluated CD73 as possible downstream protein. CD73 is an extrinsic protein involved in the generation of adenosine and is overexpressed in several tumors including glioblastoma. We have demonstrated that treating U87-MG with MV1035, CD73 protein expression was reduced without altering CD73 transcription. Our results show that MV1035 is able to significantly reduce U87 cell line migration and invasiveness inhibiting ALKBH5, an RNA demethylase that can be considered an interesting target in fighting glioblastoma aggressiveness. Our data encourage to further investigate the MV1035 inhibitory effect on glioblastoma.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/antagonistas & inibidores , Benzoxazinas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteoma/efeitos dos fármacos , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Benzoxazinas/síntese química , Benzoxazinas/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
17.
Med Chem ; 16(7): 938-946, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31448713

RESUMO

INTRODUCTION: Integrase is a validated drug target for anti-HIV-1 therapy. The second generation integrase inhibitors display π-stacking interaction ability with 3'-end nucleotide as a streamlined metal chelating pharmacophore. METHODS: In this study, we introduced benzoxazin-3-one scaffold for integrase inhibitory potential as bioisostere replacement strategy of 2-benzoxazolinone. RESULTS: Molecular modeling studies revealed that amide functionality alongside oxadiazole heteroatoms and sulfur in the second position of oxadiazole ring could mimic the metal chelating pharmacophore. The halobenzyl ring occupies hydrophobic site created by the cytidylate nucleotide (DC-16). CONCLUSION: The most potent and selective compound displayed 110 µM IC50 with a selectivity index of more than 2.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzoxazinas/farmacologia , Desenho de Fármacos , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Benzoxazinas/síntese química , Benzoxazinas/química , Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular
18.
Eur J Med Chem ; 187: 111924, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855792

RESUMO

Cancer and malaria remain relevant pathologies in modern medicinal chemistry endeavours. This is compounded by the threat of development of resistance to existing clinical drugs in use as first-line option for treatment of these diseases. To counter this threat, strategies such as drug repurposing and hybridization are constantly adapted in contemporary drug discovery for the expansion of the drug arsenal and generation of novel chemotypes with potential to avert or delay resistance. In the present study, a polymer precursor scaffold, 1,3-benzoxazine, has been repurposed by incorporation of an organometallic ferrocene unit to produce a novel class of compounds showing in vitro biological activity against breast cancer, malaria and trypanosomiasis. The resultant ferrocenyl 1,3-benzoxazine compounds displayed high potency and selectivity against the investigated diseases, with IC50 values in the low and sub-micromolar range against both chloroquine-sensitive (3D7) and resistant (Dd2) strains of the Plasmodium falciparum parasite. On the other hand, antitrypanosomal (Trypanosoma brucei brucei) potencies were observed between 0.15 and 38.6 µM. The majority of the compounds were not active against breast cancer cells (HCC70), however, for the toxic compounds, IC50 values ranged from 11.0 to 30.5 µM. Preliminary structure-activity relationships revealed the basic oxazine sub-ring and lipophilic benzene substituents to be conducive for biological efficacy of the ferrocenyl 1,3-benzoxazines reported in the study. DNA interaction studies performed on the most promising compound 4c suggested that DNA damage may be one possible mode of action of this class of compounds.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Benzoxazinas/farmacologia , Reposicionamento de Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Polímeros/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoxazinas/síntese química , Benzoxazinas/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Polímeros/síntese química , Polímeros/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Bioorg Med Chem ; 28(1): 115178, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753798

RESUMO

A series of ß2-adrenoceptor agonists with an 8-(2-amino-1-hydroxyethyl)-6-hydroxy-1,4-benzoxazine-3(4H)-one moiety is presented. The stimulatory effects of the compounds on human ß2-adrenoceptor and ß1-adrenoceptor were characterized by a cell-based assay. Their smooth muscle relaxant activities were tested on isolated guinea pig trachea. Most of the compounds were found to be potent and selective agonists of the ß2-adrenoceptor. One of the compounds, (R)-18c, possessed a strong ß2-adrenoceptor agonistic effect with an EC50 value of 24 pM. It produced a full and potent airway smooth muscle relaxant effect same as olodaterol. Its onset of action was 3.5 min and its duration of action was more than 12 h in an in vitro guinea pig trachea model of bronchodilation. These results suggest that (R)-18c is a potential candidate for long-acting ß2-AR agonists.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Benzoxazinas/farmacologia , Desenho de Fármacos , Receptores Adrenérgicos beta 2/metabolismo , Agonistas Adrenérgicos beta/síntese química , Agonistas Adrenérgicos beta/química , Animais , Benzoxazinas/síntese química , Benzoxazinas/química , Relação Dose-Resposta a Droga , Cobaias , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Traqueia/efeitos dos fármacos , Traqueia/metabolismo
20.
Molecules ; 24(20)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635103

RESUMO

The KOH-promoted chemodivergent benzannulation of ortho-fluorobenzamides with 2-propyn-1-ol can afford either 1,4-benzoxazepin-5(4H)-ones or 1,3-benzoxazin-4(4H)-ones in good yields with high selectivity, depending greatly upon the use of solvents. In the case of using DMSO, the intermolecular benzannulation produced seven-membered benzo-fused heterocycles of 1,4-benzoxazepin-5(4H)-ones, whereas in MeCN, the six-membered benzo-fused heterocycles of 1,3-benzoxazin-4(4H)-ones were formed. The KOH-promoted benzannulation proceeded most probably through the C-F nucleophilic substitution of ortho-fluorobenzamides with 2-propyn-1-ol to give the intermediate of ortho-[(2-propynyl)oxy]benzamide, which underwent the intramolecular hydroamidation in a different manner to afford either seven- or six-membered benzo-fused heterocycles.


Assuntos
Benzoxazinas/síntese química , Fluorbenzenos/química , Benzoxazinas/química , Catálise , Ciclização , Estrutura Molecular , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...