Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.519
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731953

RESUMO

Cardiac disorders in cancer patients pose significant challenges to disease prognosis. While it has been established that these disorders are linked to cancer cells, the precise underlying mechanisms remain elusive. In this study, we investigated the impact of cancerous ascites from the rat colonic carcinoma cell line RCN9 on H9c2 cardiomyoblast cells. We found that the ascites reduced mitochondrial volume, increased oxidative stress, and decreased membrane potential in the cardiomyoblast cells, leading to apoptosis and autophagy. Although the ascites fluid contained a substantial amount of high-mobility group box-1 (HMGB1), we observed that neutralizing HMGB1 with a specific antibody mitigated the damage inflicted on myocardial cells. Our mechanistic investigations revealed that HMGB1 activated both nuclear factor κB and phosphoinositide 3-kinases-AKT signals through HMGB1 receptors, namely the receptor for advanced glycation end products and toll-like receptor-4, thereby promoting apoptosis and autophagy. In contrast, treatment with berberine (BBR) induced the expression of miR-181c-5p and miR-340-5p while suppressing HMGB1 expression in RCN9 cells. Furthermore, BBR reduced HMGB1 receptor expression in cardiomyocytes, consequently mitigating HMGB1-induced damage. We validated the myocardial protective effects of BBR in a cachectic rat model. These findings underscore the strong association between HMGB1 and cancer cachexia, highlighting BBR as a promising therapeutic agent for myocardial protection through HMGB1 suppression and modulation of the signaling system.


Assuntos
Apoptose , Berberina , Caquexia , Proteína HMGB1 , Animais , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Berberina/farmacologia , Ratos , Caquexia/metabolismo , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Masculino , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ratos Sprague-Dawley , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Cell Biochem Funct ; 42(4): e4033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38742849

RESUMO

Colorectal cancer (CRC) is a common digestive tract tumor, with incidences continuing to rise. Although modern medicine has extended the survival time of CRC patients, its adverse effects and the financial burden cannot be ignored. CRC is a multi-step process and can be caused by the disturbance of gut microbiome and chronic inflammation's stimulation. Additionally, the presence of precancerous lesions is also a risk factor for CRC. Consequently, scientists are increasingly interested in identifying multi-target, safe, and economical herbal medicine and natural products. This paper summarizes berberine's (BBR) regulatory mechanisms in the occurrence and development of CRC. The findings indicate that BBR regulates gut microbiome homeostasis and controls mucosal inflammation to prevent CRC. In the CRC stage, BBR inhibits cell proliferation, invasion, and metastasis, blocks the cell cycle, induces cell apoptosis, regulates cell metabolism, inhibits angiogenesis, and enhances chemosensitivity. BBR plays a role in the overall management of CRC. Therefore, using BBR as an adjunct to CRC prevention and treatment could become a future trend in oncology.


Assuntos
Berberina , Neoplasias Colorretais , Berberina/farmacologia , Berberina/uso terapêutico , Humanos , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos
3.
BMC Oral Health ; 24(1): 530, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704553

RESUMO

OBJECTIVE: Explore the therapeutic mechanism of Coptidis Rhizome (CR) in periodontitis using network pharmacology, and validate it through molecular docking and in vitro experiments. METHODS: Screened potential active components and target genes of CR from TCMSP and Swiss databases. Identified periodontitis-related target genes using GeneCards. Found common target genes using Venny. Conducted GO and KEGG pathway analysis. Performed molecular docking and in vitro experiments using Berberine, the main active component of CR, on lymphocytes from healthy and periodontitis patients. Assessed effects on inflammatory factors using CCK-8, flow cytometry, and ELISA. RESULTS: Fourteen active components and 291 targets of CR were identified. 30 intersecting target genes with periodontitis were found. GO and KEGG analysis revealed oxidative stress response and IL-17 signaling pathway as key mechanisms. Molecular docking showed strong binding of Berberine with ALOX5, AKT1, NOS2, and TNF. In vitro experiments have demonstrated the ability of berberine to inhibit the expression of Th17 + and other immune related cells in LPS stimulated lymphocytes, and reduce the secretion of IL-6, IL-8, and IL-17. CONCLUSION: CR treats periodontitis through a multi-component, multi-target, and multi-pathway approach. Berberine, its key component, acts through the IL-17 signaling pathway to exert anti-inflammatory effects.


Assuntos
Berberina , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Periodontite , Humanos , Periodontite/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Berberina/farmacologia , Berberina/uso terapêutico , Coptis chinensis , Rizoma , Interleucina-17/metabolismo , Transdução de Sinais/efeitos dos fármacos , Técnicas In Vitro , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo
4.
Int Immunopharmacol ; 133: 112036, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640713

RESUMO

BACKGROUND: Sepsis refers to a systemic inflammatory response caused by infection, involving multiple organs. Sepsis-associated encephalopathy (SAE), as one of the most common complications in patients with severe sepsis, refers to the diffuse brain dysfunction caused by sepsis without central nervous system infection. However, there is no clear diagnostic criteria and lack of specific diagnostic markers. METHODS: The main active ingredients of coptidis rhizoma(CR) were identified from TCMSP and SwissADME databases. SwissTargetPrediction and PharmMapper databases were used to obtain targets of CR. OMIM, DisGeNET and Genecards databases were used to explore targets of SAE. Limma differential analysis was used to identify the differential expressed genes(DEGs) in GSE167610 and GSE198861 datasets. WGCNA was used to identify feature module. GO and KEGG enrichment analysis were performed using Metascape, DAVID and STRING databases. The PPI network was constructed by STRING database and analyzed by Cytoscape software. AutoDock and PyMOL software were used for molecular docking and visualization. Cecal ligation and puncture(CLP) was used to construct a mouse model of SAE, and the core targets were verified in vivo experiments. RESULTS: 277 common targets were identified by taking the intersection of 4730 targets related to SAE and 509 targets of 9 main active ingredients of CR. 52 common DEGs were mined from GSE167610 and GSE198861 datasets. Among the 25,864 DEGs in GSE198861, LCN2 showed the most significant difference (logFC = 6.9). GO and KEGG enrichment analysis showed that these 52 DEGs were closely related to "inflammatory response" and "innate immunity". A network containing 38 genes was obtained by PPI analysis, among which LCN2 ranked the first in Degree value. Molecular docking results showed that berberine had a well binding affinity with LCN2. Animal experiments results showed that berberine could inhibit the high expression of LCN2,S100A9 and TGM2 induced by CLP in the hippocampus of mice, as well as the high expression of inflammatory factors (TNFα, IL-6 and IL-1ß). In addition, berberine might reduce inflammation and neuronal cell death by partially inhibiting NFκB/LCN2 pathway in the hippocampus of CLP models, thereby alleviating SAE. CONCLUSION: Overall, Berberine may exert anti-inflammatory effects through multi-ingredients, multi-targets and multi-pathways to partially rescue neuronal death and alleviate SAE.


Assuntos
Berberina , Biologia Computacional , Lipocalina-2 , Simulação de Acoplamento Molecular , NF-kappa B , Farmacologia em Rede , Encefalopatia Associada a Sepse , Transdução de Sinais , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , NF-kappa B/metabolismo , Camundongos , Lipocalina-2/genética , Lipocalina-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Doenças Neuroinflamatórias/tratamento farmacológico , Regulação para Baixo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Sepse/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Mapas de Interação de Proteínas
5.
Nano Lett ; 24(17): 5154-5164, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602357

RESUMO

Developing novel strategies for defeating osteoporosis has become a world-wide challenge with the aging of the population. In this work, novel supramolecular nanoagonists (NAs), constructed from alkaloids and phenolic acids, emerge as a carrier-free nanotherapy for efficacious osteoporosis treatment. These precision nanoagonists are formed through the self-assembly of berberine (BER) and chlorogenic acid (CGA), utilizing noncovalent electrostatic, π-π, and hydrophobic interactions. This assembly results in a 100% drug loading capacity and stable nanostructure. Furthermore, the resulting weights and proportions of CGA and BER within the NAs are meticulously controlled with strong consistency when the CGA/BER assembly feed ratio is altered from 1:1 to 1:4. As anticipated, our NAs themselves could passively target osteoporotic bone tissues following prolonged blood circulation, modulate Wnt signaling, regulate osteogenic differentiation, and ameliorate bone loss in ovariectomy-induced osteoporotic mice. We hope this work will open a new strategy to design efficient herbal-derived Wnt NAs for dealing with intractable osteoporosis.


Assuntos
Berberina , Ácido Clorogênico , Osteoporose , Osteoporose/tratamento farmacológico , Animais , Camundongos , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/química , Berberina/administração & dosagem , Berberina/farmacocinética , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Ácido Clorogênico/administração & dosagem , Feminino , Humanos , Osteogênese/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico
6.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611845

RESUMO

In this paper, berberine hydrochloride-loaded liposomes-in-gel were designed and developed to investigate their antioxidant properties and therapeutic effects on the eczema model of the mouse. Berberine hydrochloride-liposomes (BBH-L) as the nanoparticles were prepared by the thin-film hydration method and then dispersed BBH-L evenly in the gel matrix to prepare the berberine hydrochloride liposomes-gel (BBH-L-Gel) by the natural swelling method. Their antioxidant capacity was investigated by the free radical scavenging ability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2 and the inhibition of lipid peroxides malondialdehyde (MDA). An eczema model was established, and the efficacy of the eczema treatment was preliminarily evaluated using ear swelling, the spleen index, and pathological sections as indicators. The results indicate that the entrapment efficiency of BBH-L prepared by the thin-film hydration method was 78.56% ± 0.7%, with a particle size of 155.4 ± 9.3 nm. For BBH-L-Gel, the viscosity and pH were 18.16 ± 6.34 m Pas and 7.32 ± 0.08, respectively. The cumulative release in the unit area of the in vitro transdermal study was 85.01 ± 4.53 µg/cm2. BBH-L-Gel had a good scavenging capacity on DPPH and H2O2, and it could effectively inhibit the production of hepatic lipid peroxides MDA in the concentration range of 0.4-2.0 mg/mL. The topical application of BBH-L-Gel could effectively alleviate eczema symptoms and reduce oxidative stress injury in mice. This study demonstrates that BBH-L-Gel has good skin permeability, excellent sustained release, and antioxidant capabilities. They can effectively alleviate the itching, inflammation, and allergic symptoms caused by eczema, providing a new strategy for clinical applications in eczema treatment.


Assuntos
Berberina , Eczema , Animais , Camundongos , Antioxidantes/farmacologia , Berberina/farmacologia , Lipossomos , Peróxido de Hidrogênio , Peróxidos Lipídicos
7.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611885

RESUMO

Mesoporous titanium nanoparticles (MTN) have always been a concern and are considered to have great potential for overcoming antibiotic-resistant bacteria. In our study, MTN modified with functionalized UV-responsive ethylene imine polymer (PEI) was synthesized. The characterization of all products was performed by different analyses, including SEM, TEM, FT-IR, TGA, XRD, XPS, and N2 adsorption-desorption isotherms. The typical antibacterial drug berberine hydrochloride (BH) was encapsulated in MTN-PEI. The process exhibited a high drug loading capacity (22.71 ± 1.12%) and encapsulation rate (46.56 ± 0.52%) due to its high specific surface area of 238.43 m2/g. Moreover, UV-controlled drug release was achieved by utilizing the photocatalytic performance of MTN. The antibacterial effect of BH@MTN-PEI was investigated, which showed that it could be controlled to release BH and achieve a corresponding antibacterial effect by UV illumination for different lengths of time, with bacterial lethality reaching 37.76% after only 8 min of irradiation. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the nanoparticles have also been studied. The MIC of BH@MTN-PEI was confirmed as 1 mg/mL against Escherichia coli (E. coli), at which the growth of bacteria was completely inhibited during 24 h and the concentration of 5 mg/mL for BH@MTN-PEI was regarded as MBC against E. coli. Although this proof-of-concept study is far from a real-life application, it provides a possible route to the discovery and application of antimicrobial drugs.


Assuntos
Berberina , Nanopartículas , Berberina/farmacologia , Liberação Controlada de Fármacos , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/farmacologia , Antibacterianos/farmacologia
8.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612606

RESUMO

Vulvovaginal candidiasis (VVC) is a real gynecological problem among women of reproductive age from 15 to 49. A recent analysis showed that 75% of women will have an occurrence at least once per year, while 5% are observed to have recurrent vaginal mycosis-these patients may become unwell four or more times a year. This pathology is caused in 85-90% of cases by fungi of the Candida albicans species. It represents an intractable medical problem for female patients due to pain and pruritus. Due to the observation of an increasing number of strains resistant to standard preparations and an increase in the recurrence of this pathology when using local or oral preferential therapy, such as fluconazole, an analysis was launched to develop alternative methods of treating VVC using herbs such as dill, turmeric, and berberine. An in-depth analysis of databases that include scientific articles from recent years made it possible to draw satisfactory conclusions supporting the validity of herbal therapy for the pathology in question. Although phytotherapy has not yet been approved by the Food and Drug Administration, it appears to be a promising therapeutic solution for strains that are resistant to existing treatments. There is research currently undergoing aimed at comparing classical pharmacotherapy and herbal therapy in the treatment of vaginal candidiasis for the purpose of increasing medical competence and knowledge for the care of the health and long-term comfort of gynecological patients.


Assuntos
Berberina , Candidíase Vulvovaginal , Estados Unidos , Humanos , Feminino , Candidíase Vulvovaginal/tratamento farmacológico , Fitoterapia , Candida , Vagina
9.
Sci Rep ; 14(1): 9381, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654085

RESUMO

Erythrocytes are impressive tools for drug delivery, especially to macrophages. Therefore, berberine was loaded into erythrocytes using both hypotonic pre-swelling and endocytosis methods to target macrophages. Physicochemical and kinetic parameters of the resulting carrier cells, such as drug loading/release kinetics, osmotic fragility, and hematological indices, were determined. Drug loading was optimized for the study using Taguchi experimental design and lab experiments. Loaded erythrocytes were targeted to macrophages using ZnCl2 and bis-sulfosuccinimidyl-suberate, and targeting was evaluated using flow cytometry and Wright-Giemsa staining. Differentiated macrophages were stimulated with lipopolysaccharide, and the inflammatory profiles of macrophages were evaluated using ELISA, western blotting, and real-time PCR. Findings indicated that the endocytosis method is preferred due to its low impact on the erythrocyte's structural integrity. Maximum loading achieved (1386.68 ± 22.43 µg/ml) at 1500 µg/ml berberine treatment at 37 °C for 2 h. Berberine successfully inhibited NF-κB translation in macrophages, and inflammatory response markers such as IL-1ß, IL-8, IL-23, and TNF-α were decreased by approximately ninefold, sixfold, twofold, eightfold, and twofold, respectively, compared to the LPS-treated macrophages. It was concluded that berberine-loaded erythrocytes can effectively target macrophages and modulate the inflammatory response.


Assuntos
Berberina , Citocinas , Eritrócitos , Macrófagos , Berberina/farmacologia , Berberina/administração & dosagem , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Citocinas/metabolismo , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Células RAW 264.7 , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico
10.
Open Vet J ; 14(1): 292-303, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633147

RESUMO

Background: Paracetamol (PCM) overdosing induces hepatotoxicity, which can result in death if the dose is high enough and the patients are not given N-acetyl cysteine. Berberine (BBR) has a variety of biological proprieties including anti-inflammatory and antioxidant activities. Aim: Assessment of the potential effect of BBR and selenium when used alone or together on the PCM-induced acute hepatic toxicity in rats. Methods: This research involved 40 clinically healthy mature adult male albino rats, their weights ranged from 150 to 200 g and housed in standard conditions. Our study involved evaluating the potential effect of BBR and selenium when used alone or together on the PCM-induced acute hepatic toxicity via estimation of the liver function tests, determination of the antioxidant enzyme activities, lipid peroxidation markers, immune-modulatory effects, liver histopathological, and immunohistochemical studies. Results: Co-treatment of BBR (150 mg/kg BW) with selenium (5 mg/kg BW) showed significant improvement in the liver function parameters, the antioxidant enzyme activities, reduction in the nitric oxide (NO), lysozyme, malondialdehyde (MDA), TNF-α, and TGF-ß1 levels, and marked elevation in the IgM levels. Conclusion: Altogether, BBR, selenium, or both augment antioxidant activity and alleviate PCM-induced hepatic toxicity.


Assuntos
Berberina , Selênio , Humanos , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Acetaminofen/farmacologia , Selênio/farmacologia , Berberina/farmacologia , Berberina/uso terapêutico , Estresse Oxidativo , Ratos Wistar
11.
Biol Pharm Bull ; 47(4): 827-839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599826

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease with progressive loss of dopaminergic neurons in substantia nigra and the presence of α-synuclein-immunoreactive inclusions. Gaucher's disease is caused by homozygous mutations in ß-glucocerebrosidase gene (GBA). GBA mutation carriers have an increased risk of PD. Coptis chinensis (C. chinensis) rhizome extract is a major herb widely used to treat human diseases. This study examined the association of GBA L444P mutation with Taiwanese PD in 1016 cases and 539 controls. In addition, the protective effects of C. chinensis rhizome extract and its active constituents (berberine, coptisine, and palmatine) against PD were assayed using GBA reporter cells, LC3 reporter cells, and cells expressing mutated (A53T) α-synuclein. Case-control study revealed that GBA L444P carriers had a 3.93-fold increased risk of PD (95% confidence interval (CI): 1.37-11.24, p = 0.006) compared to normal controls. Both C. chinensis rhizome extract and its constituents exhibited chemical chaperone activity to reduce α-synuclein aggregation. Promoter reporter and endogenous GBA protein analyses revealed that C. chinensis rhizome extract and its constituents upregulated GBA expression in 293 cells. In addition, C. chinensis rhizome extract and its constituents induced autophagy in DsRed-LC3-expressing 293 cells. In SH-SY5Y cells expressing A53T α-synuclein, C. chinensis rhizome extract and its constituents reduced α-synuclein aggregation and associated neurotoxicity by upregulating GBA expression and activating autophagy. The results of reducing α-synuclein aggregation, enhancing GBA expression and autophagy, and protecting against α-synuclein neurotoxicity open up the therapeutic potentials of C. chinensis rhizome extract and constituents for PD.


Assuntos
Berberina , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Berberina/análogos & derivados , Estudos de Casos e Controles , Coptis chinensis , Neurônios Dopaminérgicos/metabolismo , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rizoma
12.
Int J Pharm ; 656: 124051, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38574956

RESUMO

The use of berberine hydrochloride (BCS class III) has limited application in psoriasis, when given as topical drug delivery systems, due to low permeability in the skin layer. Hence, berberine hydrochloride-loaded aquasome nanocarriers were developed for skin targeting, particularly epidermis (primary site of psoriasis pathophysiology) and enhance the skin permeability of berberine hydrochloride. Aquasomes were formulated using the adsorption method and characterized by structural morphology TEM, % drug adsorption, drug release profile (in-vitro and ex-vivo), in-vivo efficacy study and stability study. The reduced particle size and higher surface charge of SKF3 formulation (263.57 ± 27.78 nm and -21.0 ± 0.43 mV) showed improved stability of aquasomes because of the development of higher surface resistance to formation of aggregates. The adsorption of hydrophilic berberine and the non-lipidic nature of aquasomes resulted in % adsorption efficiency (%AE) of 94.46 ± 0.39 %. The controlled first-order release behavior of aquasomes was reported to be 52.647 ± 14.63 and 32.08 ± 12.78 % in in-vitro and ex-vivo studies, respectively. In-vivo studies demonstrated that topical application of berberine hydrochloride loaded aquasomes significantly alleviated psoriasis symptoms like hyperkeratosis, scaling and inflammation, due to the reduction in the inflammatory cytokines (IL-17 and IL-23). Therefore, aquasome formulation exhibits an innovative approach for targeted application of berberine hydrochloride in the management of psoriasis.


Assuntos
Administração Cutânea , Berberina , Epiderme , Psoríase , Absorção Cutânea , Berberina/administração & dosagem , Berberina/farmacocinética , Berberina/química , Psoríase/tratamento farmacológico , Animais , Epiderme/metabolismo , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Masculino , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Nanopartículas/administração & dosagem , Tamanho da Partícula , Permeabilidade , Ratos , Estabilidade de Medicamentos
13.
Behav Brain Res ; 466: 114981, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38580198

RESUMO

This study verified the effects of the natural compounds berberine and hesperidin on seizure development and cognitive impairment triggered by pentylenetetrazole (PTZ) in zebrafish. Adult animals were submitted to a training session in the inhibitory avoidance test and, after 10 minutes, they received an intraperitoneal injection of 25, 50, or 100 mg/kg berberine or 100 or 200 mg/kg hesperidin. After 30 minutes, the animals were exposed to 7.5 mM PTZ for 10 minutes. Animals were submitted to the test session 24 h after the training session to verify their cognitive performance. Zebrafish larvae were exposed to 100 µM or 500 µM berberine or 10 µM or 50 µM hesperidin for 30 minutes. After, larvae were exposed to PTZ and had the seizure development evaluated by latency to reach the seizure stages I, II, and III. Adult zebrafish pretreated with 50 mg/kg berberine showed a longer latency to reach stage III. Zebrafish larvae pretreated with 500 µM berberine showed a longer latency to reach stages II and III. Hesperidin did not show any effect on seizure development both in larvae and adult zebrafish. Berberine and hesperidin pretreatments prevented the memory consolidation impairment provoked by PTZ-induced seizures. There were no changes in the distance traveled in adult zebrafish pretreated with berberine or hesperidin. In larval stage, berberine caused no changes in the distance traveled; however, hesperidin increased the locomotion. Our results reinforce the need for investigating new therapeutic alternatives for epilepsy and its comorbidities.


Assuntos
Aprendizagem da Esquiva , Berberina , Hesperidina , Pentilenotetrazol , Convulsões , Peixe-Zebra , Animais , Pentilenotetrazol/farmacologia , Berberina/farmacologia , Berberina/administração & dosagem , Hesperidina/farmacologia , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Aprendizagem da Esquiva/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Masculino , Modelos Animais de Doenças , Convulsivantes/farmacologia , Larva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Anticonvulsivantes/farmacologia
14.
Anal Chim Acta ; 1304: 342579, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637044

RESUMO

Plasmon enhanced fluorescent (PEF) with more "hot spots" play a critical role in signal amplified technology to avoid the intrinsic limitation of fluorophore which ascribed to a strong electromagnetic field at the tip structure. However, application of PEF technique to obtain a highly sensitive analysis of medicine was still at a very early stage. Herein, a simple but versatile Ag nanocubes (Agcubes)-based PEF sensor combined with aptamer (Agcubes@SiO2-QDs-Apt) was proposed for highly sensitive detection of berberine hydrochloride (BH). The distance between the plasma Agcubes and the red-emitted CdTe quantum dots (QDs) were regulated by the thickness of silica spacer. The three-dimensional finite-difference time-domain (3D-FDTD) simulation further revealed that Agcubes have a higher electromagnetic field than Ag nanospheres. Compared with PEF sensor, signal QDs-modified aptamer without Agcubes (QDs-Apt) showed a 10-fold higher detection limit. The linear range and detection limit of the Agcubes@SiO2-QDs-Apt were 0.1-100 µM, 87.3 nM, respectively. Furthermore, the PEF sensor was applied to analysis BH in the berberine hydrochloride tablets, compound berberine tablet and urine with good recoveries of 98.25-102.05%. These results demonstrated that the prepared PEF sensor has great potential for drug quality control and clinical analysis.


Assuntos
Aptâmeros de Nucleotídeos , Berberina , Compostos de Cádmio , Pontos Quânticos , Fluorescência , Pontos Quânticos/química , Compostos de Cádmio/química , Dióxido de Silício , Telúrio/química , Espectrometria de Fluorescência/métodos , Aptâmeros de Nucleotídeos/química , Limite de Detecção
15.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673787

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the predominant cause of chronic liver conditions, and its progression is marked by evolution to non-alcoholic steatosis, steatohepatitis, cirrhosis related to non-alcoholic steatohepatitis, and the potential occurrence of hepatocellular carcinoma. In our systematic review, we searched two databases, Medline (via Pubmed Central) and Scopus, from inception to 5 February 2024, and included 73 types of research (nine clinical studies and 64 pre-clinical studies) from 2854 published papers. Our extensive research highlights the impact of Berberine on NAFLD pathophysiology mechanisms, such as Adenosine Monophosphate-Activated Protein Kinase (AMPK), gut dysbiosis, peroxisome proliferator-activated receptor (PPAR), Sirtuins, and inflammasome. Studies involving human subjects showed a measurable reduction of liver fat in addition to improved profiles of serum lipids and hepatic enzymes. While current drugs for NAFLD treatment are either scarce or still in development or launch phases, Berberine presents a promising profile. However, improvements in its formulation are necessary to enhance the bioavailability of this natural substance.


Assuntos
Berberina , Hepatopatia Gordurosa não Alcoólica , Berberina/farmacologia , Berberina/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Humanos , Animais , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos
16.
Appl Microbiol Biotechnol ; 108(1): 289, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587649

RESUMO

Rumen microbial urease inhibitors have been proposed for regulating nitrogen emission and improving nitrogen utilization efficiency in ruminant livestock industry. However, studies on plant-derived natural inhibitors of rumen microbial urease are limited. Urease accessory protein UreG, plays a crucial role in facilitating urease maturation, is a new target for design of urease inhibitor. The objective of this study was to select the potential effective inhibitor of rumen microbial urease from major protoberberine alkaloids in Rhizoma Coptidis by targeting UreG. Our results showed that berberine chloride and epiberberine exerted superior inhibition potential than other alkaloids based on GTPase activity study of UreG. Berberine chloride inhibition of UreG was mixed type, while inhibition kinetics type of epiberberine was uncompetitive. Furthermore, epiberberine was found to be more effective than berberine chloride in inhibiting the combination of nickel towards UreG and inducing changes in the second structure of UreG. Molecular modeling provided the rational structural basis for the higher inhibition potential of epiberberine, amino acid residues in G1 motif and G3 motif of UreG formed interactions with D ring of berberine chloride, while interacted with A ring and D ring of epiberberine. We further demonstrated the efficacy of epiberberine in the ruminal microbial fermentation with low ammonia release and urea degradation. In conclusion, our study clearly indicates that epiberberine is a promising candidate as a safe and effective inhibitor of rumen microbial urease and provides an optimal strategy and suitable feed additive for regulating nitrogen excretion in ruminants in the future. KEY POINTS: • Epiberberine is the most effective inhibitor of rumen urease from Rhizoma Coptidis. • Urease accessory protein UreG is an effective target for design of urease inhibitor. • Epiberberine may be used as natural feed additive to reducing NH3 release in ruminants.


Assuntos
Berberina , Berberina/análogos & derivados , Animais , Berberina/farmacologia , Urease , Amônia , Cloretos , Rúmen , Inibidores Enzimáticos/farmacologia , Nitrogênio , Ruminantes
17.
Int J Mol Med ; 53(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577949

RESUMO

Several studies have shown that berberine (BBR) is effective in protecting against myocardial ischemia­reperfusion injury (MI/RI). However, the precise molecular mechanism remains elusive. The present study observed the mechanism and the safeguarding effect of BBR against hypoxia/reoxygenation (H/R) myocardial injury in H9c2 cells. BBR pretreatment significantly improved the decrease of cell viability, P62 protein, Rho Family GTPase 3 (RhoE) protein, ubiquinone subunit B8 protein, ubiquinol­cytochrome c reductase core protein U, the Bcl­2­associated X protein/B­cell lymphoma 2 ratio, glutathione (GSH) and the GSH/glutathione disulphide (GSSG) ratio induced by H/R, while reducing the increase in lactate dehydrogenase, microtubule­associated protein 1 light 3 protein, caspase­3 activity, reactive oxygen species, GSSG and malonaldehyde caused by H/R. Transmission electron microscopy and LysoTracker Red DND­99 staining results showed that BBR pretreatment inhibited H/R­induced excessive autophagy by mediating RhoE. BBR also inhibited mitochondrial permeability transition, maintained the stability of the mitochondrial membrane potential, reduced the apoptotic rate, and increased the level of caspase­3. However, the protective effects of BBR were attenuated by pAD/RhoE­small hairpin RNA, rapamycin (an autophagy activator) and compound C (an AMP­activated protein kinase inhibitor). These new findings suggested that BBR protects the myocardium from MI/RI by inhibiting excessive autophagy, maintaining mitochondrial function, improving the energy supply and redox homeostasis, and attenuating apoptosis through the RhoE/AMP­activated protein kinase pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Berberina , Traumatismo por Reperfusão Miocárdica , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Berberina/farmacologia , Caspase 3/metabolismo , Dissulfeto de Glutationa/metabolismo , Isquemia/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Animais , Ratos
18.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 639-642, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660879

RESUMO

Berberine, a traditional Chinese medicine, is an isoquinoline alkaloid extracted from the rhizome of Coptis chinensis. It has anti-inflammatory and antidiarrheal effects and is commonly used in the treatment of infections and gastrointestinal diseases. In recent years, studies have found that berberine can play a wide range of anti-cancer effects in the treatment of leukemia, lymphoma, multiple myeloma, etc. In hematologic malignancies, berberine can induce autophagy, promote apoptosis, regulate cell cycle, inhibit inflammatory response, cause oxidative damage to cancer cells and interact with miRNA to inhibit the proliferation, migration and colony formation of cancer cells. This paper will review the role and related mechanisms of berberine in hematological malignancies.


Assuntos
Apoptose , Berberina , Neoplasias Hematológicas , Berberina/farmacologia , Humanos , Neoplasias Hematológicas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , MicroRNAs
19.
Mol Pharm ; 21(5): 2238-2249, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38622497

RESUMO

Tuberculosis (TB) is a chronic disease caused byMycobacterium tuberculosis (Mtb), which shows a long treatment cycle often leads to drug resistance, making treatment more difficult. Immunogens present in the pathogen's cell membrane can stimulate endogenous immune responses. Therefore, an effective lipid-based vaccine or drug delivery vehicle formulated from the pathogen's cell membrane can improve treatment outcomes. Herein, we extracted and characterized lipids fromMycobacterium smegmatis, and the extracts contained lipids belonging to numerous lipid classes and compounds typically found associated with mycobacteria. The extracted lipids were used to formulate biomimetic lipid reconstituted nanoparticles (LrNs) and LrNs-coated poly(lactic-co-glycolic acid) nanoparticles (PLGA-LrNs). Physiochemical characterization and results of morphology suggested that PLGA-LrNs exhibited enhanced stability compared with LrNs. And both of these two types of nanoparticles inhibited the growth of M. smegmatis. After loading different drugs, PLGA-LrNs containing berberine or coptisine strongly and synergistically prevented the growth of M. smegmatis. Altogether, the bacterial membrane lipids we extracted with antibacterial activity can be used as nanocarrier coating for synergistic antibacterial treatment of M. smegmatis─an alternative model of Mtb, which is expected as a novel therapeutic system for TB treatment.


Assuntos
Mycobacterium smegmatis , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Mycobacterium smegmatis/efeitos dos fármacos , Lipídeos/química , Sinergismo Farmacológico , Membrana Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/administração & dosagem , Mycobacterium/efeitos dos fármacos , Berberina/farmacologia , Berberina/química , Portadores de Fármacos/química , Tuberculose/tratamento farmacológico
20.
Biomed Pharmacother ; 174: 116523, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574627

RESUMO

Inflammatory bowel disease is linked to a higher occurrence of bone loss. Oxyberberine can effectively improve experimental inflammatory bowel disease. However, no study has shown the effect of oxyberberine on inflammatory bowel disease induced bone loss. The present study was performed to investigate the role of oxyberberine in inflammatory bowel disease induced osteoporosis in chronic inflammatory bowel disease mice model. The inflammatory bowel disease mice were orally given two doses of oxyberberine daily. Blood, colon, and bone specimens were collected for biomarker assessments and histological examinations. Bone biomechanical properties and key proteins and genes involved in the receptor activator of nuclear factor kappa-B ligand/nuclear factor kappa-B signaling pathway were evaluated. Additionally, the binding characteristics of oxyberberine and receptor activator of nuclear factor kappa-B ligand were evaluated by in silico simulation. Results indicated that oxyberberine treatment significantly attenuated the macroscopic damage, colonic shortening, and histological injury from the colon. Furthermore, oxyberberine decreased serum inflammatory cytokine levels. The intervention with oxyberberine significantly mitigated the deterioration of bone mass, biomechanical properties, and microstructural parameters. Moreover, the upregulated osteoclast formation factors in model mice were significantly abolished by oxyberberine. In silico simulation results also showed that oxyberberine was firmly bound with target protein. Hence, our findings indicated that oxyberberine had the potential to mitigate inflammatory bowel disease induced inflammation in bone, inhibit osteoclast formation through regulating the receptor activator of nuclear factor kappa-B ligand/nuclear factor kappa-B signaling pathway, and might be a valuable approach in preventing bone loss associated with inflammatory bowel disease.


Assuntos
Doenças Inflamatórias Intestinais , NF-kappa B , Osteoporose , Ligante RANK , Transdução de Sinais , Animais , Ligante RANK/metabolismo , Transdução de Sinais/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/metabolismo , Osteoporose/prevenção & controle , NF-kappa B/metabolismo , Camundongos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Berberina/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...