Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.401
Filtrar
1.
Gut Microbes ; 16(1): 2347728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706226

RESUMO

Indole in the gut is formed from dietary tryptophan by a bacterial tryptophan-indole lyase. Indole not only triggers biofilm formation and antibiotic resistance in gut microbes but also contributes to the progression of kidney dysfunction after absorption by the intestine and sulfation in the liver. As tryptophan is an essential amino acid for humans, these events seem inevitable. Despite this, we show in a proof-of-concept study that exogenous indole can be converted to an immunomodulatory tryptophan metabolite, indole-3-lactic acid (ILA), by a previously unknown microbial metabolic pathway that involves tryptophan synthase ß subunit and aromatic lactate dehydrogenase. Selected bifidobacterial strains converted exogenous indole to ILA via tryptophan (Trp), which was demonstrated by incubating the bacterial cells in the presence of (2-13C)-labeled indole and l-serine. Disruption of the responsible genes variedly affected the efficiency of indole bioconversion to Trp and ILA, depending on the strains. Database searches against 11,943 bacterial genomes representing 960 human-associated species revealed that the co-occurrence of tryptophan synthase ß subunit and aromatic lactate dehydrogenase is a specific feature of human gut-associated Bifidobacterium species, thus unveiling a new facet of bifidobacteria as probiotics. Indole, which has been assumed to be an end-product of tryptophan metabolism, may thus act as a precursor for the synthesis of a host-interacting metabolite with possible beneficial activities in the complex gut microbial ecosystem.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Indóis , Triptofano , Triptofano/metabolismo , Humanos , Indóis/metabolismo , Bifidobacterium/metabolismo , Bifidobacterium/genética , Triptofano Sintase/metabolismo , Triptofano Sintase/genética , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo
2.
Microb Biotechnol ; 17(5): e14443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722820

RESUMO

Pectin structures have received increasing attention as emergent prebiotics due to their capacity to promote beneficial intestinal bacteria. Yet the collective activity of gut bacterial communities to cooperatively metabolize structural variants of this substrate remains largely unknown. Herein, the characterization of a pectin methylesterase, BpeM, from Bifidobacterium longum subsp. longum, is reported. The purified enzyme was able to remove methyl groups from highly methoxylated apple pectin, and the mathematical modelling of its activity enabled to tightly control the reaction conditions to achieve predefined final degrees of methyl-esterification in the resultant pectin. Demethylated pectin, generated by BpeM, exhibited differential fermentation patterns by gut microbial communities in in vitro mixed faecal cultures, promoting a stronger increase of bacterial genera associated with beneficial effects including Lactobacillus, Bifidobacterium and Collinsella. Our findings demonstrate that controlled pectin demethylation by the action of a B. longum esterase selectively modifies its prebiotic fermentation pattern, producing substrates that promote targeted bacterial groups more efficiently. This opens new possibilities to exploit biotechnological applications of enzymes from gut commensals to programme prebiotic properties.


Assuntos
Hidrolases de Éster Carboxílico , Fezes , Malus , Pectinas , Prebióticos , Malus/microbiologia , Pectinas/metabolismo , Fezes/microbiologia , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Fermentação , Humanos , Bifidobacterium longum/metabolismo , Bifidobacterium longum/enzimologia , Microbioma Gastrointestinal , Bifidobacterium/enzimologia , Bifidobacterium/metabolismo
3.
Genes (Basel) ; 15(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38674400

RESUMO

Bifidobacterium longum subsp. infantis YLGB-1496 (YLGB-1496) is a probiotic strain isolated from human breast milk. The application of YLGB-1496 is influenced by carbohydrate utilization and genetic stability. This study used genome sequencing and morphology during continuous subculture to determine the carbohydrate utilization characteristics and genetic stability of YLGB-1496. The complete genome sequence of YLGB-1496 consists of 2,758,242 base pairs, 2442 coding sequences, and a GC content of 59.87%. A comparison of carbohydrate transport and metabolism genes of Bifidobacterium longum subsp. infantis (B. infantis) showed that YLGB-1496 was rich in glycosyl hydrolase 13, 20, 25, and 109 gene families. During continuous subculture, the growth characteristics and fermentation activity of the strain were highly stable. The bacterial cell surface and edges of the 1000th-generation strains were progressively smoother and well-defined, with no perforations or breaks in the cell wall. There were 20 SNP loci at the 1000th generation, fulfilling the requirement of belonging to the same strain. The presence of genes associated with cell adhesion and the absence of resistance genes supported the probiotic characteristics of the strain. The data obtained in this study provide insights into broad-spectrum carbohydrate utilization, genomic stability, and probiotic properties of YLGB-1496, which provide theoretical support to promote the use of YLGB-1496.


Assuntos
Bifidobacterium , Metabolismo dos Carboidratos , Genoma Bacteriano , Bifidobacterium/genética , Bifidobacterium/metabolismo , Metabolismo dos Carboidratos/genética , Humanos , Probióticos , Instabilidade Genômica , Bifidobacterium longum subspecies infantis/genética , Bifidobacterium longum subspecies infantis/metabolismo
4.
Microbiol Res ; 283: 127709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593579

RESUMO

Bifidobacterium longum subsp. infantis commonly colonizes the human gut and is capable of metabolizing L-fucose, which is abundant in the gut. Multiple studies have focused on the mechanisms of L-fucose utilization by B. longum subsp. infantis, but the regulatory pathways governing the expression of these catabolic processes are still unclear. In this study, we have conducted a structural and functional analysis of L-fucose metabolism transcription factor FucR derived from B. longum subsp. infantis Bi-26. Our results indicated that FucR is a L-fucose-sensitive repressor with more α-helices, fewer ß-sheets, and ß-turns. Transcriptional analysis revealed that FucR displays weak negative self-regulation, which is counteracted in the presence of L-fucose. Isothermal titration calorimetry indicated that FucR has a 2:1 stoichiometry with L-fucose. The key amino acid residues for FucR binding L-fucose are Asp280 and Arg331, with mutation of Asp280 to Ala resulting in a decrease in the affinity between FucR and L-fucose with the Kd value from 2.58 to 11.68 µM, and mutation of Arg331 to Ala abolishes the binding ability of FucR towards L-fucose. FucR specifically recognized and bound to a 20-bp incomplete palindrome sequence (5'-ACCCCAATTACGAAAATTTTT-3'), and the affinity of the L-fucose-loaded FucR for the DNA fragment was lower than apo-FucR. The results provided new insights into the regulating L-fucose metabolism by B. longum subsp. infantis.


Assuntos
Bifidobacterium longum , Bifidobacterium , Humanos , Bifidobacterium/genética , Bifidobacterium/metabolismo , Fucose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metabolismo dos Carboidratos , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo
5.
Nutrients ; 16(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38674850

RESUMO

Polyphenols and fermentable fibers have shown favorable effects on gut microbiota composition and metabolic function. However, few studies have investigated whether combining multiple fermentable fibers or polyphenols may have additive beneficial effects on gut microbial states. Here, an in vitro fermentation model, seeded with human stool combined from 30 healthy volunteers, was supplemented with blends of polyphenols (PP), dietary fibers (FB), or their combination (PPFB) to determine influence on gut bacteria growth dynamics and select metabolite changes. PP and FB blends independently led to significant increases in the absolute abundance of select beneficial taxa, namely Ruminococcus bromii, Bifidobacterium spp., Lactobacillus spp., and Dorea spp. Total short-chain fatty acid concentrations, relative to non-supplemented control (F), increased significantly with PPFB and FB supplementation but not PP. Indole and ammonia concentrations decreased with FB and PPFB supplementation but not PP alone while increased antioxidant capacity was only evident with both PP and PPFB supplementation. These findings demonstrated that, while the independent blends displayed selective positive impacts on gut states, the combination of both blends provided an additive effect. The work outlines the potential of mixed substrate blends to elicit a broader positive influence on gut microbial composition and function to build resiliency toward dysbiosis.


Assuntos
Fibras na Dieta , Ácidos Graxos Voláteis , Fezes , Fermentação , Microbioma Gastrointestinal , Indóis , Polifenóis , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Polifenóis/farmacologia , Humanos , Fibras na Dieta/farmacologia , Fibras na Dieta/administração & dosagem , Fezes/microbiologia , Ácidos Graxos Voláteis/metabolismo , Adulto , Masculino , Amônia/metabolismo , Feminino , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Antioxidantes/farmacologia , Bifidobacterium/metabolismo , Lactobacillus/metabolismo , Adulto Jovem
6.
J Agric Food Chem ; 72(13): 7055-7073, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520351

RESUMO

Ulcerative colitis (UC) is a major disease that has endangered human health. Our previous study demonstrated that Bifidobacterium longum subsp. longum YS108R, a ropy exopolysaccharide (EPS)-producing bacterium, could alleviate UC in mice, but it is unclear whether EPS is the key substance responsible for its action. In this study, we proposed to investigate the remitting effect of EPS from B. longum subsp. longum YS108R on UC in a DSS-induced UC mouse model. Water extraction and alcohol precipitation were applied to extract EPS from the supernatant of B. longum subsp. longum YS108R culture. Then the animal trial was performed, and the results indicated that YS108R EPS ameliorated colonic pathological damage and the intestinal barrier. YS108R EPS suppressed inflammation via NF-κB signaling pathway inhibition and attenuated oxidative stress via the Nrf2 signaling pathway activation. Remarkably, YS108R EPS regulated gut microbiota, as evidenced by an increase in short-chain fatty acid (SCFA)-producing bacteria and a decline in Gram-negative bacteria, resulting in an increase of propionate and butyrate and a reduction of lipopolysaccharide (LPS). Collectively, YS108R EPS manipulated the intestinal microbiota and its metabolites, which further improved the intestinal barrier and inhibited inflammation and oxidative stress, thereby alleviating UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Camundongos , Humanos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Bifidobacterium/metabolismo , Colo , Modelos Animais de Doenças , Bactérias , Inflamação , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL
7.
J Agric Food Chem ; 72(9): 4801-4813, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393993

RESUMO

Previous studies showed that cal-miR2911, featuring an atypical biogenesis, could target genes of virus and in turn inhibit virus replication. Given its especial sequence motif and cross-kingdom potential, the stability of miR2911 under digestive environment and its impact on intestinal microbes in mice were examined. The results showed that miR2911 was of considerable stability during oral, gastric, and intestinal digestion. The coingested food matrix enhanced its stability in the gastric phase, contributing to the existence of miR2911 in mouse intestines. The survival miR2911 promoted the growth of Bifidobacterium in mice and maintained the overall composition and diversity of the gut microbiota. miR2911 specifically entered the cells of Bifidobacterium adolescentis and potentially modulated the gene expression as evidenced by the dual-luciferase assay. The current study provided evidence on the cross-kingdom communication between dietary miRNAs and gut microbes, suggesting that modulating target bacteria using miRNAs for nutritional and therapeutic ends is promising.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Bifidobacterium/genética , Bifidobacterium/metabolismo , Alimentos , Digestão
8.
Benef Microbes ; 15(2): 127-143, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412871

RESUMO

Previous studies have demonstrated that soymilk and Lacticaseibacillus paracasei YIT 9029 (strain Shirota: LcS) each beneficially affect the gut microbiota and defecation habits. To investigate the effects of daily consumption of fermented soymilk containing LcS (FSM), we conducted a randomised, double-blind, placebo-controlled study of 112 healthy Japanese adults with a low faecal Bifidobacterium count. They consumed 100 ml FSM or placebo (unfermented soymilk base) once daily for 4 weeks. Their gut microbiota was analysed by 16S rRNA gene amplicon sequencing and quantitative reverse transcription-polymerase chain reaction (PCR), and faecal short-chain fatty acids (SCFAs) and urinary putrefactive products were assessed during the pre- and post-consumption periods. Defecation habits were examined weekly using a subjective questionnaire. In the post-consumption period, living LcS were not detected in two subjects in the FSM group (n = 57) but were detected in one subject in the SM group (n = 55). The FSM group had a significantly higher number and relative abundance of faecal lactobacilli compared with the placebo group. The relative abundance of Bifidobacterium, alpha-diversity of microbiota, and concentrations of acetate and total SCFAs in faeces were significantly increased in the FSM group, although no significant differences were detected between the groups. The number of defecations and defecation days per week significantly increased in both groups. Subgroup analysis of 109 subjects, excluding 3 with inconsistent LcS detection (2 and 1 subjects in the FSM and SM groups, respectively), revealed that the FSM group (n = 55) had significantly greater increases in faecal acetate concentration compared with the SM group (n = 54) and significant upregulation of pathways related to energy production or glucose metabolism in the gut microbiota. These findings suggest that daily FSM consumption improves the gut microbiota and intestinal environment in healthy adults and may help to maintain health and prevent diseases. Registered at the University Hospital Medical Information Network (UMIN) clinical trials registry under: UMIN 000035612.


Assuntos
Defecação , Ácidos Graxos Voláteis , Fezes , Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Probióticos , Leite de Soja , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Método Duplo-Cego , Masculino , Fezes/microbiologia , Feminino , Defecação/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Lacticaseibacillus paracasei/fisiologia , Probióticos/administração & dosagem , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Fermentação , RNA Ribossômico 16S/genética , Bifidobacterium/metabolismo , Japão , Adulto Jovem
9.
Exp Oncol ; 45(4): 504-514, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38328839

RESUMO

BACKGROUND: The development of human breast cancer (BC) is known to be closely related to disturbances in the mammary gland microbiota. Bacteria of the genus Bifidobacterium are an important component of normal breast microbiota and exert antitumor activity. The molecular-biological mechanisms of interaction between BC cells and microbiota members remain poorly studied yet. The aim of this study was to develop and optimize an experimental model system for the co-cultivation of BC cells with Bifidobacterium animalis in vitro. MATERIALS AND METHODS: Human ВС cells of the MCF-7, T47D, and MDA-MB-231 lines, as well as live and heat-inactivated bacteria of Bifidobacterium animalis subsp. lactis (B. animalis) were used as research objects. The growth kinetics and viability of B. animalis in the presence of different ВС cell lines and without them were determined by both the turbidimetry method and seeding on an elective nutrient medium. Glucose consumption and lactate production by bifidobacteria were assessed by biochemical methods. The viability of BC cells was determined by a standard colorimetric method. RESULTS: The growth kinetics of B. animalis in the complete DMEM nutrient medium showed standard patterns. The indicators of glucose consumption and lactate production of B. animalis confirm its physiological metabolic activity under the growth conditions. The presence of BC cells in the model system did not affect the duration of the growth phases of the B. animalis cells' population but contributed to the increase in their counts. A significant decrease in the number of live BC cells of all studied lines was observed only after 48 h of co-cultivation with live B. animalis. To achieve similar suppression of the BC cell viability, 10-30-fold higher counts of heatinactivated bacteria were required compared to live ones. CONCLUSIONS: The optimal conditions for co-cultivation of human BC cells and living B. animalis cells in vitro have been identified.


Assuntos
Bifidobacterium animalis , Neoplasias da Mama , Humanos , Feminino , Bifidobacterium/metabolismo , Glucose/metabolismo , Lactatos/metabolismo
10.
Appl Environ Microbiol ; 90(2): e0201423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38294252

RESUMO

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.


Assuntos
Bifidobacterium adolescentis , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Filogenia
11.
Food Funct ; 15(3): 1402-1416, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38214586

RESUMO

Fructooligosaccharides (FOS) and inulin are beneficial for human health. However, their benefits differ in individuals who consume prebiotics. Several factors contribute to this variation, including host genetics and differences in the gut microbiota. Bifidobacterium and Bacteroides are strong carbohydrate-utilizing bacteria in the gut, and the level of the Bacteroides/Bifidobacterium (Ba/Bi) ratio in the gut is closely related to the body's ability to utilize prebiotics. However, how to select the type of prebiotics more beneficial for populations with specific Ba/Bi backgrounds and the underlying regulatory mechanisms remain unclear. Here, we explored the dynamics of the gut microbiota and metabolic functions during the in vitro fermentation of FOS and inulin in two different groups: Bacteroides/Bifidobacterium high (H) and Bacteroides/Bifidobacterium low (L). This study revealed that the baseline Ba/Bi ratio had a greater impact on the gut microbiota compared to prebiotic species. Noticeable differences were observed between the two groups after prebiotic intervention, with the H group being more likely to benefit from the prebiotic intervention. Compared to the L group, the H group exhibited significantly higher microbial α-diversity; the co-abundance response group 1 (CARG1) members Ruminococcus gnavus and Blautia involved in the synthesis of propionic and butyric acids increased significantly, the abundance of pathogenic bacteria such as Escherichia Shigella decreased significantly, and the ability to degrade carbohydrates and synthesize fatty acids was greater. Regression modeling showed that the key microbiota could predict the short-chain fatty acid (SCFA) levels, with FOS associated with the ecological roles of CARG2 and CARG7 and inulin associated with CARG4, which provides the basis for the use of prebiotics in nutritional applications and the stratification of populations based on pertinent microbiota profiles to explain the incongruent health effects in human intervention studies.


Assuntos
Microbioma Gastrointestinal , Inulina , Humanos , Inulina/metabolismo , Fezes/microbiologia , Oligossacarídeos/metabolismo , Prebióticos , Bactérias/genética , Bactérias/metabolismo , Fermentação , Bifidobacterium/metabolismo
12.
Food Funct ; 15(4): 1840-1851, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38273734

RESUMO

Osteoporosis has become one of the major diseases that threaten the health of middle-aged and elderly people, and with the growth of an ageing population, more and more people are affected by osteoporosis these days. In recent years, intestinal flora has been found to affect the host immune system, and an overactive immune system is closely related to bone resorption. Probiotics can effectively improve bone density and strength, reduce bone loss, and improve osteoporosis, but their mechanism of action and relationship with intestinal microbiota are still unclear. In this study, two strains of Bifidobacterium (Bifidobacterium bifidum FL228.1 and Bifidobacterium animalis subsp. Lactis F1-7) that can alleviate intestinal inflammation were screened based on previous experiments. Through the construction of an ovariectomized mouse model, the improvement of osteoporosis by Bifidobacterium was detected, and the influence of Bifidobacterium on intestinal immunity was explored. The results show that Bifidobacterium treatment significantly improved bone mineral density (BMD), bone volume/total volume ratio (BV/TV), and trabecular number (Tb·N), and effectively suppressed bone loss. Furthermore, Bifidobacterium treatment could inhibit the expression of inflammatory cytokines in the gut, alleviate gut inflammation, and thus suppress excessive osteoclast generation. Its mechanism of action includes factors that protect the mucosal barrier, including occludin, ZO-1, claudin-2, and MUC2, and the reduction of pro-inflammatory M1 macrophages. B. bifidum FL228.1 increased the abundance of beneficial bacteria in the colon, including Lactobacillus and Colidextribacter. B. animalis F1-7 increased the abundance of Bifidobacterium and decreased the abundance of Desulfovibrio and Ruminococcus in the colon. These research findings expand our understanding of the gut-bone axis and provide new guidance for the development of probiotic-based therapies for osteoporosis in the future.


Assuntos
Bifidobacterium animalis , Osteoporose , Probióticos , Humanos , Camundongos , Animais , Idoso , Pessoa de Meia-Idade , Bifidobacterium/metabolismo , Citocinas/metabolismo , Inflamação , Bifidobacterium animalis/metabolismo , Osteoporose/terapia , Estrogênios
13.
Food Funct ; 15(1): 236-254, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38054827

RESUMO

Bifidobacterium animalis subsp. lactis may be a useful probiotic intervention for regulating neonatal intestinal immune responses and counteracting Salmonella infection. However, recent research has focused on intestinal immunity, leaving uncertainties regarding the central, peripheral, and neural immune responses in neonates. Therefore, this study investigated the role and mechanisms of B. animalis subsp. lactis in the systemic immune responses of neonatal rats following Salmonella infection. Through extremely early pretreatment with B. animalis subsp. lactis (6 hours postnatal), the neonatal rat gut microbiota was effectively reshaped, especially the Bifidobacterium community. In the rats pretreated with B. animalis subsp. lactis, Salmonella was less prevalent in the blood, liver, spleen, and intestines following infection. The intervention promoted T lymphocyte subset balance in the spleen and thymus and fostered neurodevelopment and neuroimmune balance in the brain. Furthermore, metabolic profiling showed a strong correlation between the metabolites in the serum and colon, supporting the view that B. animalis subsp. lactis pretreatment influences the systemic immune response by modifying the composition and metabolism of the gut microbiota. Overall, the results imply that B. animalis subsp. lactis pretreatment, through the coordinated regulation of colonic and serum metabolites, influences the systemic immune responses of neonatal rats against Salmonella infection.


Assuntos
Bifidobacterium animalis , Probióticos , Infecções por Salmonella , Ratos , Animais , Bifidobacterium/metabolismo , Intestinos , Salmonella
14.
Nature ; 626(7998): 419-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052229

RESUMO

Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.


Assuntos
Amidas , Ácidos e Sais Biliares , Ésteres , Ácidos Graxos , Metabolômica , Animais , Humanos , Bifidobacterium/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Clostridium/metabolismo , Estudos de Coortes , Doença de Crohn/metabolismo , Enterococcus/metabolismo , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Metabolômica/métodos , Fenótipo , Receptor de Pregnano X/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Amidas/química , Amidas/metabolismo
15.
Adv Nutr ; 15(1): 100137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923223

RESUMO

Probiotic supplementation is a potential therapeutic for metabolic diseases, including obesity, metabolic syndrome (MetS), and type 2 diabetes (T2D), but most studies deliver multiple species of bacteria in addition to prebiotics or oral pharmaceuticals. This may contribute to conflicting evidence in existing meta-analyses of probiotics in these populations and warrants a systematic review of the literature to assess the contribution of a single probiotic genus to better understand the contribution of individual probiotics to modulate blood glucose. We conducted a systematic review and meta-analysis of animal studies and human randomized controlled trials (RCTs) to assess the effects of Bifidobacterium (BF) probiotic supplementation on markers of glycemia. In a meta-analysis of 6 RCTs, BF supplementation had no effect on fasting blood glucose {FBG; mean difference [MD] = -1.99 mg/dL [95% confidence interval (CI): -4.84, 0.86], P = 0.13}, and there were no subgroup differences between subjects with elevated FBG concentrations and normoglycemia. However, BF supplementation reduced FBG concentrations in a meta-analysis comprised of studies utilizing animal models of obesity, MetS, or T2D [n = 16; MD = -36.11 mg/dL (CI: -49.04, -23.18), P < 0.0001]. Translational gaps from animal to human trials include paucity of research in female animals, BF supplementation in subjects that were normoglycemic, and lack of methodologic reporting regarding probiotic viability and stability. More research is necessary to assess the effects of BF supplementation in human subjects with elevated FBG concentrations. Overall, there was consistent evidence of the efficacy of BF probiotics to reduce elevated FBG concentrations in animal models but not clinical trials, suggesting that BF alone may have minimal effects on glycemic control, may be more effective when combined with multiple probiotic species, or may be more effective in conditions of hyperglycemia rather than elevated FBG concentrations.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Probióticos , Feminino , Humanos , Animais , Glicemia/metabolismo , Bifidobacterium/metabolismo , Probióticos/uso terapêutico , Obesidade/terapia , Diabetes Mellitus Tipo 2/prevenção & controle , Modelos Animais
16.
J Agric Food Chem ; 72(1): 313-325, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38126348

RESUMO

Huangshui polysaccharide (HSP) has attracted more and more interest due to its potential health benefits. Despite being an excellent source for the preparation of oligosaccharides, there are currently no relevant research reports on HSP. In the present study, a novel oligosaccharide (HSO) with a molecular weight of 1791 Da and a degree of polymerization of 11 was prepared through enzymatic degradation of crude HSP (cHSP). Methylation and NMR analyses revealed that the main chain of HSO was (1 → 4)-α-d-glucose with two O-6-linked branched chains. Morphological observations indicated that HSO exhibited smooth surface with lamellar and filamentary structure, and the glycan size ranged from 0.03 to 0.20 µm. Notably, HSO significantly promoted the proliferation of Bifidobacterium, Bacteroides, and Phascolarctobacterium, thereby making positive alterations in intestinal microbiota composition. Moreover, HSO markedly increased the content of short-chain fatty acids during in vitro fermentation. Metabolomics analysis illustrated the important metabolic pathways primarily involving glucose metabolism, amino acid metabolism, and fatty acid metabolism.


Assuntos
Microbioma Gastrointestinal , Oligossacarídeos , Oligossacarídeos/química , Polissacarídeos/química , Ácidos Graxos Voláteis/metabolismo , Bifidobacterium/metabolismo
17.
Appl Environ Microbiol ; 90(1): e0101923, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38126785

RESUMO

Butyrate, a physiologically active molecule, can be synthesized through metabolic interactions among colonic microorganisms. Previously, in a fermenting trial of human fecal microbiota, we observed that the butyrogenic effect positively correlated with the increasing Bifidobacterium population and an unidentified Megasphaera species. Therefore, we hypothesized that a cross-feeding phenomenon exists between Bifidobacterium and Megasphaera, where Megasphaera is the butyrate producer, and its growth relies on the metabolites generated by Bifidobacterium. To validate this hypothesis, three bacterial species (B. longum, B. pseudocatenulatum, and M. indica) were isolated from fecal cultures fermenting hydrolyzed xylan; pairwise cocultures were conducted between the Bifidobacterium and M. indica isolates; the microbial interactions were determined based on bacterial genome information, cell growth, substrate consumption, metabolite quantification, and metatranscriptomics. The results indicated that two Bifidobacterium isolates contained distinct gene clusters for xylan utilization and expressed varying substrate preferences. In contrast, M. indica alone scarcely grew on the xylose-based substrates. The growth of M. indica was significantly elevated by coculturing it with bifidobacteria, while the two Bifidobacterium species responded differently in the kinetics of cell growth and substrate consumption. Coculturing led to the depletion of lactate and increased the formation of butyrate. An RNA-seq analysis further revealed the upregulation of M. indica genes involved in the lactate utilization and butyrate formation pathways. We concluded that lactate generated by Bifidobacterium through catabolizing xylose fueled the growth of M. indica and triggered the synthesis of butyrate. Our findings demonstrated a novel cross-feeding mechanism to generate butyrate in the human colon.IMPORTANCEButyrate is an important short-chain fatty acid that is produced in the human colon through microbial fermentation. Although many butyrate-producing bacteria exhibit a limited capacity to degrade nondigestible food materials, butyrate can be formed through cross-feeding microbial metabolites, such as acetate or lactate. Previously, the literature has explicated the butyrate-forming links between Bifidobacterium and Faecalibacterium prausnitzii and between Bifidobacterium and Eubacterium rectale. In this study, we provided an alternative butyrate synthetic pathway through the interaction between Bifidobacterium and Megasphaera indica. M. indica is a species named in 2014 and is indigenous to the human intestinal tract. Scientific studies explaining the function of M. indica in the human colon are still limited. Our results show that M. indica proliferated based on the lactate generated by bifidobacteria and produced butyrate as its end metabolic product. The pathways identified here may contribute to understanding butyrate formation in the gut microbiota.


Assuntos
Bifidobacterium , Ácido Láctico , Humanos , Ácido Láctico/metabolismo , Bifidobacterium/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Butiratos/metabolismo , Megasphaera/metabolismo , Fermentação
18.
Nutrients ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38068850

RESUMO

Inflammatory bowel disease (IBD) is a chronic disease associated with overactive inflammation and gut dysbiosis. Owing to the beneficial effects of bifidobacteria on IBD treatment, this study aimed to investigate the anti-inflammation effects of an exopolysaccharide (EPS)-producing strain Bifidobacterium pseudocatenulatum Bi-OTA128 through a dextran sulfate sodium (DSS)-induced colitis mice model. B. pseudocatenulatum treatment improved DSS-induced colitis symptoms and maintained intestinal barrier integrity by up-regulating MUC2 and tight junctions' expression. The oxidative stress was reduced after B. pseudocatenulatum treatment by increasing the antioxidant enzymes of SOD, CAT, and GSH-Px in colon tissues. Moreover, the overactive inflammatory responses were also inhibited by decreasing the pro-inflammatory cytokines of TNF-α, IL-1ß, and IL-6, but increasing the anti-inflammatory cytokine of IL-10. The EPS-producing strain Bi-OTA128 showed better effects than that of a non-EPS-producing stain BLYR01-7 in modulating DSS-induced gut dysbiosis. The Bi-OTA128 treatment increased the relative abundance of beneficial bacteria Bifidobacterium and decreased the maleficent bacteria Escherichia-Shigella, Enterorhabuds, Enterobacter, and Osillibacter associated with intestinal inflammation. Notably, the genera Clostridium sensu stricto were only enriched in Bi-OTA128-treated mice, which could degrade polysaccharides to produce acetic acid and butyrate in the gut. This finding demonstrated a cross-feeding effect induced by the EPS-producing strain in gut microbiota. Collectively, these results highlighted the anti-inflammatory effects of the EPS-producing strain B. pseudocatenulatum Bi-OTA128 on DSS-induced colitis, which could be used as a candidate probiotic supporting recovery from ongoing colitis.


Assuntos
Bifidobacterium pseudocatenulatum , Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Bifidobacterium pseudocatenulatum/metabolismo , Sulfato de Dextrana/toxicidade , Disbiose/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Citocinas/metabolismo , Colo/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Bifidobacterium/metabolismo , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
19.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38081214

RESUMO

Several studies have shown that probiotics can prevent and reduce inflammation in inflammation-related diseases. However, few studies have focused on the interaction between host and probiotics in modulating the immune system through autophagy. Therefore, we aimed to investigate the preventive and/or therapeutic effects of native potential probiotic breast milk-isolated Bifidobacterium spp. (i.e. B. bifidum, B. longum, and B. infantis) on the inflammatory cascade by affecting autophagy gene expression 24 and 48 h after treatment. Autophagy genes involved in different stages of the autophagy process were selected by quantitative polymerase chain reaction (qPCR). Gene expression investigation was accomplished by exposing the human colorectal adenocarcinoma cell line (HT-29) to sonicated pathogens (1.5 × 108 bacterial CFU ml-1) and adding Bifidobacterium spp. (MOI10) before, after, and simultaneously with induction of inflammation. An equal volume of RPMI medium was used as a control. Generally, our native potential probiotic Bifidobacterium spp. can increase the autophagy gene expression in comparison with pathogen. Moreover, an increase in gene expression was observed with our probiotic strains' consumption in all stages of autophagy. Totally, our selected Bifidobacterium spp. can increase autophagy gene expression before, simultaneously, and after the inflammation induction, so they can prevent and reduce inflammation in an in vitro model of inflammation.


Assuntos
Bifidobacterium , Probióticos , Feminino , Humanos , Bifidobacterium/metabolismo , Leite Humano , Inflamação/prevenção & controle
20.
Nat Commun ; 14(1): 7417, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973815

RESUMO

The early-life gut microbiome development has long-term health impacts and can be influenced by factors such as infant diet. Human milk oligosaccharides (HMOs), an essential component of breast milk that can only be metabolized by some beneficial gut microorganisms, ensure proper gut microbiome establishment and infant development. However, how HMOs are metabolized by gut microbiomes is not fully elucidated. Isolate studies have revealed the genetic basis for HMO metabolism, but they exclude the possibility of HMO assimilation via synergistic interactions involving multiple organisms. Here, we investigate microbiome responses to 2'-fucosyllactose (2'FL), a prevalent HMO and a common infant formula additive, by establishing individualized microbiomes using fecal samples from three infants as the inocula. Bifidobacterium breve, a prominent member of infant microbiomes, typically cannot metabolize 2'FL. Using metagenomic data, we predict that extracellular fucosidases encoded by co-existing members such as Ruminococcus gnavus initiate 2'FL breakdown, thus critical for B. breve's growth. Using both targeted co-cultures and by supplementation of R. gnavus into one microbiome, we show that R. gnavus can promote extensive growth of B. breve through the release of lactose from 2'FL. Overall, microbiome cultivation combined with genome-resolved metagenomics demonstrates that HMO utilization can vary with an individual's microbiome.


Assuntos
Bifidobacterium , Microbiota , Feminino , Criança , Humanos , Lactente , Bifidobacterium/genética , Bifidobacterium/metabolismo , Trissacarídeos/metabolismo , Leite Humano/química , Oligossacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...