Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(15): 3614-3620, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38581077

RESUMO

Bacteriophytochrome is a photoreceptor protein that contains the biliverdin (BV) chromophore as its active component. The spectra of BV upon mutation remain remarkably unchanged, as far as spectral positions are concerned. This points toward the minimal effect of electrostatic effects on the electronic structure of the chromophore. However, the relative intensities of the Q and Soret bands of the chromophore change dramatically upon mutation. In this work, we delve into the molecular origin of this unusual intensity modulation. Using extensive classical MD and QM/MM calculations, we show that due to mutation, the conformational population of the chromophore changes significantly. The noncovalent interactions, especially the stacking interactions, lead to extra stabilization of the cyclic form in the D207H mutated species as opposed to the open form in the wild-type BV. Thus, unlike the commonly observed direct electrostatic effect on the spectral shift, in the case of BV the difference observed is in varying intensities, and this in turn is driven by a conformational shift due to enhanced stacking interaction.


Assuntos
Fitocromo , Fitocromo/química , Biliverdina/química , Conformação Molecular , Proteínas de Bactérias/química
2.
ACS Synth Biol ; 13(4): 1177-1190, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38552148

RESUMO

The small ultrared fluorescent protein (smURFP) is a bright near-infrared (NIR) fluorescent protein (FP) that forms a dimer and binds its fluorescence chromophore, biliverdin, at its dimer interface. To engineer a monomeric NIR FP based on smURFP potentially more suitable for bioimaging, we employed protein design to extend the protein backbone with a new segment of two helices that shield the original dimer interface while covering the biliverdin binding pocket in place of the second chain in the original dimer. We experimentally characterized 13 designs and obtained a monomeric protein with a weak fluorescence. We enhanced the fluorescence of this designed protein through two rounds of directed evolution and obtained designed monomeric smURFP (DMsmURFP), a bright, stable, and monomeric NIR FP with a molecular weight of 19.6 kDa. We determined the crystal structures of DMsmURFP both in the apo state and in complex with biliverdin, which confirmed the designed structure. The use of DMsmURFP in in vivo imaging of mammalian systems was demonstrated. The backbone design-based strategy used here can also be applied to monomerize other naturally multimeric proteins with intersubunit functional sites.


Assuntos
Proteínas de Bactérias , Biliverdina , Animais , Proteínas Luminescentes/metabolismo , Biliverdina/química , Microscopia de Fluorescência/métodos , Proteínas de Bactérias/metabolismo , Corantes Fluorescentes , Mamíferos/metabolismo
3.
J Mol Biol ; 436(5): 168451, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246412

RESUMO

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to the phytochromes sensing red and far-red light reversibly. Only the cGMP phosphodiesterase/Adenylate cyclase/FhlA (GAF) domain is needed for chromophore incorporation and proper photoconversion. The CBCR GAF domains covalently ligate linear tetrapyrrole chromophores and show reversible photoconversion between two light-absorbing states. In most cases, the two light-absorbing states are stable under dark conditions, but in some cases, the photoproduct state undergoes thermal relaxation back to the dark-adapted state during thermal relaxation. In this study, we examined the engineered CBCR GAF domain, AnPixJg2_BV4. AnPixJg2_BV4 covalently binds biliverdin IX-alpha (BV) and shows reversible photoconversion between a far-red-absorbing Pfr dark-adapted state and an orange-absorbing Po photoproduct state. Because the BV is an intrinsic chromophore of mammalian cells and absorbs far-red light penetrating into deep tissues, BV-binding CBCR molecules are useful for the development of optogenetic and bioimaging tools used in mammals. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis on the Phe319 position. We succeeded in obtaining variant molecules with higher chromophore-binding efficiency and higher molar extinction coefficient. Furthermore, we observed a wide variation in thermal relaxation kinetics, with an 81-fold difference between the slowest and fastest rates. Both molecules with relatively slow and fast thermal relaxation would be advantageous for optogenetic control.


Assuntos
Proteínas de Bactérias , Biliverdina , Cianobactérias , Fotorreceptores Microbianos , Fitocromo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biliverdina/química , Cianobactérias/metabolismo , Luz , Mutagênese , Fitocromo/química , Conformação Proteica , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Ligação Proteica , Fenilalanina/química , Fenilalanina/genética , Simulação de Dinâmica Molecular
4.
Arch Biochem Biophys ; 745: 109715, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549803

RESUMO

Cyanobacteriochromes (CBCRs) derived from cyanobacteria are linear-tetrapyrrole-binding photoreceptors related to the canonical red/far-red reversible phytochrome photoreceptors. CBCRs contain chromophore-binding cGMP-specific phosphodiesterase/adenylate cyclase/FhlA (GAF) domains that are highly diverse in their primary sequences and are categorized into many subfamilies. Among this repertoire, the biliverdin (BV)-binding CBCR GAF domains receive considerable attention for their in vivo optogenetic and bioimaging applications because BV is a mammalian intrinsic chromophore and can absorb far-red light that penetrates deep into the mammalian body. The typical BV-binding CBCR GAF domain exhibits reversible photoconversion between far-red-absorbing dark-adapted and orange-absorbing photoproduct states. Herein, we applied various biochemical and spectral studies to identify the details of the conformational change during this photoconversion process. No oligomeric state change was observed, whereas the surface charge would change with a modification of the α-helix structures during the photoconversion process. Combinatorial analysis using partial protease digestion and mass spectrometry identified the region where the conformational change occurred. These results provide clues for the future development of optogenetic tools.


Assuntos
Cianobactérias , Fotorreceptores Microbianos , Biliverdina/química , Fotorreceptores Microbianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Luz
5.
Plant Physiol ; 193(1): 246-258, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37311159

RESUMO

Phytochromes are biliprotein photoreceptors present in plants, algae, certain bacteria, and fungi. Land plant phytochromes use phytochromobilin (PΦB) as the bilin chromophore. Phytochromes of streptophyte algae, the clade within which land plants evolved, employ phycocyanobilin (PCB), leading to a more blue-shifted absorption spectrum. Both chromophores are synthesized by ferredoxin-dependent bilin reductases (FDBRs) starting from biliverdin IXα (BV). In cyanobacteria and chlorophyta, BV is reduced to PCB by the FDBR phycocyanobilin:ferredoxin oxidoreductase (PcyA), whereas, in land plants, BV is reduced to PФB by phytochromobilin synthase (HY2). However, phylogenetic studies suggested the absence of any ortholog of PcyA in streptophyte algae and the presence of only PФB biosynthesis-related genes (HY2). The HY2 of the streptophyte alga Klebsormidium nitens (formerly Klebsormidium flaccidum) has already indirectly been indicated to participate in PCB biosynthesis. Here, we overexpressed and purified a His6-tagged variant of K. nitens HY2 (KflaHY2) in Escherichia coli. Employing anaerobic bilin reductase activity assays and coupled phytochrome assembly assays, we confirmed the product and identified intermediates of the reaction. Site-directed mutagenesis revealed 2 aspartate residues critical for catalysis. While it was not possible to convert KflaHY2 into a PΦB-producing enzyme by simply exchanging the catalytic pair, the biochemical investigation of 2 additional members of the HY2 lineage enabled us to define 2 distinct clades, the PCB-HY2 and the PΦB-HY2 clade. Overall, our study gives insight into the evolution of the HY2 lineage of FDBRs.


Assuntos
Cianobactérias , Fitocromo , Filogenia , Ferredoxinas/genética , Plantas/metabolismo , Pigmentos Biliares/metabolismo , Biliverdina/química , Biliverdina/genética , Biliverdina/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo
6.
Animal ; 17(5): 100776, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37043933

RESUMO

Eggshell colour is the unique appearance and economically valuable trait of eggs, whereas the colour is often short of uniformity, especially in the blue-shelled breeds, hence, their pigment differences and molecular mechanism need clarity. To investigate the relationship between the pigment content of eggshells and related gene expression in the eggshell glands of chickens, four subtypes of blue-shelled eggs ('Olive', 'Green', 'Blue', and 'Light') from the same blue-eggshell chicken line were selected; Hy-Line 'White' and 'Brown'-shelled eggs were used as control groups. The L*, a*, b* values, and protoporphyrin-IX and biliverdin contents in each group of eggshells were measured. In addition, the shell glands of the corresponding hens were collected to detect SLCO1B3 genotype and mRNA expression, and ABCG2 and HMOX1 transcription and protein expression. Eggshell colour L* values were negatively correlated with protoporphyrin-IX, b* values were positively correlated with total pigment content (P < 0.001), and a* values were positively correlated with protoporphyrin-IX (P < 0.001) but negatively with biliverdin. Moreover, all four blue-eggshell subtypes were SLCO1B3 homozygous, with SLCO1B3 mRNA expression in shell glands being significantly higher than in the White and Brown groups. ABCG2 and HMOX1 mRNA expression were highest in the Brown and Green groups, respectively (P < 0.05), and were positively correlated with protoporphyrin-IX (P < 0.001) and biliverdin contents in eggshells, respectively. Western blot and immunohistochemical results demonstrated that the Brown group had the highest ABCG2 expression (P < 0.05), followed by the Green and Olive groups. HMOX1 protein expression was higher in the Olive and Green groups (P < 0.05), and lowest in the White group. This study suggests that ABCG2 and HMOX1 have important regulatory roles in the production and transport of protoporphyrin-IX and biliverdin in blue-shelled chicken eggs, respectively.


Assuntos
Galinhas , Casca de Ovo , Animais , Feminino , Galinhas/genética , Galinhas/metabolismo , Protoporfirinas/análise , Protoporfirinas/metabolismo , Biliverdina/análise , Biliverdina/química , Biliverdina/metabolismo , Cor , Melhoramento Vegetal , Óvulo , Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pigmentação/genética
7.
Molecules ; 28(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36985535

RESUMO

In this work we review research activities on a few of the most relevant structural aspects of bilirubin (BR) and biliverdin (BV). Special attention is paid to the exocyclic C=C bonds being in mostly Z rather than E configurations, and to the overall conformation being essentially different for BR and BV due to the presence or absence of the double C=C bond at C-10. In both cases, racemic mixtures of each compound of either M or P configuration are present in achiral solutions; however, imbalance between the two configurations may be easily achieved. In particular, results based on chiroptical spectroscopies, both electronic and vibrational circular dichroism (ECD and VCD) methods, are presented for chirally derivatized BR and BV molecules. Finally, we review deracemization experiments monitored with ECD data from our lab for BR in the presence of serum albumin and anesthetic compounds.


Assuntos
Bilirrubina , Biliverdina , Biliverdina/química , Dicroísmo Circular , Conformação Molecular , Vibração , Estereoisomerismo
8.
J Biophotonics ; 16(7): e202200316, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36995028

RESUMO

The onset of intracerebral hemorrhage and its progression toward acute brain injury have been correlated with the concentration of unconjugated bilirubin (BR). In addition, BR has been considered a novel predictor of outcome from intracranial hemorrhage. Since the existing invasive approach for determining localized BR and biliverdin (BV) concentration within the hemorrhagic brain lesion is not feasible, the predictive capability of BR in terms of determining the onset of hemorrhage and understanding the consequences of its progression (age) is unknown. In this study, we have demonstrated a photoacoustic (PA) approach to the noninvasive measurement of BR-BV ratio that can be utilized longitudinally to approximate the onset of the hemorrhage. The PA imaging-based measurements of BV and BR in tissues and fluids can potentially be used to determine hemorrhage "age," quantitatively evaluate the hemorrhage resorption or detect a rebleeding, and assess responses to therapy and prognosis.


Assuntos
Bilirrubina , Biliverdina , Humanos , Biliverdina/química , Bilirrubina/química , Análise Espectral , Hemorragia/diagnóstico por imagem
9.
J Biol Chem ; 299(1): 102763, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463961

RESUMO

PcyA, a ferredoxin-dependent bilin pigment reductase, catalyzes the site-specific reduction of the two vinyl groups of biliverdin (BV), producing phycocyanobilin. Previous neutron crystallography detected both the neutral BV and its protonated form (BVH+) in the wildtype (WT) PcyA-BV complex, and a nearby catalytic residue Asp105 was found to have two conformations (protonated and deprotonated). Semiempirical calculations have suggested that the protonation states of BV are reflected in the absorption spectrum of the WT PcyA-BV complex. In the previously determined absorption spectra of the PcyA D105N and I86D mutants, complexed with BV, a peak at 730 nm, observed in the WT, disappeared and increased, respectively. Here, we performed neutron crystallography and quantum chemical analysis of the D105N-BV and I86D-BV complexes to determine the protonation states of BV and the surrounding residues and study the correlation between the absorption spectra and protonation states around BV. Neutron structures elucidated that BV in the D105N mutant is in a neutral state, whereas that in the I86D mutant is dominantly in a protonated state. Glu76 and His88 showed different hydrogen bonding with surrounding residues compared with WT PcyA, further explaining why D105N and I86D have much lower activities for phycocyanobilin synthesis than the WT PcyA. Our quantum mechanics/molecular mechanics calculations of the absorption spectra showed that the spectral change in D105N arises from Glu76 deprotonation, consistent with the neutron structure. Collectively, our findings reveal more mechanistic details of bilin pigment biosynthesis.


Assuntos
Pigmentos Biliares , Oxirredutases , Pigmentos Biliares/biossíntese , Pigmentos Biliares/química , Biliverdina/química , Catálise , Cristalografia , Oxirredutases/genética , Oxirredutases/química , Mutação
10.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806351

RESUMO

Understanding the photophysical properties and stability of near-infrared fluorescent proteins (NIR FPs) based on bacterial phytochromes is of great importance for the design of efficient fluorescent probes for use in cells and in vivo. Previously, the natural ligand of NIR FPs biliverdin (BV) has been revealed to be capable of covalent binding to the inherent cysteine residue in the PAS domain (Cys15), and to the cysteine residue introduced into the GAF domain (Cys256), as well as simultaneously with these two residues. Here, based on the spectroscopic analysis of several NIR FPs with both cysteine residues in PAS and GAF domains, we show that the covalent binding of BV simultaneously with two domains is the reason for the higher quantum yield of BV fluorescence in these proteins as a result of rigid fixation of the chromophore in their chromophore-binding pocket. We demonstrate that since the attachment sites are located in different regions of the polypeptide chain forming a figure-of-eight knot, their binding to BV leads to shielding of many sites of proteolytic degradation due to additional stabilization of the entire protein structure. This makes NIR FPs with both cysteine residues in PAS and GAF domains less susceptible to cleavage by intracellular proteases.


Assuntos
Biliverdina , Fitocromo , Proteínas de Bactérias/metabolismo , Biliverdina/química , Cisteína/química , Proteínas Luminescentes/metabolismo , Fitocromo/metabolismo
11.
Nat Chem ; 14(7): 823-830, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577919

RESUMO

The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore's pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes.


Assuntos
Fitocromo , Proteínas de Bactérias , Biliverdina/química , Biliverdina/metabolismo , Ligação de Hidrogênio , Isomerismo , Fitocromo/química , Fitocromo/metabolismo , Prótons
12.
J Phys Chem Lett ; 13(20): 4538-4542, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35576453

RESUMO

Photoactivation of bacteriophytochrome involves a cis-trans photoisomerization of a biliverdin chromophore, but neither the precise sequence of events nor the direction of the isomerization is known. Here, we used nonadiabatic molecular dynamics simulations on the photosensory protein dimer to resolve the isomerization mechanism in atomic detail. In our simulations the photoisomerization of the D ring occurs in the counterclockwise direction. On a subpicosecond time scale, the photoexcited chromophore adopts a short-lived intermediate with a highly twisted configuration stabilized by an extended hydrogen-bonding network. Within tens of picoseconds, these hydrogen bonds break, allowing the chromophore to adopt a more planar configuration, which we assign to the early Lumi-R state. The isomerization process is completed via helix inversion of the biliverdin chromophore to form the late Lumi-R state. The mechanistic insights into the photoisomerization process are essential to understand how bacteriophytochrome has evolved to mediate photoactivation and to engineer this protein for new applications.


Assuntos
Biliverdina , Simulação de Dinâmica Molecular , Proteínas de Bactérias/química , Biliverdina/química , Biliverdina/metabolismo , Ligação de Hidrogênio , Isomerismo
13.
Sci Rep ; 12(1): 5587, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379835

RESUMO

Modern biology investigations on phytochromes as near-infrared fluorescent pigments pave the way for the development of new biosensors, as well as for optogenetics and in vivo imaging tools. Recently, near-infrared fluorescent proteins (NIR-FPs) engineered from biliverdin-binding bacteriophytochromes and cyanobacteriochromes, and from phycocyanobilin-binding cyanobacterial phytochromes have become promising probes for fluorescence microscopy and in vivo imaging. However, current NIR-FPs typically suffer from low fluorescence quantum yields and short fluorescence lifetimes. Here, we applied the rational approach of combining mutations known to enhance fluorescence in the cyanobacterial phytochrome Cph1 to derive a series of highly fluorescent variants with fluorescence quantum yield exceeding 15%. These variants were characterised by biochemical and spectroscopic methods, including time-resolved fluorescence spectroscopy. We show that these new NIR-FPs exhibit high fluorescence quantum yields and long fluorescence lifetimes, contributing to their bright fluorescence, and provide fluorescence lifetime imaging measurements in E.coli cells.


Assuntos
Fitocromo , Proteínas de Bactérias/metabolismo , Biliverdina/química , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Fitocromo/química
14.
J Phys Chem B ; 126(14): 2647-2657, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35357137

RESUMO

The ability of phytochromes to act as photoswitches in plants and microorganisms depends on interactions between a bilin-like chromophore and a host protein. The interconversion occurs between the spectrally distinct red (Pr) and far-red (Pfr) conformers. This conformational change is triggered by the photoisomerization of the chromophore D-ring pyrrole. In this study, as a representative example of a phytochrome-bilin system, we consider biliverdin IXα (BV) bound to bacteriophytochrome (BphP) from Deinococcus radiodurans. In the absence of light, we use an enhanced sampling molecular dynamics (MD) method to overcome the photoisomerization energy barrier. We find that the calculated free energy (FE) barriers between essential metastable states agree with spectroscopic results. We show that the enhanced dynamics of the BV chromophore in BphP contributes to triggering nanometer-scale conformational movements that propagate by two experimentally determined signal transduction pathways. Most importantly, we describe how the metastable states enable a thermal transition known as the dark reversion between Pfr and Pr, through a previously unknown intermediate state of Pfr. We present the heterogeneity of temperature-dependent Pfr states at the atomistic level. This work paves a way toward understanding the complete mechanism of the photoisomerization of a bilin-like chromophore in phytochromes.


Assuntos
Fitocromo , Proteínas de Bactérias/química , Pigmentos Biliares , Biliverdina/química , Sítios de Ligação , Conformação Molecular , Fitocromo/química
15.
Anal Biochem ; 642: 114557, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35092720

RESUMO

Cyanobacteriochromes are the extended family of phytochrome photosensors characterized in cyanobacteria. Alr1966g2C56A is a cyanobacteriochrome mutant of Alr1966g2 in Nostoc sp. PCC 7120 from freshwater. In this paper, we truncated ten residues in the N-terminus and ten residues in the C-terminus of Alr1966g2C56A and obtained truncated Alr1966g2C46A, termed as Alr1966g2C46A-tr. Alr1966g2C46A-tr binded covalently not only phycocyanobilin but also biliverdin via Cys74 of the conserved CH motif, and showed a significant improvement in binding-PCB efficiency in E. coli, compared with that of untruncated Alr1966g2C56A. We also captured a persistent red fluorescence of Alr1966g2C46A-tr-PCB or Alr1966g2C46A-tr-BV expressed in live E. coli. Thus, Alr1966g2C46A-tr was suitable for the stable red fluorescent probe as a starting material.


Assuntos
Biliverdina/química , Cianobactérias/química , Proteínas Luminescentes/análise , Ficobilinas/química , Ficocianina/química , Fitocromo/química , Proteína Vermelha Fluorescente
16.
FEBS Lett ; 596(6): 796-805, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35020202

RESUMO

Biliverdin IXα (BV) binds to several prokaryotic and eukaryotic proteins. How nature exploits the versatility of BV's properties is not fully understood. Unlike free BV, the Sandercyanin fluorescent protein bound to BV (SFP-BV) shows enhanced red fluorescence (675 nm) on excitation in the UV region (380 nm). Site-directed mutagenesis showed that the BV complex of two SFP variants, F55A and E79A, resulted in the loss of red fluorescence. Crystal structures of the complexes of these proteins with BV show the absence of stacking interactions of the F55 phenyl ring with BV. BV changes from ZZZssa conformation in the wild-type to ZZZsss conformation in the variants. In the nonfluorescent mutants, the lowest excited state is destabilized, resulting in nonradiative decay.


Assuntos
Biliverdina , Fenilalanina , Biliverdina/química , Mutagênese Sítio-Dirigida , Proteínas
17.
J Mol Biol ; 434(2): 167359, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34798132

RESUMO

Biliverdin-binding serpins (BBSs) are proteins that are responsible for coloration in amphibians and fluoresce in the near-infrared (NIR) spectral region. Here we produced the first functional recombinant BBS of the polka-dot treefrog Boana punctata (BpBBS), assembled with its biliverdin (BV) chromophore, and report its biochemical and photochemical characterization. We determined the crystal structure of BpBBS at 2.05 Å resolution, which demonstrated its structural homology to the mammalian protease inhibitor alpha-1-antitrypsin. BV interaction with BpBBS was studied and it was found that the N-terminal polypeptide (residues 19-50) plays a critical role in the BV binding. By comparing BpBBS with the available NIR fluorescent proteins and expressing it in mammalian cells, we demonstrated its potential as a NIR imaging probe. These results provide insight into the non-inhibitory function of serpins, provide a basis for improving their performance in mammalian cells, and suggest possible paths for the development of BBS-based fluorescent probes.


Assuntos
Biliverdina/química , Biliverdina/metabolismo , Serpinas/química , Serpinas/metabolismo , Animais , Proteínas de Bactérias/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Fitocromo/química , Tetrapirróis/química
18.
Phys Chem Chem Phys ; 23(37): 20867-20874, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34374395

RESUMO

Cyanobacteriochromes (CBCRs) are bi-stable photoreceptor proteins with high potential for biotechnological applications. Most of these proteins utilize phycocyanobilin (PCB) as a light-sensing co-factor, which is unique to cyanobacteria, but some variants also incorporate biliverdin (BV). The latter are of particular interest for biotechnology due to the natural abundance and red-shifted absorption of BV. Here, AmI-g2 was investigated, a CBCR capable of binding both PCB and BV. The assembly kinetics and primary photochemistry of AmI-g2 with both chromophores were studied in vitro. The assembly reaction with PCB is roughly 10× faster than BV, and the formation of a non-covalent intermediate was identified as the rate-limiting step in the case of BV. This step is fast for PCB, where the formation of the covalent thioether bond between AmI-g2 and PCB becomes rate-limiting. The photochemical quantum yields of the forward and backward reactions of AmI-g2 were estimated and discussed in the context of homologous CBCRs.


Assuntos
Biliverdina/química , Cianobactérias/metabolismo , Fotorreceptores Microbianos/química , Ficobilinas/química , Ficocianina/química , Biliverdina/metabolismo , Cinética , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Ligação Proteica , Teoria Quântica , Espectrofotometria
19.
Photochem Photobiol Sci ; 20(9): 1173-1181, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34460093

RESUMO

Solvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation state of the biliverdin chromophore from Deinococcus radiodurans bacteriophytchrome, and thus, the pH of the surrounding solution, is determined. The observed absorbance changes are related to the solvent access of the chromophore binding pocket, gated by the hairpin extension. We therefore propose a model with an "open" (solvent-exposed, deprotonation-active on a (sub)second time-scale) state and a "closed" (solvent-gated, deprotonation inactive) state, where the hairpin fluctuates slowly between these conformations thereby controlling the deprotonation process of the chromophore on a minute time scale. When the connection between the hairpin and the biliverdin surroundings is destabilized by a point mutation, the amplitude of the deprotonation phase increases considerably. In the absence of the extension, the chromophore deprotonates essentially without any "gating". Hence, we introduce a straightforward method to study the stability and fluctuation of the phytochrome hairpin in its photostationary state. This approach can be extended to other chromophore-protein systems where absorption changes reflect dynamic processes of the protein.


Assuntos
Proteínas de Bactérias/química , Biliverdina/química , Deinococcus/química , Fitocromo/química , Sítios de Ligação , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Conformação Proteica , Prótons , Solventes , Espectrofotometria Ultravioleta
20.
Int J Mol Sci ; 22(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065754

RESUMO

Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm-1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.


Assuntos
Biliverdina/química , Cianobactérias/genética , Fotorreceptores Microbianos/química , Fitocromo/química , Substituição de Aminoácidos , Biliverdina/genética , Sítios de Ligação , Cianobactérias/metabolismo , Eletrônica , Cinética , Processos Fotoquímicos , Fotorreceptores Microbianos/genética , Fitocromo/genética , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Análise Espectral , Análise Espectral Raman , Tempo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...