Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.069
Filtrar
1.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690760

RESUMO

Thibaut Brunet is a group leader at the Institut Pasteur in Paris, France, where he works on choanoflagellates (known as 'choanos' for short). These unicellular organisms are close relatives of animals that have the potential to form multicellular assemblies under certain conditions, and Thibaut's lab are leveraging them to gain insights into how animal morphogenesis evolved. We met with Thibaut over Zoom to discuss his career path so far, and learnt how an early interest in dinosaurs contributed to his life-long fascination with evolutionary biology.


Assuntos
Evolução Biológica , Coanoflagelados , Biologia do Desenvolvimento , Animais , Biologia do Desenvolvimento/história , História do Século XXI , Morfogênese , História do Século XX
2.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722098

RESUMO

During development, the gastrointestinal tract undergoes patterning along its anterior-posterior axis to define regions with distinct organs and functions. A new paper in Development derives human intestinal organoids from an individual with duodenal defects and a compound heterozygous variant in the gene encoding the transcription factor RFX6. By studying these organoids, the authors identify novel roles for RFX6 in intestinal patterning. To learn more about the story behind the paper, we caught up with first author J. Guillermo Sanchez and corresponding author Jim Wells, an endowed professor in the Division of Developmental Biology at Cincinnati Children's Hospital, USA, where he is also the Director for Basic Research in the Division of Endocrinology.


Assuntos
Biologia do Desenvolvimento , Humanos , História do Século XXI , História do Século XX , Biologia do Desenvolvimento/história , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição de Fator Regulador X/metabolismo , Organoides/metabolismo , Padronização Corporal/genética
3.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722099

RESUMO

Planarians grow when they are fed and shrink during periods of starvation. However, it is unclear how they maintain appropriate body proportions as their size changes. A new paper in Development investigates the differences between growth and shrinkage dynamics and builds a mathematical model to explore the mechanisms underpinning these two processes. To learn more about the story behind the paper, we caught up with first author, Jason Ko, and corresponding author, Daniel Lobo, Associate Professor at the University of Maryland.


Assuntos
Planárias , Animais , Humanos , Biologia do Desenvolvimento/história , História do Século XXI
4.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722097

RESUMO

Bez is a Class B scavenger receptor in Drosophila that is yet to be characterised. In a new study, Margret Bülow and colleagues uncover a role for Bez in mobilising lipids from Drosophila adipocytes into the ovary for oocyte maturation. To find out more about the people behind the paper, we caught up with first author, Pilar Carrera, and corresponding author, Margret Bülow, Group Leader at the University of Bonn.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Drosophila , História do Século XXI , Humanos , Adipócitos/citologia , Adipócitos/metabolismo , História do Século XX , Biologia do Desenvolvimento/história , Oócitos/metabolismo , Oócitos/citologia , Drosophila melanogaster , Ovário/metabolismo , Ovário/citologia
5.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738653

RESUMO

During alveologenesis, multiple mesenchymal cell types play crucial roles in maximising the lung surface area. In their study, David Ornitz and colleagues define the repertoire of lung fibroblasts, with a particular focus on alveolar myofibroblasts. To know more about their work, we spoke to the first author, Yongjun Yin, and the corresponding author, David Ornitz, Alumni Endowed Professor at the Department of Developmental Biology, Washington University School of Medicine, St. Louis.


Assuntos
Biologia do Desenvolvimento , Humanos , História do Século XXI , Biologia do Desenvolvimento/história , História do Século XX , Pulmão/embriologia , Pulmão/metabolismo , Pulmão/citologia , Animais
6.
J Exp Zool B Mol Dev Evol ; 342(4): 335-341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38686706

RESUMO

Evolutionary developmental biology (Evo-Devo) is flourishing in Latin America, particularly Argentina, where researchers are leveraging this integrative field to unlock the secrets of the region's remarkable biodiversity. A recent symposium held at the 5th Argentinean Meeting on Evolutionary Biology (RABE V) showcased a vibrant Evo-Devo community and the diversity of its research endeavors. The symposium included 3 plenary talks, 3 short talks, and 12 posters, and spanned a range of organisms and approaches. Interestingly, the symposium highlighted a prevalence of "top-down" Evo-Devo studies in the region, where researchers first analyze existing diversity and then propose potential developmental mechanisms. This approach, driven in part by financial constraints and the region's historical focus on natural history, presents a unique opportunity to bridge disciplines like comparative biology, paleontology, and botany. The symposium's success underscores the vital role of Evo-Devo in Latin America, not only for advancing our understanding of evolution but also for providing valuable tools to conserve and manage the region's irreplaceable biodiversity. As Evo-Devo continues to grow in Latin America, fostering collaboration and knowledge exchange within the region and beyond will be crucial for realizing the full potential of this transformative field.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Argentina , Biodiversidade , Animais
7.
Zebrafish ; 21(2): 119-127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621203

RESUMO

Research-based education at the undergraduate level is ideal for fostering the training of future scientists. In an undergraduate Developmental Biology course, this learning strategy requires the availability of model species and enough research reagents, not only for technique training but also for the development of student original projects. This might be challenging in most countries, where resources are limited. Hence, there is a need to develop low-cost solutions for use in the classroom. In this study, we describe the optimization and use of two low-cost protocols in zebrafish embryos for hands-on practical sessions and project-based learning in a Developmental Biology undergraduate course in Ecuador. These protocols were designed for the practical and experimental learning of vertebrate meroblastic cleavage, gastrulation, and neural crest differentiation. The proposed protocols have been previously described in the literature and use silver nitrate and alcian blue, two relatively inexpensive reagents, to label cell membranes and cartilage. The silver nitrate protocol allows the study of cell contact formation during cleavage and the identification of cellular changes during gastrulation, including yolk internalization and epiboly. The alcian blue staining allows the analysis of cranial mesenchymal differentiation into cartilage. These protocols are ideal for practical sessions due to their ease of application, quick results, adaptability to the class schedule, and robustness in the hands of beginning researchers. Finally, these protocols are adaptable for research-based class projects.


Assuntos
Nitrato de Prata , Peixe-Zebra , Humanos , Animais , Equador , Azul Alciano , Biologia do Desenvolvimento
10.
Curr Top Dev Biol ; 157: 1-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556456

RESUMO

This article is about how the famous organizer experiment has been perceived since it was first published in 1924. The experiment involves the production of a secondary embryo under the influence of a graft of a dorsal lip from an amphibian gastrula to a host embryo. The early experiments of Spemann and his school gave rise to a view that the whole early amphibian embryo was "indifferent" in terms of determination, except for a special region called "the organizer". This was viewed mainly as an agent of neural induction, also having the ability to generate an anteroposterior body pattern. Early biochemical efforts to isolate a factor emitted by the organizer were not successful but culminated in the definition of "neuralizing (N)" and "mesodermalizing (M)" factors present in a wide variety of animal tissues. By the 1950s this view became crystallized as a "two gradient" model involving the N and M factors, which explained the anteroposterior patterning effect. In the 1970s, the phenomenon of mesoderm induction was characterized as a process occurring before the commencement of gastrulation. Reinvestigation of the organizer effect using lineage labels gave rise to a more precise definition of the sequence of events. Since the 1980s, modern research using the tools of molecular biology, combined with microsurgery, has explained most of the processes involved. The organizer graft should now be seen as an experiment which involves multiple interactions: dorsoventral polarization following fertilization, mesoderm induction, the dorsalizing signal responsible for neuralization and dorsoventral patterning of the mesoderm, and additional factors responsible for anteroposterior patterning.


Assuntos
Desenvolvimento Embrionário , Mesoderma , Animais , Anfíbios , Biologia do Desenvolvimento , Padronização Corporal , Indução Embrionária , Organizadores Embrionários , Regulação da Expressão Gênica no Desenvolvimento
12.
Proc Natl Acad Sci U S A ; 121(14): e2320413121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530898

RESUMO

Understanding, predicting, and controlling the phenotypic consequences of genetic and environmental change is essential to many areas of fundamental and applied biology. In evolutionary biology, the generative process of development is a major source of organismal evolvability that constrains or facilitates adaptive change by shaping the distribution of phenotypic variation that selection can act upon. While the complex interactions between genetic and environmental factors during development may appear to make it impossible to infer the consequences of perturbations, the persistent observation that many perturbations result in similar phenotypes indicates that there is a logic to what variation is generated. Here, we show that a general representation of development as a dynamical system can reveal this logic. We build a framework that allows predicting the phenotypic effects of perturbations, and conditions for when the effects of perturbations of different origins are concordant. We find that this concordance is explained by two generic features of development, namely the dynamical dependence of the phenotype on itself and the fact that all perturbations must affect the developmental process to have an effect on the phenotype. We apply our theoretical framework to classical models of development and show that it can be used to predict the evolutionary response to selection using information of plasticity and to accelerate evolution in a desired direction. The framework we introduce provides a way to quantitatively interchange perturbations, opening an avenue of perturbation design to control the generation of variation.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Fenótipo
13.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345109

RESUMO

The field of developmental biology has declined in prominence in recent decades, with off-shoots from the field becoming more fashionable and highly funded. This has created inequity in discovery and opportunity, partly due to the perception that the field is antiquated or not cutting edge. A 'think tank' of scientists from multiple developmental biology-related disciplines came together to define specific challenges in the field that may have inhibited innovation, and to provide tangible solutions to some of the issues facing developmental biology. The community suggestions include a call to the community to help 'rebrand' the field, alongside proposals for additional funding apparatuses, frameworks for interdisciplinary innovative collaborations, pedagogical access, improved science communication, increased diversity and inclusion, and equity of resources to provide maximal impact to the community.


Assuntos
Biologia do Desenvolvimento
14.
J Med Primatol ; 53(2): e12693, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374540

RESUMO

This review on cynomolgus monkey (Macaca fascicularis) blastoids discusses a breakthrough in modeling early non-human primate embryogenesis, offering insights into embryonic development and implantation processes. It acknowledges ethical challenges and animal welfare considerations in developmental biology, suggests potential applications in human reproductive medicine, and highlights the need for ongoing ethical and technical refinement.


Assuntos
Biologia do Desenvolvimento , Primatas , Gravidez , Feminino , Animais , Macaca fascicularis
15.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338903

RESUMO

Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.


Assuntos
Neoplasias da Mama , Ecossistema , Humanos , Feminino , Mastectomia , Evolução Biológica , Biologia do Desenvolvimento
16.
17.
Mol Oncol ; 18(4): 793-796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282579

RESUMO

When we think about cancer, the link to development might not immediately spring to mind. Yet, many foundational concepts in cancer biology trace their roots back to developmental processes. Several defining traits of cancer were indeed initially observed and studied within developing embryos. As our comprehension of embryonic mechanisms deepens, it not only illuminates how and why cancer cells hijack these processes but also spearheads the emergence of innovative technologies for modeling and comprehending tumor biology. Among these technologies are stem cell-based models, made feasible through our grasp of fundamental mechanisms related to embryonic development. The intersection between cancer and stem cell research is evolving into a tangible synergy that extends beyond the concepts of cancer stem cells and cell-of-origin, offering novel tools to unravel the mechanisms of cancer initiation and progression.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Feminino , Gravidez , Humanos , Diferenciação Celular , Desenvolvimento Embrionário , Biologia do Desenvolvimento
18.
Sci Signal ; 17(817): eadn0865, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166032

RESUMO

Basic biology research in India has expanded in recent years, and addressing key challenges should enable this momentum to continue.


Assuntos
Biologia , Índia , Biologia do Desenvolvimento
19.
Nature ; 626(7998): 367-376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092041

RESUMO

Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.


Assuntos
Desenvolvimento Embrionário , Camadas Germinativas , Hematopoese , Saco Vitelino , Humanos , Implantação do Embrião , Endoderma/citologia , Endoderma/embriologia , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Saco Vitelino/citologia , Saco Vitelino/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Células-Tronco Pluripotentes Induzidas/citologia , Âmnio/citologia , Âmnio/embriologia , Corpos Embrioides/citologia , Linhagem da Célula , Biologia do Desenvolvimento/métodos , Biologia do Desenvolvimento/tendências
20.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010140

RESUMO

Jonathan Slack is Emeritus Professor at the University of Bath. His research interests have included early development of the Xenopus embryo, regeneration of limbs and tails, and attempts to reprogramme other cell types to ß cells. In September 2023, Jonathan was awarded the 2023 British Society for Developmental Biology Wolpert Medal, which recognizes an outstanding individual who has made major contributions to the teaching and communication of developmental biology in the UK. We chatted to Jonathan at the European Developmental Biology Congress, where he was presented with the medal, to find out more about his career and his experience writing textbooks and the 'A Very Short Introduction' books on stem cells and genes.


Assuntos
Distinções e Prêmios , Biologia do Desenvolvimento , Biologia do Desenvolvimento/história , Células-Tronco , Extremidades , Embrião de Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...