Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Nature ; 618(7967): 1065-1071, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198476

RESUMO

Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event1-7. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-18 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death.


Assuntos
Moléculas de Adesão Celular Neuronais , Morte Celular , Membrana Celular , Fatores de Crescimento Neural , Animais , Humanos , Camundongos , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/patologia , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/ultraestrutura , Mutagênese Sítio-Dirigida , Biopolímeros/química , Biopolímeros/genética , Biopolímeros/metabolismo
2.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003478

RESUMO

Cyanobacteria are photoautotrophic bacteria commonly found in the natural environment. Due to the ecological benefits associated with the assimilation of carbon dioxide from the atmosphere and utilization of light energy, they are attractive hosts in a growing number of biotechnological processes. Biopolymer production is arguably one of the most critical areas where the transition from fossil-derived chemistry to renewable chemistry is needed. Cyanobacteria can produce several polymeric compounds with high applicability such as glycogen, polyhydroxyalkanoates, or extracellular polymeric substances. These important biopolymers are synthesized using precursors derived from central carbon metabolism, including the tricarboxylic acid cycle. Due to their unique metabolic properties, i.e., light harvesting and carbon fixation, the molecular and genetic aspects of polymer biosynthesis and their relationship with central carbon metabolism are somehow different from those found in heterotrophic microorganisms. A greater understanding of the processes involved in cyanobacterial metabolism is still required to produce these molecules more efficiently. This review presents the current state of the art in the engineering of cyanobacterial metabolism for the efficient production of these biopolymers.


Assuntos
Biopolímeros/biossíntese , Biotecnologia , Cianobactérias/metabolismo , Fotossíntese/genética , Biopolímeros/genética , Biopolímeros/metabolismo , Dióxido de Carbono/metabolismo , Cianobactérias/genética , Glicogênio/metabolismo , Poli-Hidroxialcanoatos/genética , Poli-Hidroxialcanoatos/metabolismo
3.
Electron. j. biotechnol ; 46: 8-13, jul. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1223212

RESUMO

BACKGROUND: Poly-3-hydroxybutyrate (PHB) can be efficiently produced in recombinant Escherichia coli by the overexpression of an operon (NphaCAB) encoding PHB synthetase. Strain improvement is considered to be one of critical factors to lower the production cost of PHB in recombinant system. In this study, one of key regulators that affect the cell growth and PHB content was confirmed and analyzed. RESULT: S17-3, a mutant E. coli strain derived from S17-1, was found to be able to achieve high cell density when expressing NphaCAB with the plasmid pBhya-CAB. Whole genome sequencing of S17-3 revealed genetic alternations on the upstream regions of csrA, encoding a global regulator cross-talking between stress response, catabolite repression and other metabolic activities. Deletion of csrA or expression of mutant csrA resulted in improved cell density and PHB content. CONCLUSION: The impact of gene deletion of csrA was determined, dysfunction of the regulators improved the cell density of recombinant E. coli and PHB production, however, the detail mechanism needs to be further clarified.


Assuntos
Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Proteínas Repressoras/genética , Biopolímeros/genética , Proteínas Recombinantes , Proteínas de Ligação a RNA/genética , Deleção de Genes , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Engenharia Metabólica , Ligases/metabolismo
4.
PLoS Comput Biol ; 16(6): e1007981, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32589667

RESUMO

The introduction of third-generation DNA sequencing technologies in recent years has allowed scientists to generate dramatically longer sequence reads, which when used in whole-genome sequencing projects have yielded better repeat resolution and far more contiguous genome assemblies. While the promise of better contiguity has held true, the relatively high error rate of long reads, averaging 8-15%, has made it challenging to generate a highly accurate final sequence. Current long-read sequencing technologies display a tendency toward systematic errors, in particular in homopolymer regions, which present additional challenges. A cost-effective strategy to generate highly contiguous assemblies with a very low overall error rate is to combine long reads with low-cost short-read data, which currently have an error rate below 0.5%. This hybrid strategy can be pursued either by incorporating the short-read data into the early phase of assembly, during the read correction step, or by using short reads to "polish" the consensus built from long reads. In this report, we present the assembly polishing tool POLCA (POLishing by Calling Alternatives) and compare its performance with two other popular polishing programs, Pilon and Racon. We show that on simulated data POLCA is more accurate than Pilon, and comparable in accuracy to Racon. On real data, all three programs show similar performance, but POLCA is consistently much faster than either of the other polishing programs.


Assuntos
Genoma Bacteriano , Algoritmos , Biopolímeros/genética , Análise de Sequência de DNA/métodos
5.
Mol Biol Rep ; 47(6): 4507-4518, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32424525

RESUMO

Cytochrome P450 monooxygenase 704B (CYP704B), a member of the CYP86 clan, was found to be needed in Arabidopsis and rice to biosynthesize precursors of sporopollenin through oxidizing fatty acids. In the present study, we cloned and characterized a CYP704B gene in Panax ginseng, named PgCYP704B1. It shared high sequence identity (98-99%) with CYP704 of Arabidopsis, Theobroma cacao, and Morus notabilis. The phylogenetic comparison of ginseng and higher plants between the members of CYP86 clan revealed that ginseng CYP704 was categorized as a group of CYP704B with dicot plants. The expression of PgCYP704B1 is low in the stem, leaf, and fruit, and high in flower buds, particularly detected in the young gametic cell and tapetum layer of the developing anther. Arabidopsis plants overexpressing PgCYP704B1 improved plant biomass such as plant height, siliques and seed number and size. A cytological observation by transverse and longitudinal semi-thin sections of the siliques cuticles revealed that the cell length increased. Furthermore a chemical analysis showed that PgCYP704B1ox lines increased their cutin monomers contents in the siliques. Our results suggest that PgCYP704B1 has a conserved role during male reproduction for fatty acid biosynthesis and its overexpression increases cutin monomers in siliques that eventually could be used for seed production.


Assuntos
Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Panax/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Biomassa , Biopolímeros/genética , Biopolímeros/metabolismo , Carotenoides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Lipídeos de Membrana/metabolismo , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
6.
Biotechnol Bioeng ; 117(4): 945-958, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930479

RESUMO

Reconstructing the chemical and structural characteristics of the plant cell wall represents a promising solution to overcoming lignocellulosic biomass recalcitrance to biochemical deconstruction. This study aims to leverage hydroxyproline (Hyp)-O-glycosylation, a process unique to plant cell wall glycoproteins, as an innovative technology for de novo design and engineering in planta of Hyp-O-glycosylated biopolymers (HypGP) that facilitate plant cell wall reconstruction. HypGP consisting of 18 tandem repeats of "Ser-Hyp-Hyp-Hyp-Hyp" motif or (SP4)18 was designed and engineered into tobacco plants as a fusion peptide with either a reporter protein enhanced green fluorescence protein or the catalytic domain of a thermophilic E1 endoglucanase (E1cd) from Acidothermus cellulolyticus. The engineered (SP4)18 module was extensively Hyp-O-glycosylated with arabino-oligosaccharides, which facilitated the deposition of the fused protein/enzyme in the cell wall matrix and improved the accumulation of the protein/enzyme in planta by 1.5-11-fold. The enzyme activity of the recombinant E1cd was not affected by the fused (SP4)18 module, showing an optimal temperature of 80°C and optimal pH between 5 and 8. The plant biomass engineered with the (SP4)18 -tagged protein/enzyme increased the biomass saccharification efficiency by up to 3.5-fold without having adverse impact on the plant growth.


Assuntos
Biopolímeros , Parede Celular , Engenharia Genética/métodos , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Biopolímeros/química , Biopolímeros/genética , Biopolímeros/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Celulase/química , Celulase/genética , Celulase/metabolismo , Glicoproteínas , Glicosilação , Hidroxiprolina/química , Hidroxiprolina/genética , Hidroxiprolina/metabolismo , Proteínas de Plantas , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo
7.
Int J Biol Macromol ; 147: 569-575, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31931064

RESUMO

The modulation of structural fibrous protein and polysaccharide biopolymers for the design of biomaterials is still relatively challenging due to the non-trivial nature of the transformation from a biopolymer's native state to a more usable form. To gain insight into the nature of the molecular interaction between silk and cellulose chains, we characterized the structural, thermal and morphological properties of silk-cellulose biocomposites regenerated from the ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc), as a function of increasing coagulation agent concentrations. We found that the cellulose crystallinity and crystal size are dependent on the coagulation agent, hydrogen peroxide solution. The interpretation of our results suggests that the selection of a proper coagulator is a critical step for controlling the physicochemical properties of protein-polysaccharide biocomposite materials.


Assuntos
Biopolímeros/química , Celulose/química , Escleroproteínas/química , Seda/química , Materiais Biocompatíveis/química , Biopolímeros/genética , Celulose/genética , Celulose/ultraestrutura , Peróxido de Hidrogênio/química , Imidazóis/química , Líquidos Iônicos/química , Polissacarídeos/química , Polissacarídeos/genética , Conformação Proteica em Folha beta/genética , Escleroproteínas/ultraestrutura , Seda/genética , Seda/ultraestrutura
8.
Funct Integr Genomics ; 20(3): 383-396, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31729646

RESUMO

Environment-sensitive genic male sterility is a valid tool for hybrid production and hybrid breeding, but there are no previous reports of the molecular mechanism of fertility conversion. In this study, RNA-seq, phenotypic and cytological observations, and physiological indexes were applied to analyze thermo-sensitive genic male sterility line 4110S under different temperature conditions to explore the fertility transformation mechanism. In total, 3420 differentially expressed genes (DEGs) were identified comprising 2331 upregulated genes and 1089 downregulated genes. The DEGs were apparently distributed among 54 Gene Ontology functional groups. The phenylpropanoid, long-chain fatty acid, and jasmonic acid (JA) biosynthesis pathways were related to male sterility, where their downregulation blocked the synthesis of sporopollenin and JA. Phenotypic and cytological analyses showed that pollen wall defects and anther indehiscence at high temperatures induced sterility. Moreover, enzyme-linked immunosorbent assay results indicated that the abundance of JA was lower in 4110S under restrictive conditions (high temperature) than permissive conditions (low temperature). A possible regulated network of pathways associated with male sterility was suggested. These results provided insights into the molecular mechanism of fertility conversion in the thermosensitive male sterility system.


Assuntos
Biopolímeros/biossíntese , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Infertilidade das Plantas/genética , Pólen/genética , Triticum/genética , Biopolímeros/genética , Carotenoides , Regulação para Baixo , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Pólen/metabolismo , Transcriptoma , Triticum/fisiologia
9.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836580

RESUMO

Melanin is a pigment produced by organisms throughout all domains of life. Due to its unique physicochemical properties, biocompatibility, and biostability, there has been an increasing interest in the use of melanin for broad applications. In the vast majority of studies, melanin has been either chemically synthesized or isolated from animals, which has restricted its use to small-scale applications. Using bacteria as biocatalysts is a promising and economical alternative for the large-scale production of biomaterials. In this study, we engineered the marine bacterium Vibrio natriegens, one of the fastest-growing organisms, to synthesize melanin by expressing a heterologous tyrosinase gene and demonstrated that melanin production was much faster than in previously reported heterologous systems. The melanin of V. natriegens was characterized as a polymer derived from dihydroxyindole-2-carboxylic acid (DHICA) and, similarly to synthetic melanin, exhibited several characteristic and useful features. Electron microscopy analysis demonstrated that melanin produced from V. natriegens formed nanoparticles that were assembled as "melanin ghost" structures, and the photoprotective properties of these particles were validated by their protection of cells from UV irradiation. Using a novel electrochemical reverse engineering method, we observed that melanization conferred redox activity to V. natriegens Moreover, melanized bacteria were able to quickly adsorb the organic compound trinitrotoluene (TNT). Overall, the genetic tractability, rapid division time, and ease of culture provide a set of attractive properties that compare favorably to current E. coli production strains and warrant the further development of this chassis as a microbial factory for natural product biosynthesis.IMPORTANCE Melanins are macromolecules that are ubiquitous in nature and impart a large variety of biological functions, including structure, coloration, radiation resistance, free radical scavenging, and thermoregulation. Currently, in the majority of investigations, melanins are either chemically synthesized or extracted from animals, which presents significant challenges for large-scale production. Bacteria have been used as biocatalysts to synthesize a variety of biomaterials due to their fast growth and amenability to genetic engineering using synthetic biology tools. In this study, we engineered the extremely fast-growing bacterium V. natriegens to synthesize melanin nanoparticles by expressing a heterologous tyrosinase gene with inducible promoters. Characterization of the melanin produced from V. natriegens-produced tyrosinase revealed that it exhibited physical and chemical properties similar to those of natural and chemically synthesized melanins, including nanoparticle structure, protection against UV damage, and adsorption of toxic compounds. We anticipate that producing and controlling melanin structures at the nanoscale in this bacterial system with synthetic biology tools will enable the design and rapid production of novel biomaterials for multiple applications.


Assuntos
Bacillus megaterium/genética , Biopolímeros/metabolismo , Melaninas/biossíntese , Microrganismos Geneticamente Modificados/metabolismo , Monofenol Mono-Oxigenase/genética , Vibrio/metabolismo , Biopolímeros/genética , Microrganismos Geneticamente Modificados/genética , Monofenol Mono-Oxigenase/metabolismo , Vibrio/genética
10.
J Biosci ; 44(4)2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31502562

RESUMO

The success of viral vectors mediated gene therapy is still hampered by immunogenicity and insufficient transgene expression. Alternatively, non-viral vectors mediated gene delivery has the advantage of low immunogenicity despite showing low transgene expression. By carefully considering the advantages of each approach, hybrid vectors are currently being developed by modifying the viral vectors using non-viral biopolymers. This review provides an overview of the hybrid vectors currently being developed.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/uso terapêutico , Animais , Biopolímeros/química , Biopolímeros/genética , Dependovirus/química , Vetores Genéticos/química , Humanos , Transgenes/genética
11.
J Microbiol ; 57(1): 1-8, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30552630

RESUMO

When Salmonella enterica is not in a planktonic state, it persists in organised communities encased in extracellular polymeric substances (EPS), defined as biofilms. Environmental conditions ultimately dictate the key properties of the biofilms such as porosity, density, water content, charge, sorption and ion exchange properties, hydrophobicity and mechanical stability. S. enterica has been extensively studied due to its ability to infect the gastrointestinal environment. However, only during the last decades studies on its persistence and replication in soil, plant and abiotic surfaces have been proposed. S. enterica is an environmental bacterium able to effectively persist outside the human host. It does so by using EPS as tools to cope with environmental fluctuations. We therefore address this mini-review to classify those EPS that are produced by Salmonella with focus on the environment (plant, soil, and abiotic surfaces) by using a classification of EPS proposed by Flemming and collaborators in 2007. The EPS are therefore classified as structural, sorptive, surface-active, active, and informative.


Assuntos
Proteínas de Bactérias/metabolismo , Biopolímeros/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Plantas/microbiologia , Salmonella enterica/metabolismo , Proteínas de Bactérias/genética , Biofilmes , Biopolímeros/química , Biopolímeros/genética , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/genética , Salmonella enterica/química , Salmonella enterica/genética
12.
J Biol Chem ; 293(39): 15107-15119, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30108173

RESUMO

Elastin is an essential vertebrate protein responsible for the elasticity of force-bearing tissues such as those of the lungs, blood vessels, and skin. One of the key features required for the exceptional properties of this durable biopolymer is the extensive covalent cross-linking between domains of its monomer molecule tropoelastin. To date, elastin's exact molecular assembly and mechanical properties are poorly understood. Here, using bovine elastin, we investigated the different types of cross-links in mature elastin to gain insight into its structure. We purified and proteolytically cleaved elastin from a single tissue sample into soluble cross-linked and noncross-linked peptides that we studied by high-resolution MS. This analysis enabled the elucidation of cross-links and other elastin modifications. We found that the lysine residues within the tropoelastin sequence were simultaneously unmodified and involved in various types of cross-links with different other domains. The Lys-Pro domains were almost exclusively linked via lysinonorleucine, whereas Lys-Ala domains were found to be cross-linked via lysinonorleucine, allysine aldol, and desmosine. Unexpectedly, we identified a high number of intramolecular cross-links between lysine residues in close proximity. In summary, we show on the molecular level that elastin formation involves random cross-linking of tropoelastin monomers resulting in an unordered network, an unexpected finding compared with previous assumptions of an overall beaded structure.


Assuntos
Biopolímeros/química , Elastina/química , Lisina/química , Tropoelastina/química , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/química , Animais , Biopolímeros/genética , Bovinos , Desmosina/química , Dipeptídeos/química , Elastina/genética , Humanos , Domínios Proteicos/genética , Tropoelastina/genética
13.
Nature ; 560(7717): 258-262, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069048

RESUMO

Membrane fission is a fundamental process in the regulation and remodelling of cell membranes. Dynamin, a large GTPase, mediates membrane fission by assembling around, constricting and cleaving the necks of budding vesicles1. Here we report a 3.75 Å resolution cryo-electron microscopy structure of the membrane-associated helical polymer of human dynamin-1 in the GMPPCP-bound state. The structure defines the helical symmetry of the dynamin polymer and the positions of its oligomeric interfaces, which were validated by cell-based endocytosis assays. Compared to the lipid-free tetramer form2, membrane-associated dynamin binds to the lipid bilayer with its pleckstrin homology domain (PHD) and self-assembles across the helical rungs via its guanine nucleotide-binding (GTPase) domain3. Notably, interaction with the membrane and helical assembly are accommodated by a severely bent bundle signalling element (BSE), which connects the GTPase domain to the rest of the protein. The BSE conformation is asymmetric across the inter-rung GTPase interface, and is unique compared to all known nucleotide-bound states of dynamin. The structure suggests that the BSE bends as a result of forces generated from the GTPase dimer interaction that are transferred across the stalk to the PHD and lipid membrane. Mutations that disrupted the BSE kink impaired endocytosis. We also report a 10.1 Å resolution cryo-electron microscopy map of a super-constricted dynamin polymer showing localized conformational changes at the BSE and GTPase domains, induced by GTP hydrolysis, that drive membrane constriction. Together, our results provide a structural basis for the mechanism of action of dynamin on the lipid membrane.


Assuntos
Biopolímeros/química , Biopolímeros/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Dinamina I/metabolismo , Dinamina I/ultraestrutura , Biopolímeros/genética , Membrana Celular/química , Dinamina I/química , Dinamina I/genética , Endocitose/genética , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Mutação , Domínios Proteicos , Multimerização Proteica
14.
Gene ; 649: 63-73, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29355682

RESUMO

Anther cuticle and pollen exine are two elaborated lipid-soluble barriers protecting pollen grains from environmental and biological stresses. However, less is known about the mechanisms underlying the synthesis of these lipidic polymers. Here, we identified a no-pollen male-sterility mutant cyp703a3-3 from the indica restorer line Zhonghui 8015 (Zh8015) mutant library treated with 60Coγ-ray radiation. Histological analysis indicated that cyp703a3-3 underwent abnormal tapetal cells development, produced few orbicules and secreted less sporopollenin precursors to anther locule, as well as cutin monomers on anther. Genetic analysis revealed that cyp703a3-3 was controlled by a single recessive gene. Map-based cloning was performed to narrow down the mutant gene to a 47.78-kb interval on the chromosome 8 between two markers S15-29 and S15-30. Sequence analysis detected three bases (GAA) deletion in the first exon of LOC_Os08g03682, annotated as CYP703A3 with homologous sequences related to male sterility in Arabidopsis, causing the Asparagine deletion in the mutant site. Moreover, we transformed genomic fragment of CYP703A3 into cyp703a3-3, which male-sterility phenotype was recovered. Both the wild-type and cyp703a3-3 mutant 3D structure of CYP703A3 protein were modeled. Results of qPCR suggested CYP703A3 mainly expressed in anthers with greatest abundance at microspore stage, and genes involved in sporopollenin precursors formation and transportation, such as GAMYB, TDR, CYP704B2, DPW2, OsABCG26 and OsABCG15, were significantly reduced in cyp703a3-3. Collectively, our results further elaborated CYP703A3 plays vital role in anther cuticle and pollen exine development in rice (Oryza sativa L.).


Assuntos
Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Oryza/genética , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biopolímeros/genética , Biopolímeros/metabolismo , Carotenoides/genética , Carotenoides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana/genética , Fenótipo , Pólen/genética , Pólen/metabolismo
15.
Mol Biol Cell ; 28(19): 2461-2469, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28904122

RESUMO

While many are familiar with actin as a well-conserved component of the eukaryotic cytoskeleton, it is less often appreciated that actin is a member of a large superfamily of structurally related protein families found throughout the tree of life. Actin-related proteins include chaperones, carbohydrate kinases, and other enzymes, as well as a staggeringly diverse set of proteins that use the energy from ATP hydrolysis to form dynamic, linear polymers. Despite differing widely from one another in filament structure and dynamics, these polymers play important roles in ordering cell space in bacteria, archaea, and eukaryotes. It is not known whether these polymers descended from a single ancestral polymer or arose multiple times by convergent evolution from monomeric actin-like proteins. In this work, we provide an overview of the structures, dynamics, and functions of this diverse set. Then, using a phylogenetic analysis to examine actin evolution, we show that the actin-related protein families that form polymers are more closely related to one another than they are to other nonpolymerizing members of the actin superfamily. Thus all the known actin-like polymers are likely to be the descendants of a single, ancestral, polymer-forming actin-like protein.


Assuntos
Actinas/metabolismo , Actinas/fisiologia , Trifosfato de Adenosina/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Evolução Biológica , Biopolímeros/genética , Biopolímeros/metabolismo , Citoesqueleto/metabolismo , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Evolução Molecular , Hidrólise , Filogenia
16.
Biopolymers ; 107(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741310

RESUMO

In the past two decades, keratin biomaterials have shown impressive results as scaffolds for tissue engineering, wound healing, and nerve regeneration. In addition to its intrinsic biocompatibility, keratin interacts with specific cell receptors eliciting beneficial biochemical cues. However, during extraction from natural sources, such as hair and wool fibers, natural keratins are subject to extensive processing conditions that lead to formation of unwanted by-products. Additionally, natural keratins suffer from limited sequence tunability. Recombinant keratin proteins can overcome these drawbacks while maintaining the desired chemical and physical characteristics of natural keratins. Herein, we present the bacterial expression, purification, and solution characterization of human hair keratins K31 and K81. The obligate heterodimerization of the K31/K81 pair that results in formation of intermediate filaments is maintained in the recombinant proteins. Surprisingly, we have for the first time observed new zero- and one-dimensional nanostructures from homooligomerization of K81 and K31, respectively. Further analysis of the self-assembly mechanism highlights the importance of disulfide crosslinking in keratin self-assembly.


Assuntos
Biopolímeros/química , Queratinas Específicas do Cabelo/química , Proteínas Recombinantes/química , Engenharia Tecidual , Biopolímeros/genética , Humanos , Queratinas Específicas do Cabelo/genética , Nanoestruturas/química , Multimerização Proteica , Proteínas Recombinantes/genética
17.
Plant J ; 91(2): 263-277, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28378445

RESUMO

Angiosperm male reproductive organs (anthers and pollen grains) have complex and interesting morphological features, but mechanisms that underlie their patterning are poorly understood. Here we report the isolation and characterization of a male sterile mutant of No Pollen 1 (NP1) in rice (Oryza sativa). The np1-4 mutant exhibited smaller anthers with a smooth cuticle surface, abnormal Ubisch bodies, and aborted pollen grains covered with irregular exine. Wild-type exine has two continuous layers; but np1-4 exine showed a discontinuous structure with large granules of varying size. Chemical analysis revealed reduction in most of the cutin monomers in np1-4 anthers, and less cuticular wax. Map-based cloning suggested that NP1 encodes a putative glucose-methanol-choline oxidoreductase; and expression analyses found NP1 preferentially expressed in the tapetal layer from stage 8 to stage 10 of anther development. Additionally, the expression of several genes involved in biosynthesis and in the transport of lipid monomers of sporopollenin and cutin was decreased in np1-4 mutant anthers. Taken together, these observations suggest that NP1 is required for anther cuticle formation, and for patterning of Ubisch bodies and the exine. We propose that products of NP1 are likely important metabolites in the development of Ubisch bodies and pollen exine, necessary for polymerization, assembly, or both.


Assuntos
Flores/fisiologia , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Biopolímeros/genética , Biopolímeros/metabolismo , Carotenoides/genética , Carotenoides/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos/genética , Meiose , Mutação , Plantas Geneticamente Modificadas , Pólen/genética
18.
Methods Mol Biol ; 1480: 201-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27659986

RESUMO

We summarize the picture emerging from recently proposed models of polymer physics describing the general features of chromatin large scale spatial architecture, as revealed by microscopy and Hi-C experiments.


Assuntos
Biopolímeros/química , Cromatina/química , Cromossomos/química , Microscopia/métodos , Biopolímeros/genética , Núcleo Celular/química , Núcleo Celular/genética , Cromatina/genética , Cromossomos/genética
19.
Acta Biochim Biophys Sin (Shanghai) ; 48(11): 1016-1025, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27649893

RESUMO

Prion diseases are a group of fatal neurodegenerative illnesses, resulting from the conformational conversion of the cellular prion protein (PrPC) into a misfolded form (PrPSc). The formation of neurotoxic soluble prion protein oligomer (PrPO) is regarded as a key step in the development of prion diseases. About 10%-15% of human prion diseases are caused by mutations in the prion protein gene; however, the underlying molecular mechanisms remain unclear. In the present work, we compared the biophysical properties of wild-type (WT) human prion protein 91-231 (WT HuPrP91-231) and its disease-associated variants (P105L, D178N, V203I, and Q212P) using several biophysical techniques. In comparison with WT HuPrPC, the Q212P and D178N variants possessed greatly increased conversion propensities of PrPC into PrPO, while the V203I variant had dramatically decreased conversion propensity. The P105L variant displayed a similar conversion propensity to WT HuPrPC Guanidine hydrochloride-induced unfolding experiments ranked the thermodynamic stabilities of these proteins as Q212P < D178N < WT ≈ P105L < V203I. It was thus suggested that the conversion propensities of the prion proteins are closely associated with their thermodynamic stabilities. Furthermore, structural comparison illustrated that Q212P, D178N, and V203I variants underwent larger structural changes compared with WT HuPrPC, while the P105L variant adopted a similar structure to the WT HuPrPC The mutation-induced structural perturbations might change the thermodynamic stabilities of the HuPrPC variants, and correspondingly alter the conversion propensities for these prion proteins. Our results extend the mechanistic understanding of prion pathogenesis, and lay the basis for the prevention and treatment of prion diseases.


Assuntos
Biopolímeros/metabolismo , Mutação , Proteínas Priônicas/metabolismo , Fenômenos Biofísicos , Biopolímeros/química , Biopolímeros/genética , Humanos , Proteínas Priônicas/química , Proteínas Priônicas/genética , Estrutura Terciária de Proteína , Termodinâmica
20.
Plant Cell Physiol ; 57(8): 1643-56, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27335346

RESUMO

Multienzyme associations localized to specific subcellular sites are involved in several critical functions in cellular metabolism, such as plant survival and reproduction. To date, few multienzyme complexes involved in male fertility have been examined in Brassica napus Here, we reported that in B. napus, the members of a multienzyme complex work in an interaction pattern different from that in Arabidopsis thaliana for sporopollenin biosynthesis. 7365A, a male-sterile mutant with a relatively smooth anther cuticle, was found to have a dramatic reduction in both cutin monomers and wax composition. Proteomic comparison between the mutant 7365A and wild-type 7365B showed down-regulation of three sporopollenin biosynthetic enzymes, namely BnPKSA, BnPKSB and BnTKPR; these enzymes were tightly co-expressed with BnACOS5. BnPKSA and BnPKSB showed similar expression patterns but distinct accumulation levels, suggesting that they had partially distinct functions during sporopollenin biosynthesis. In vitro and in vivo analyses demonstrated that BnPKSB directly interacted with BnPKSA and BnACOS5, but no such interactions were found in the present investigation for BnTKPR1. Interestingly, the interaction between PKSA and PKSB has not been discovered in Arabidopsis, which may indicate a new interaction representing an additional efficient regulation method in B. napus Taken together, we propose that BnPKSA and BnPKSB may comprise a heterodimer combined with BnACOS5, constituting a sporopollenin metabolon in tapetal cells that is related to male reproductive development in B. napus.


Assuntos
Brassica napus/enzimologia , Regulação da Expressão Gênica de Plantas , Complexos Multienzimáticos , Proteômica , Biopolímeros/biossíntese , Biopolímeros/genética , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/ultraestrutura , Carotenoides/biossíntese , Carotenoides/genética , Regulação para Baixo , Flores/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...